Анализ воды на жесткость





Са2+ + Na2MgТр.→ Mg2+ + Na2СаТр.

и ионы кальция будут заменены в анализируемой воде ионами магния в эквивалентном отношении.

Устойчивость комплекса существенно зависит от рН раствора. Поэтому комплексонометрическое титрование ведут в заданном интервале рН, используя различные буферные растворы.

Методом комплексонометрии можно определить катионы магния, кальция, цинка, алюминия, бария, свинца и многие другие – более 40 различных катионов. Этот метод широко применяется для определения жесткости воды.

1.6. Методика определения жесткости воды комплексонометрическим

методом

1.6.1. Сущность метода

Метод основан на образовании при рН=10±0,2 прочного бесцветного комплексного соединения трилона Б с ионами кальция и магния. В эквивалентной точке титрования все ионы кальция и магния связываются в комплексное соединение трилоном Б, в результате чего происходит изменение окраски индикатора от красной до голубой.


Чувствительность метода составляет 0,5 мг – экв/л при титровании 0,1н

1.6.2. Отбор проб

Отбор проб является важной частью анализа, необходимым условием правильности получаемых результатов.

Главные принципы, которые требуется соблюдать при отборе проб воды, состоят в следующем:

1. Проба воды, взятая для анализа, должна отражать условия и место ее отбора. При отборе поверхностных вод необходимо изучить окружающую местность и брать пробы воды выше и ниже спуска сточных вод. Пробы из трубопроводов при наличии штуцера отбирают так, чтобы скорость вытекания воды из трубопровода совпадала со скоростью отбора. Соответственно цели анализа отбирают разовые и смешанные (средние) пробы за определенный период, сливая разовые, взятые из одного и того же места, через равные промежутки времени. Иногда средние пробы

 

отбирают одновременно из разных мест исследуемого объекта и сливают вместе. Окончательный объем средней пробы должен быть пропорционален расходу воды и определяется из условия заданного перечня определений.

2.Объем пробы должен быть достаточным и соответствовать применяемой методике анализа. Для неполного анализа, при котором определяют только несколько компонентов, достаточно отобрать 1 л воды. Для более подробного анализа следует брать 2 л воды.


3. Пробы воды отбирают в стеклянные или полиэтиленовые бутыли с хорошо подобранной пробкой, а при наличии крупных примесей – в жестяные бидоны или банки с широким горлом. Посуду, используемую для отбора проб, необходимо вымыть хромовой смесью и тщательно промыть водопроводной, а затем дистиллированной водой. Перед отбором пробы посуду ополаскивают несколько раз исследуемой водой.

4. Отбор пробы, условия транспортирования и сроки хранения определяются из условий отсутствия изменений в содержании определяемых компонентов или в свойствах воды. Необходимо учесть, что ни консервация, ни фиксация не обеспечивают постоянного состава пробы на продолжительное время.

Целью этих операций является сохранение содержания соответствующего

компонента без изменения на время, необходимое для доставки и обработки пробы воды. К анализу следует приступать в кратчайший срок после отбора пробы.

1.6.3. Реактивы и оборудование

Реактивы и материалы:

· трилон Б (фиксанал 0,1н) по ТУ 6-09-2540-87;

· серно – кислый магний MgSO4 (фиксанал 0,1н) ТУ 6-09-2540-87;

· аммиачный буферный раствор;

· индикатор эриохром черный Т или кислотный хром темно – синий ч.д.а. ТУ 6-09-3870-87Е;

· сернистый натрий 9 – водный ч.д.а., Na2S ГОСТ 2053-77.

Приготовление реактивов:  

 

· Трилон Б 0,05н: раствор готовят из 0,1н трилона Б, приготовленного из фиксанала, разбавлением его в 20 раз. Для этого 50 мл трилона Б 0,1н переносят в мерную колбу на 100 мл и доводят до метки обессоленной воды. При отсутствии фиксанала берут навеску 18,613 г. трилона Б и растворяют в мерной колбе на 1000 мл. Устанавливают титр трилона Б по фиксаналу 0,1н MgSO4. Пипеткой отбирают 10 мл 0,1н MgSO4 в коническую колбу, добавляют 90 мл обессоленной воды, 5 мл аммиачно – буферного раствора, 5 – 7 капель индикатора кислотного хром темно – синего (эриохром черного, хромогена) и титруют раствором трилона Б до голубого цвета. Должно пойти 20 мл трилона Б

· Аммиачный буферный раствор: 20 г NH4Cl растворить в 500 мл воды, добавить 80 мл концентрированного аммиака NH4OH и довести объем до 1000 мл.

· Индикаторы кислотный хром темно – синий или эриохром черный Т: 0,5 г индикатора растворяют в 20 мл аммиачно – буферного раствора и доводят объем до 100 мл этиловым спиртом.

1.6.4. Проведение анализа

Отобрав определенный объем анализируемой воды (обычно 100мл) в коническую колбу, вводят в нее 5 мл аммиачной буферной смеси, несколько капель

индикатора и титруют окрашенную в розовый или фиолетово – розовый цвет жидкость раствором трилона Б. Титрование ведут медленно, по каплям, так как образование трилонатных комплексов происходит не мгновенно.
ибавление титранта, т.е. раствора трилона Б, ведут до наиболее четкого изменения цвета. Здесь необходима, как говорят, «ститровка» всего коллектива данной лаборатории. Дело в том, что резкое «от одной капли» изменение окраски титруемой жидкости происходит только при работе с 0,1н и 0,01н растворами трилона Б. Применение более разбавленных растворов создает не резкое, а постепенное изменение окраски; на это требуется, например, от трех до пяти капель 0,002н раствора трилона Б. Вследствии этого необходимо выработать по возможности единое мнение о той окраски, при которой следует считать титрование законченным. Для этого в ряд конических колб вливают по 100 мл дистиллированной обессоленной воды, добавляют в каждую колбу по 2 мл раствора сернокислого магния (MgSO4) конц.

 

1 мг-экв/л и по 5 мл аммиачной буферной смеси. Затем в первую колбу вводят 0,95 мл 0,002н раствора трилона Б, т.е. с явным недостатком, а в каждую следующую на одну каплю больше, чем в предыдущую. Например, 0,95; 0,98; 1,01; 1,04; 1,07; 1,10 мл (если объем капли 0,03мл). Жидкость в последней колбе будет явно перетитрована, т.к. 1 мл 0,002н раствора трилона Б содержит 2 мкг – экв вещества, т.е. такое же количество, что и 2 мл магнезиального раствора. Составив все колбы в ряд, решают, где возникает наиболее четко визуально – определенная разница окрасок. До этого изменение цвета в дальнейшем и ведут титрование. Следует лишь иметь ввиду, что переход окраски отмечается несколько различно в зависимости от освещения. Наиболее четко этот переход заметен при естественном дневном освещении, менее отчетливо при обычном электрическом и хуже всего при лампах «дневного света». Из индикаторов четче всего переход окраски при работе с эриохром черным ЕТ00, но этот индикатор, к сожалению, и наименее чувствителен.


Так как в анализируемой воде могут присутствовать, кроме кальция и магния, также и другие катионы, взаимодействующие с Трилоном Б, например железо,

цинк, медь, марганец, то принимают меры против их влияния на результаты титрования. Влияние меди и цинка устраняют добавлением к воде нескольких капель 10% — го раствора сульфида натрия. Образующиеся сернистые медь и цинк столь малорастворимы, что уже не дают трилонаты. Влияние железа может быть предотвращено окислением его до трехвалентного, которое выпадает в щелочной воде в осадок, также очень малорастворимый. Иногда предпочитают закомплексовывать железо лимонной или винной кислотами, добавленными с большим избытком. Марганец в щелочной среде окисляется до марганцовистой кислоты. Жидкость при этом приобретает серый цвет, мешающий титрованию. Введением гидроксиламина или гидрозина сохраняют марганец в двухвалентном состоянии. При этом он оттитровывается вместе с кальцием и магнием, несколько завышая, следовательно, величину жесткости. В водах электростанций марганца

обычно так мало, что этим завышением пренебрегают.

Следует заметить, что иногда в водах (чаще всего в котловых) оказываются

 

вещества, образуют с индикаторами прочные, окрашенные в красный цвет, соединения. Они лишь очень медленно, иногда в течение часа, разлагаются трилоном Б, причем для этого необходим обычно значительный его избыток. При титровании вод, содержащих такие вещества, розовая окраска или оттенок не устраняются даже после добавления значительных избытков трилона Б. Проба остается неоттитрованной, однако по истечении некоторого времени, иногда 10 – 20 минут, иногда 1 часа, розовый оттенок исчезает и жидкость приобретает явно сильно «перетитрованный» вид. Специальные опыты показывают, что такие прочные соединения с индикаторами, медленно разрушающиеся лишь избытками трилона Б, образуют катионы металлов, расположенных в правой нижней части таблицы Д.И. Менделеева, а также, по – видимому, некоторые органические амины. Устранить мешающее влияние этих агентов иногда удается выпариванием порции воды досуха, прокаливанием сухого остатка при 700 – 8000С и последующим растворением кальциевых и магниевых соединений слабой соляной кислотой. Можно также применить для определения жесткости таких вод олеатный способ.

1.6.5. Обработка результатов

Жесткость анализируемой воды вычисляют по формулам:

а · К · N · 1000

Анализ воды на жесткость Ж= , мг-экв/л

V

а · 1,0· 0,05· 1000


Анализ воды на жесткостьАнализ воды на жесткость Ж= = а · 0,5, мг-экв/л

100

где а – расход трилона Б, пошедшее на титрование, см3

N – нормальность раствора трилона Б

V – объем пробы, см3

К – поправочный коэффициент к номинальной нормальности  

 

1.7. Экспериментальные данные

Проведя анализ, получили показания жесткости исходной воды, которые представлены в таблице 1.2

Таблица 1.2

Экспериментальные данные



№ анализа

V1, см3 Трилон Б 0,05н

V2, см3

Трилон Б 0,05н

Vсредний, см3 Трилон Б 0,05н

Жесткость, мг-экв/л

V аликвоты, см3

1

6,60

6,60

6,60

3,30

100

2

6,56

6,58

6,57

3,285

100

3

6,76

6,72

6,74

3,37

100

4

6,58

6,60

6,59

3,295

100

5

6,44

6,46

6,45

3,225

100

6

6,50

6,52

6,51

3,255

100

7

6,50

6,54

6,52

3,26

100

8

6,42

6,40

6,41

3,205

100

9

6,58

6,60

6,59

3,295

100

10

6,56

6,58

6,57

3,285

100

6,60 + 6,57 + 6,74 + 6,59 + 6,45 + 6,51 + 6,52 + 6,41 + 6,59 + 6,57

Анализ воды на жесткость а = =

10

= 6,55 см3

6,55 · 1,0 · 0,05 · 1000

Анализ воды на жесткость Ж = = 3,275 мг-экв/л

100

Выполнив расчеты по формулам, получили жесткость воды 3,275 мг-экв/л, что соответствует предъявляемым требования к качеству исходной воды.

 

2. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

Полная себестоимость промышленной продукции — это выраженные в денежной форме затраты предприятия на ее производство и реализацию. Планирование и учет себестоимости продукции ведут по элементам затрат и калькуляционным статьям расходов.

Элементы затрат: материальные затраты (МЗ), трудовые затраты (ТЗ), амортизация, прочие затраты.

Статьи калькуляции: сырье и материалы, топливо и энергия на технологические цели, основная и дополнительная зарплата, отчисления в различные фонды, общепроизводственные расходы (ОПР), общехозяйственные расходы (ОХР), коммерческие расходы (КР), прочие расходы.

Калькуляция себестоимости промышленной продукции состоит из трех частей:

1. прямые затраты (МЗ и ТЗ)

2. накладные расходы (ОПР, ОХР и КР)

3. плановые накопления (прибыль и торговые надбавки)

В состав ОПР входят: расходы на содержание и эксплуатацию оборудования (амортизация производственного оборудования и транспорта, расход энергии на приведение в действие оборудования, ремонт оборудования, расходы по внутризаводскому перемещению грузов, износ инструментов) и цеховые расходы (зарплата цехового персонала, амортизация, содержание и ремонт основных фондов, расходы на ОТ и ТБ, недостачи и потери от порчи и простоев).

В состав ОХР входят: расходы по содержанию аппарата управления (зарплата руководителей, амортизация и содержание непроизводственных зданий и сооружении и легковых автомобилей, расходы на содержание вычислительных  

центров, почтово-телеграфные расходы) и прочие общехозяйственные расходы (зарплата служащих, расходы на подготовку кадров и другие).

Коммерческие расходы включают расходы на анализ рынка, рекламу и прочие.

Таблица 2.1

Калькуляция себестоимости промышленной продукции

№ п/п

Статьи калькуляции

Сумма (тыс. руб.)

1

Материальные затраты (МЗ)

90

2

Основная заработная плата производственных рабочих (Зосн)

450

3

Дополнительная заработная плата производственных рабочих (Здоп)

45

4

Отчисления во внебюджетные фонды (Овбф)

126

5

Итого трудовые затраты (ТЗ)

621

6

Итого прямые затраты (ПЗ)

711

7

Общепроизводственные расходы (ОПР)

135

8

Общехозяйственные расходы (ОХР)

585

9

Итого производственная себестоимость (С/Спр)

1431

10

Коммерческие расходы (КР)

28,6

11

Итого полная себестоимость (С/Сполн)

1459,6

12

Прибыль (ПT)

437,9

13

Оптовая цена (Цопт)

1897,5

14

НДС

341,5

15

Отпускная цена (Цотп)

2239

16

Торговая надбавка (ТН)

559,75

17

Рыночная цена продукции (Црын)

2798,75

 

 

Расчет статей калькуляции.

1. Определяем трудовые затраты:

ТЗ = Зосн + Здоп + Овбф = 450 + 45 + 126 = 621

Здоп = 10% от Зосн = 450 ∙ 0,1 = 45

Овбф ≈ 28% от Зосн = 450 ∙ 0,28 = 126

2. Определяем общехозяйственные расходы: ОХР = Зосн · Кохр = 450 ∙ 1,3 = 585

3. Определяем производственную себестоимость: С/Спр = ПЗ + ОПР + ОХР = 711 + 135 + 585 = 1431

4. Определяем коммерческие расходы:

КР = С/Спр · Ккр = 1431 ∙ 0,02 = 28,6

5. Определяем полную себестоимость:

С/Сполн = С/Спр + КР = 1431 + 28,62 = 1459,6

6. Определяем прибыль:

П = С/Сполн · 0,3 = 1459,6 ∙ 0,3 = 437,9

7. Определяем оптовую цену:

Цопт = С/Сполн + П = 1459,6 + 437,9 = 1897,5

8.Определяем налог на добавленную стоимость: НДС = Цопт · 0,18 = 1897,5 ∙ 0,18 = 341,5

9. Определяем отпускную цену:

Цотп = Цопт + НДС = 1897,5 + 341,5 = 2239

10. Определяем торговую надбавку:

ТН = Цотп · 0,25 = 2239 ∙ 0,25 = 559,75

11. Определяем рыночную цену:

Црын = Цотп + ТН = 2239 + 559,75 = 2798,75  

 

3. ОХРАНА ТРУДА И ТЕХНИКА БЕЗОПАСОСТИ

Лабораторные, складские и вспомогательные помещения снабжаются средствами пожаротушения в соответствии с разработанными на предприятии нормами.

К первичным огнетушащим средствам относятся различные огнетушители, асбестовое полотно, а также водопроводная вода. В условиях лаборатории, при чрезвычайном обилии различных горючих веществ с различными свойствами, особенно важно правильное и своевременное применение первичных средств тушения огня. Успешная борьба с возгораниями не возможна без четкого знания возможностей и областей применения каждого из имеющихся в лаборатории огнетушащих средств.

В химической лаборатории рекомендуется использовать углекислотные, порошковые, пенные и воздушно-пенные огнетушители.

Углекислотный огнетушитель должен быть в каждом лабораторном помещении, независимо от наличия других средств огнетушения.

Лабораторные помещения должны быть оснащены средствами индивидуальной защиты (СИЗ): защитными очками, резиновыми перчатками, фартуком, аптечкой для оказания первой помощи; на рабочих местах надлежит иметь достаточное количество нейтрализующих средств (3% содовый и 2% кислотный растворы).

Подавляющая часть работ в химической лаборатории связана с использованием стеклянной посуды, аппаратов и приборов. Поэтому технике безопасности при работе со стеклом необходимо уделять самое серьезное внимание:

· нельзя нагревать не термостойкие стаканы и колбы на открытом огне или непосредственно электроплитке, а также резко охлаждать нагретые сосуды;  

   

ЗАКЛЮЧЕНИЕ

В данной работе представлено описание использования воды в промышленности, основные показатели качества воды и ее свойства, такие как щелочность, жесткость, прозрачность, реакция воды и другие.

Подробно рассмотрены способы водоподготовки.

Изложены возможные методы определения жесткости воды, подробно рассмотрен комплексонометрический метод.

Представлены методика анализа, правила отбора проб воды для анализа, правила приготовления реактивов и выполнения анализа. Также представлена таблица экспериментальных данных, из которой следует, что жесткость воды составляет 3,275 мг-экв/л, что соответствует предъявляемым требования к качеству исходной воды.

Дан экономический расчет статей калькуляции.

Дана техника безопасности при работе в химических лабораториях. Описаны правила работы со стеклом, средства пожаротушения, а также средства личной защиты и спецодежда сотрудников химических лабораторий.

 

ЛИТЕРАТУРА

1. Алексеев В.Н. Количественный анализ. – М.: Химия, 1972

2. Васильев В.П.Аналитическая химия. Кн. 1: Титриметрические и гравиметрические методы анализа. – М.: Дрофа, 2005.

3.Временное методическое руководство по анализу технологических и сточных вод предприятий черной металлургии. – М.: Металлургия, 1981.

4.Глинка Н.Л. Общая химия. – М.: Химия, 1980.

5.Гурвич С.М., Кострикин Ю.М. Оператор водоподготовки. – М.: Энергия, 1967.

6. Инструкция о порядке проведения химического анализа воды и пара в Паросиловом цехе ОАО «ММК» ЭИ-ПСЦ-3-44-2008

7.Кострикин Ю.М. Инструкция. – М.: 1967.

8. Крешков А.П., Ярославцева А.А. Курс аналитической химии. Количественный анализ. – М.: Химия, 1982.

9. Посыпайко В.И., Васина Н.А. Аналитическая химия и технический анализ. – М.: Высшая школа, 1979.

10.Сороко В.Е., Вечная С.В., Попова Н.Н. Основы химической технологии. – СПб.: 1986.  

 

· стеклянная посуда не предназначена для работы на повышенном давлении;

· нельзя допускать нагревание жидкостей в закрытых колбах или приборах, не имеющих сообщения с атмосферой;

· категорически запрещается использовать посуду, имеющую трещины или отбитые края;

· осколки разбитой посуды убирают только с помощью щетки и совка, но ни в коем случае не руками;

· стеклянные приборы и посуду больших размеров можно переносить только двумя руками. Поднимать крупные бутыли за горло запрещается.

Транспортировка до рабочего места химических реактивов (до 2 – х литров) должна осуществляться в специальных металлических контейнерах (ведрах).

Бутылки, реактивные склянки и колбы с химическими реактивами должны иметь надпись этикетку, бирку с названием. Хранить на рабочих местах вещества неизвестного происхождения запрещено!

При разведении концентрированных реактивов их приливают тонкой струей в воду при одновременном перемешивании раствора. Приливать воду к концентрированным кислотам и щелочам запрещено!

Нейтрализовать разрешается лишь разбавленные кислоты разбавленными щелочами и наоборот. При смешивании, нейтрализации или разбавлении растворов, сопровождающихся выделением тепла, необходимо пользоваться термостойкой посудой.

Нельзя засасывать концентрированные кислоты и щелочи ртом в пипетку, необходимо пользоваться резиновыми грушами.

Дозировка кислот, щелочей и других химических реактивов производится с помощью мензурок, цилиндров и другой мерной посуды в реактивную склянку.

Все работы должны проводиться в СИЗ: резиновых перчатках, очках, фартуке и спецодежде (халате).

После каждого пользования концентрированными реактивами необходимо тщательно мыть руки.При разливе концентрированных химических веществ,

 

www.newreferat.com

Качественное определение в воде анионов

После проведения полного обессоливания воды необходимо убедится в отсутствии в ней как катионов (Mg2+, Ca2+), так и анионов (SO42–, NO3, Cl). Анализ на содержание указанных анионов в воде до ее обессоливания и после проводится качественно.

Качественный анализ анионов

SO42– – раствор хлорида бария дает белый осадок сульфата бария;

Cl – при добавлении раствора нитрата серебра образуется белый осадок хлорида серебра;

NO3 – при добавлении раствора дифениламина в серной кислоте появляется характерное для ионов NO3 синее окрашивание.

Определение содержания взвешенных частиц (мутность воды)

Мутность воды определяется фотоколориметрическим методом при длине волны 440 нм. Оптическую плотность измеряют в кюветах с толщиной поглощающего слоя 3 мм. Количество взвешенных частиц в воде находят по калибровочной кривой.

Регистрирующим прибором в фотоколориметре служит микроамперметр типа М907, оцифрованный в микроамперах и имеющий шкалу 0–100 делений, соответствующих шкале коэффициентов пропускания –  и оптической плотности – D. При измерении со светофильтром 440 нм, отмеченным на лицевой панели колориметра черным цветом, ручку «Чувствительность» устанавливают в одно из положений 1, 2 или 3. Рабочие поверхности кювет перед каждым измерением необходимо тщательно протирать спирто-эфирной смесью, жидкость в кюветы наливать до метки на боковой поверхности кюветы. При установке кювет в кюветодержатель нельзя касаться пальцами участков поверхности кювет ниже уровня жидкости в них.

Колориметр включают в сеть за 15 мин до начала измерений. Во время прогрева кюветное отделение должно быть открыто (при этом шторка перед фотоприемником перекрывает световой пучок). В световой пучок помещают кювету со стандартным раствором, по отношению к которому производят измерения, и крышку кюветного отделения закрывают. Ручками «Чувствительность» и «Установка 100» устанавливают отсчет 100 по шкале колориметра. Затем поворотом ручки кювету со стандартным раствором заменяют кюветой с исследуемым раствором. После этого производят отсчет по шкале колориметра, соответствующий коэффициенту пропускания исследуемого раствора в процентах, или по шкале D в единицах оптической плотности. Измерения проводят 3–5 раз и окончательное значение измеряемой величины определяют как среднее арифметическое полученных значений.

studfiles.net

Как определить общую жесткость воды по ГОСТ?

Для определения общей жесткости воды в лабораторных условиях используют комплексонометрический метод, основанный на образовании сложных соединений анализируемых ионов с органическими реагентами (комплексонами) (1). Перед началом работы пробу разбавляют спиртовым раствором индикатора эриохрома черного Т или сухой смесью хлорида натрия и кальция. К окрашенному в вино-красный цвет раствору добавляется по каплям Трилон Б. Величину общей жесткости вычисляют по формуле:

Жо=Nx*Vx*1000/V1

(N-нормальность раствора Трилона Б, V-объем раствора Трилона Б, V1-объем пробы).

Для справки: Титрование (титриметирческий анализ) – метод количественного расчета содержания вещества, реагирующего с реактивом известной концентрации.

Как проверить временную жесткость воды по ГОСТ?

При помощи титрования и колориметрического метода можно узнать не только величину общей, но и временной жесткости. Для этого исследуемые пробы соединяют с индикатором (метилоранж), после чего эталонный образец переставляют на белый фон, а вторую пробирку титруют раствором соляной кислоты до появления оранжево-красного оттенка. Рассчитывая необходимое количество «солянки», определяют временную жесткость воды.

Формула:            

Нвр = NHCl * VHCL* 1000/ V1

(N-нормальность раствора соляной кислоты, V-объем раствора соляной кислоты, V1-объем пробы)

Уравнение реакции:

CaCO3 + 2HCl = CaCl2 + CO2 ↑ + H2O

Ca(HCO3)2 + 2HCl = CaCl2 + 2H2O + 2CO2

Как определить жесткость воды с высокой точностью?

Титрование – один из самых распространенных и простых методов определения концентрации ионов кальция и магния. К минусам традиционных методик следует отнести невысокую точность.

О том, как проверить жесткость воды с минимальными погрешностями, знает обслуживающий персонал высокоточных приборов. Ярким примером одного из самых надежных инструментов определения концентрации ионов кальция и магния является АКМС-1. По результатам сравнения разности электродных потенциалов с эталонными значениями, прибор автоматически выводит результаты анализа на дисплей.

Метод атомной спектрометрии основывается на резонансном поглощении света атомами исследуемых химических элементов. К преимуществам подобного метода относится высокая точность. Недостатком атомной спектрометрии считают высокую стоимость требуемых приборов.

Как узнать жесткость при помощи бытовых приборов?

Для определения жесткости воды можно воспользоваться приборами и инструментами, используемыми в аквариумистике. С точностью до 2% снимают показания TDS-метры.

Принцип действия подобного прибора основан на прямой зависимости электропроводности и количества растворенных солей кальция и магния.

На заводах и предприятиях, а также в лабораторных условиях очистных сооружений наиболее точными считаются результаты нескольких опытов, различающихся методикой вычисления концентрации «целевых» компонентов или частиц загрязнителя.

Используемые источники:

 ГОСТ Р 52407-2005

ochistivodu.ru

Виды жёсткости воды

Выделяют три вида жёсткости:

  • временная (карбонатная), обусловленная содержанием гидрокарбонатов кальция и магния – солей слабой угольной кислоты. При кипячении соли распадаются, в результате образуется нерастворимый осадок из карбоната кальция (СаСО3) и гидроокиси магния (Мg(OH)2;
  • постоянная (некарбонатная), от которой невозможно избавиться кипячением. В воде находят соли двухвалентных металлов (кальция, магния, бария и стронция), образованных сильными кислотами: соляной (HCl), серной (H2 SO4), азотной (HNO3). Соли бария и стронция для расчета степени жёсткости воды не учитывают, поскольку их количества незначительны;
  • общая – определяется как суммарная концентрация ионов кальция и магния в воде.

В России воду классифицируют в зависимости от величины показателя общей жёсткости:

  • до 2°Ж – мягкая;
  • от 2 до 10°Ж – средней жёсткости;
  • более 10°Ж – жёсткая.
фото изменения жесткости воды в природе
Как и почему меняется жесткость воды

Почему нужно уметь измерять жёсткость воды

Слишком жёсткая или слишком мягкая вода может нанести непоправимый вред как бытовым приборам, так и здоровью людей. Мягкая вода вымывает из организма кальций, из-за чего разрушаются кости и зубы. В такой воде активно коррозируют металлические поверхности. Чтобы этого избежать, используют ингибитор коррозии.

Вред жёсткой воды:

  • создает слишком большую солевую нагрузку для мочеполовой системы. Возможно появление мочекаменной болезни, ухудшение состояния волос и кожи;
    неблагоприятно действует на теплотехнические и сантехнические системы, приносит немалый вред бытовой технике;
  • приходится тратить больше тепла на нагрев воды: слой накипи (осадок из солей жесткости), появившийся на ТЭНах, обладает низкой теплопроводностью. Из-за недостаточного отвода тепла нагревательные элементы часто сгорают;
  • увеличивается расход моющих средств из-за того, что поверхностно-активные вещества (ПАВ), входящие в состав, дают с солями кальция и магния нерастворимые соединения и не образуют достаточного для удаления загрязнений количества пены;
  • стенки трубопроводов быстро зарастают известковыми отложениями, поэтому в водопроводной системе снижается напор, трубы приходится менять.

Следите за показателями жёсткости воды, поступающей из водопровода или местного источника. Если пользоваться доступными средствами смягчения воды, водопроводная система, нагреватели, стиральная и посудомоечная машины прослужат намного дольше.

Прежде чем покупать дорогие устройства и реагенты, выясните, какие соли и в каком количестве присутствуют в водопроводной воде. Показатель общей жёсткости меняется в зависимости от количества осадков, таяния снега и других явлений, влияющих на концентрацию солей. Чтобы правильно выбрать умягчители, сначала сделайте анализ на определение жёсткости воды.

Для бытовых целей: умывания, стирки и уборки, – достаточно выяснить показатель жесткости воды один раз и в случае необходимости использовать подходящие средства. Для приготовления пищи, если водопроводная слишком вода жёсткая, целесообразно использовать бутилированную воду хорошего качества, которую периодически проверять портативным и несложным в обращении прибором для определения общей и карбонатной жёсткости.

Определение жесткости воды приборами и «на глаз»

Предположить, что вода содержит большое количество солей щелочноземельных металлов, можно по следующим признакам:

  • плохо пенится мыло и стиральный порошок;
  • на поверхности нагревательных приборов образуется известковый налет;
  • вода имеет горьковатый вкус и дольше обычного заваривается чай;
  • при кипячении на поверхности воды образуется характерная пленка;
  • плохо развариваются мясные продукты.

1. Полоски жесткости воды. Продаются в аптечных магазинах «Медтехника», показывают результат измерения с точностью 1-2°Ж.

схема работы полосок для определения жесткости воды фото

Инструкция: опустить полоску жесткости в стакан с водой, подождать, пока индикатор, которым она пропитана, изменит цвет, затем сравнить с эталонной шкалой.

2. Экспресс-тесты для аквариумов. Этот способ основан на методе титрования.

фото теста жесткости воды для аквариемов
Пример аквариумного теста жесткости

Инструкция: в пробирку налить 5 мл воды и по каплям добавить реагент, содержащий индикатор. Число капель реагента, необходимых для того, чтобы раствор из жёлтого стал синим, равно количеству градусов жёсткости, каких именно – указано в инструкции к тесту.

3. Специальные приборы. Самый простой и точный метод определения жёсткости воды – титрование. Основан на реакции индикаторов, их способности менять цвет при достижении той или иной концентрации в строго определенном количестве воды, содержащей соли. В лабораториях результаты титрования обрабатывают с помощью фотоколориметра.

Существуют приборы, принцип действия которых заключается в измерении электропроводности воды. Уровень проводимости прямо пропорционально зависит от концентрации солей кальция и магния, растворённых в воде. В продаже есть приборы типа TDS-метр (total dissolved solids, или «солемер») и EC-метр (кондуктометр).

TDS-метр фото
Пример TDS-метра

TDS-метр выдаёт результат в ppm. Устройство показывает общее содержание солей и удельную электропроводность воды. EC-метр дополнительно показывает и удельное сопротивление раствора в мкСм/см (микро Сименс). Результат TDS = k * EC, где коэффициент k в пределах 0,55–0,80 (среднее значение 0,67).

EC-метр фото
TDS и EC-метр в одном приборе. Дороже, но удобнее

С помощью таких приборов удобно следить и поддерживать требуемое качество воды в аквариумах или для полива растений, чувствительных к повышенной жёсткости.

chistodar.com

Понятие жёсткости воды

Жёсткость воды – термин, говорящий о процентном соотношении солевых частиц магния и калия в жидкости.  Она подразделяется на две разновидности:

  • Временная (такая жидкость называется карбонатная);
  • Общая жёсткость (данная вода относится к некарбонатной).

Первый тип жёсткости характеризуется присутствием гидрокарбонатных солевых частиц магния и калия. Если такую воду закипятить, то элементы распадутся на карбонаты и гидроксиды и выпадут в осадок. Именно этот белый налёт часто покрывает наши чайники изнутри и собирается на других нагревательных элементах.

Для жидкости с общей жёсткостью характерно наличие других химических элементов (различных нитратов, хлоридов и тп.п). Обычно жёсткость питьевой воды связана с особенностями вашего региона, составом грунтов. Чем больше известковых пород находится в почве, тем выше жёсткость воды. Но важно не только понимать суть понятия, но и знать, как проверить жёсткость воды.  Выполнить это легко как в быту, так и на заводе.

Как проверить жёсткость воды в домашних условиях?

Для проверки жёсткости водопроводной воды дома можно использовать следующие способы:

  1. Постарайтесь обильно вспенить мыльный брусок или порошок для стирки. Если у вас образуется мало пены, то ваша вода имеет повышенную жёсткость. Это возникает по той причине, что солевые частицы калия и магния не позволяют мылу пениться. При обильной пышной пене от любого моющего средства можно утверждать, что вода нежёсткая. Но этот метод не позволят точно определить степень жёсткости.
  2. На вкус также можно отличить жёсткую воду от мягкой. Она более горькая. Но не все могут точно уловить горьковатый привкус солей магния и калия.
  3. Белый осадок в чайниках, накипь на нагревательных элементах других бытовых приборов – признак жёсткой воды. Осадок возникает из-за распада солей и выпадения их на дно. Данная особенность жёсткой воды очень вредит бытовым приборам и отопительному трубопроводу.
  4. От жёсткости воды зависит скорость заваривания чайного напитка. При мягкой воде на эту процедуру уйдёт от 3 до 6 мин., в жёсткой воде чай будет завариваться от 8 до 12 мин. Кстати, на вкус оба напитка будут существенно отличаться.
  5. Благодаря нехитрому компактному измерительному прибору можно очень легко определить жёсткость любой жидкости. Он называется TDS-метр. Агрегат измерят электропроводность жидкости. Чем выше показатель, тем больше уровень солесодержания жидкости. Обычно его ещё называют солемер. Чаще такой анализ воды на жёсткость делают владельцы аквариумов и цветоводы.
  6. Проверить жёсткость воды в быту можно, используя тест-полоски, продающейся в аптеках медтехники.

Контроль жёсткости воды – анализ воды на жесткость

Проверка временной жёсткости воды

Для этого анализа можно использовать колориметрическую методику  и принцип титрования. Процедура анализа выполняется так: порция воды смешивается с метилоранжем (индикатором), ёмкость устанавливается на светлом фоне. Во вторую тару с водой добавляют соляную кислоту, пока не получится красно-оранжевый цвет воды.

Временную жёсткость жидкости находят в процессе расчёта требуемого количества соляной кислоты по формуле: Нвр = NHCl * VHCL* 1000/ V1, где N-насыщенность раствора, V-его количество, V1-количество пробы.

Контроль общей жёсткости воды

Этот анализ проводят в лаборатории. Для него используют комплексонометрическую методику. Она базируется на принципе возникновения соединений ионов, подвергающихся анализу, с природными реагентами. Сначала воду в пробирке разводят раствором индикатора на спирту (чёрного этиохрома «Т»). Также для этих целей может использоваться сухая смесь кальциевых и натриевых хлоридов. В итоге полученная смесь окрашивается в насыщенный рубиновый цвет. Затем в пробирку капается вещество, называемое Трилон.

Расчёт общей жёсткости производится по уравнению: Жо=Nx*Vx*1000/V1, где N-насыщенность вещества Трилон, V-его количество, V1-количество пробы.

Контроль с помощью приборов

Как мы уже говорили выше, прибор контроля жёсткости воды называется солемер или TDS-метр. Точность проверки составляет 2%. Основной принцип работы данного агрегата построен на зависимости электропроводности жидкости от общего числа примесей солей магния и калия. То есть чем больше данных солей в воде, тем больше будут показания прибора, а следовательно, тем выше жёсткость воды.

На некоторых предприятиях и заводах наблюдается прямая зависимость между жёсткостью используемой воды и исправностью работы оборудования. Поэтому для обеспечения бесперебойной работы технологического оборудования требуется осуществлять постоянный автоматический контроль жёсткости воды.

Для этих целей используется специальное оборудование, например, анализатор «АКМС-1». Этот прибор непрерывно контролирует содержание солевых частиц кальция и магния в жидкости, поступающей в технологическое оборудование. То есть он подсчитывает общую жёсткость в пределах 0,005-25,0 мг-экв/л.

Контроль жёсткости воды – анализ воды на жесткость

Методы смягчения воды в быту?

Как понять, что ваша водопроводная вода жёсткая, мы писали выше. Теперь перечислим ряд мер, позволяющих снизить жёсткость воды в домашних условиях:

  1. Самый простой способ – кипячение воды.
  2. Фильтрация воды через системы обратного осмоса (специальные мембраны).
  3. Использование смягчающих солей.
  4. Применение фильтрующих картриджей.
  5. Магнитное фильтрующее устройство.
  6. Использование ионообменной смолы в комплексе с солевым раствором.

Хотите провести контроль жёсткости воды? Заказать такую услугу вы можете у наших специалистов, для этого вам достаточно связаться с нами по указанным телефонам.

oskada.ru

Органолептические свойства воды

Самый простой способ узнать, можно пить воду или нет – это оценить её органолептические свойства, простыми словами, осуществить экспресс-анализ воды на запах, вкус и цвет. По сути, такие действия человек выполняет практически всегда, прежде чем что-то съесть или выпить. Причём делает он это подсознательно, не задумываясь.

Проверка воды выполняется следующим образом: если у неё приемлемый цвет, то нужно понюхать, при допустимом запахе нужно попробовать и оценить вкус. Решение о пригодности к употреблению принимается по совокупности параметров.

Важно! На вкус воду рекомендуется пробовать после ее кипячения в течение 10 минут.

Естественно, точность органолептического анализа невысокая и полагаться исключительно на него не стоит. Такая мера эффективна в том случае, когда под рукой отсутствуют прочие средства, а органы чувств постоянно при вас.

Экспресс-анализ воды этим методом позволяет однозначно выявить проблемный состав. Но если какой-либо показатель окажется подозрительным — это повод сдать жидкость на лабораторную проверку.

Вода плохо пахнет, в чём причина?

В отличие от вкусовых качеств, неприятный запах является более точным показателем имеющейся проблемы. Самыми распространёнными причинами его возникновения являются:

  • попадание продуктов нефтепереработки или химикатов в воду;
  • происходящие в воде химические реакции, в первую очередь окисление;
  • активная жизнедеятельность микробов и бактерий в воде.

Чтобы справиться с двумя первыми причинами, необходимо провести механическую и сорбционную очистку, только в отдельных случаях потребуется более тщательная фильтрация. К примеру, обратноосмотическая система.

Борьба с бактериями

Если в воде активно развиваются микроэлементы, необходимо обезвредить их путём обеззараживания. Можно применить хлорирование или обрабатывание ультрафиолетом.

Кроме того, причинами неприятного запаха воды могут служить такие обстоятельства, как повышенная жёсткость или температурный режим окружающей среды. Для понижения жёсткости можно воспользоваться умягчителями.

Хорошо справляются с задачей полифосфатные фильтры. Важно! Нельзя применять их для очистки питьевой воды, только для жидкости, использующейся в технических целях.

Цвет и прозрачность

Абсолютная прозрачность – признак идеальной воды. Экспресс-анализ по цветовым характеристикам можно провести следующими способами:

  • Наберите воду в просвечивающий стакан либо колбу и рассмотрите содержимое на фоне белоснежного листка бумаги. Если жидкость имеет тёмный оттенок — в ней, скорее всего, содержится огромное количество активно разлагающихся органических элементов.
  • Налейте в прозрачный сосуд воду и попытайтесь прочесть через него какой-нибудь текст, написанный на белой бумаге. Бокал должен быть абсолютно гладким, иначе символы будут искажаться. Воды в стакане должно быть на уровне 20 см, не меньше. Если все напечатанные знаки отчётливо видны, то жидкость в достаточной степени прозрачна, в ином случае стоит задуматься о её качестве.

Мутная вода

Мутность воды свидетельствует о большой численности мелкодисперсной взвеси либо других растворённых составляющих. К ним относятся как органические, так и неорганические сочетания. Не нужно забывать, что такая вода представляет собой идеальную среду для распространения различного рода микроорганизмов.

Чтобы осуществить экспресс-анализ питьевой воды на наличие механических соединений, достаточно наполнить ею ёмкость и дать отстояться. Если образовался осадок, это означает что жидкость необходимо пропустить сквозь фильтр тонкой механической очистки.

Жёсткость и Ph воды

Для определения жёсткости достаточно что-нибудь намылить. Вода с высоким уровнем жёсткости трудно намыливается и практически не образовывает пены. А вот показатель Ph рекомендуется проверять экспресс-анализом (тестом) воды с помощью особых индикаторов, таких как лакмусовая бумага.

Экспресс-наборы

Такие наборы чаще всего используются для проведения проверки в домашних условиях. Тестовые полоски бывают разными, в зависимости от того, на какое количество компонентов рассчитано исследование. В продаже представлены в широком ассортименте виды наборов для экспресс-анализа воды:

  • Тестовые системы вида ИТ. Исследование проводится с использованием индикаторных трубочек. Степень скопления активного вещества оказывает влияние на окрашивание тестера. Этот способ отличается высоким уровнем достоверности, простоты и хорошей чувствительностью.
  • Тестовые наборы вида РС. Проверка осуществляется при помощи готовых составов либо смесей реагентов. Цвет раствора указывает на концентрацию того или иного вещества в воде. Такие наборы отлично подходят для колориметрического и спектрофотометрического анализа.
  • Наборы тестеров вида ИП. В процессе проверки участвуют индикаторные пигменты. В зависимости от концентрации составляющих цвет пигмента изменяется. Экспресс-анализ воды таким набором проводить достаточно просто, а результат получается точным и быстрым.
  • Специальные наборы для определения качественных показателей воды. С их помощью можно проводить анализ концентрации конкретного вещества: хлора, циановой кислоты и прочих.

Приборы экспресс-анализа воды очень компактны по размеру и просты в применении, понять процесс проверки сможет каждый. Большая их часть пригодна для использования в домашних условиях. В комплекте к каждому набору идёт инструкция по применению, где подробно описан процесс исследования. Приемлемая стоимость таких тестеров является преимуществом для простого человека.

Как правильно брать пробы на проверку воды?

Чтобы получить максимально точный результат, крайне важно предотвратить попадание в образец чужеродных элементов извне. К примеру, плохо очищенная ёмкость для набора воды на пробу может отрицательно повлиять и исказить результаты проверки. Итак, при отборе воды необходимо придерживаться следующих правил:

  • Наливать жидкость для исследования нужно в чистую ёмкость либо специальный пакетик. Лучшим вариантом является приобретение стерильной тары из пластика в аптеке.
  • Прежде чем набирать воду, следует протереть кран или вентиль медицинским спиртом, а также обработать им руки либо надеть стерильные перчатки.
  • Перед набором воды для тестирования её необходимо спустить в течение 5–10 минут при полном напоре, в зависимости от вида источника.
  • В зависимости от предполагаемого количества исследований набрать одну или несколько ёмкостей объёмом от 0,5–1,0 литра.
  • Теперь можно приступать к тестированию реагентами, порошками, трубочками, лакмусовыми бумажками и прочими подручными средствами.

Важно! Если вы собираетесь использовать несколько тестеров, то для каждого из них следует приготовить отдельную ёмкость. То же правило распространяется на лакмусовые бумажки и прочие тесты.

Не забывайте, что своевременно проведённый анализ воды способен предотвратить многие заболевания организма.

www.syl.ru

Экология потребления. Наука и техника: Рассказ пойдёт о том, что загрязняет воду, как её чистят и почему я спокойно пью из родника, содержащего много нитратов.

Последние пять лет я занимаюсь химическим анализом воды и нахожусь в контакте с инженерами по водоподготовке. К нам приходят самые разные люди: для одних система очистки воды — очень дорогое, но жизненно необходимое приобретение, другие просто начитались страшилок в Интернете и хотят «живую воду». Но для нас, как и для врачей, все наши заказчики одинаковы. У них есть вода — скважинная, поступающая из городского или поселкового водопровода, колодезная, речная — и её необходимо очистить до установленных норм. О том, что загрязняет воду, как её чистят и почему я спокойно пью из родника, содержащего много нитратов, пойдёт этот рассказ. Но никакие названия фирм, географические привязки и другая индивидуализирующая информация указываться не будут — я просто хочу поделиться пятью годами своих наблюдений за процессом, потому что много владельцев коттеджей могли бы меньше нервничать, если бы озаботились водоочисткой ещё на этапе заливки фундамента.
Ликбез по водоочистке и пояснения к химическому анализу воды
Но для начала давайте определимся со структурой процесса и терминологией, чтобы общаться на одном языке. Строго говоря, без анализа воды ни одна нормальная организация, занимающаяся водоочисткой, даже на порог вас не пустит. Всё начинается с анализа воды.
 

Как правильно отобрать воду на анализ?

Тщательность, с которой вы выполните отбор пробы воды, в конечном счёте может существенно повлиять на цену установки. Вот общие рекомендации.
 

  1. Возьмите чистую пластиковую бутылку объёмом 1.5 л. Ни в коем случае не используйте бутылки, в которых ранее находились содержащие органические вещества жидкости (квас, пиво, кефирчик, уайт-спирит) или высокоминерализованные воды. Подойдут бутылки из-под питьевой воды. Идеальный вариант — купить новую бутылку там, где торгуют напитками на розлив.
  2. Если у вас скважина — пролейте её до постоянного состава. Рекомендации, как это сделать, должны предоставить ваши скваженщики. Некоторые наши заказчики рассказывали, что их скважина работала на излив по две-три недели.
  3. Откройте ближайший к скважине кран до любых существующих фильтров, баков и других устройств, могущих оказывать влияние на состав воды, и пролейте несколько минут, чтобы обновить воду в трубах.
  4. На два раза ополосните бутылку отбираемой водой, после чего налейте воду под самое горлышко, навинтите крышку, слегка сожмите бутылку с боков, чтобы вода потекла через край, и завинтите крышку до конца. Цель: набрать воду без воздушного пузыря.
  5. Доставьте воду в лабораторию в тот же день. Если нет такой возможности — храните воду в холодильнике не более двух суток.

Далее по анализу инженерами подбирается и рассчитывается система водоочистки, и если вас устраивает коммерческое предложение и вы его оплачиваете — к вам выезжают монтажники с оборудованием. Монтажникам от вас потребуются вход, выход и дренаж — откуда брать воду, куда её подавать и куда сливать. Особое внимание следует уделить именно канализации. Если у вас яма и вы её откачиваете — позаботьтесь о том, чтобы она могла одномоментно принять на себя 2-3 кубометра воды без последствий. Почему? Фильтры пропускают через себя грязную воду, грязь оседает на фильтрующем материале. Со временем ёмкость фильтрующего материала исчерпывается и он нуждается в обратной промывке — током воды снизу вверх вся грязь с него смывается в канализацию. На одну промывку может уходить от ста литров до полутора кубометров воды, в зависимости от типа фильтра и уровня загрязнения. И всё это количество сольётся в дренаж минут за 20 для кабинетных фильтров и где-то за час для засыпных колонного типа. 
 

Примечание. Здесь и далее я буду приводить значения в масштабах частного домовладения.

Между прочим, если в Вашем септике применяется биологическая очистка, дренажная вода может убить её. Также монтажники потребуют с вас электрическую розетку поблизости (фильтры оснащены контроллерами — электронными управляющими мозгами, которые сами знают, когда пора начинать промывку). И ещё учтите, что эксплуатироваться любые фильтры должны при температуре не ниже +5 °C, а места занимают — в зависимости от модели — до двух квадратных метров по площади и до двух метров в высоту (хотя самый маленький фильтр со всей обвязкой может поместиться в кубический метр). Да, не забудьте про давление воды на входе! Если оно меньше 2-3 атмосфер — без повысительного насоса не обойтись. Для сравнения, системы горводоканалов обычно подают в квартиры воду под давлением около 4 атмосфер.

На входе перед фильтрами ставят грубую очистку — сетчатые фильтры, механику до 20 мкм — чтобы защитить более дорогое оборудование от проскоков песка, ржавчины и других крупных частиц. На выходе после установки рекомендуется монтировать финишную доочистку (обычно уголь — удаляет запахи, хлор и мелкие частицы). В самой дорогой комплектации ещё могут присутствовать ультрафиолетовая лампа для обеззараживания на выходе и защита от протечек на полу, но всё это опции. А вот если Ваша вода содержит много железа, то инженер может спроектировать водоочистку с применением баков, которые занимают значительное пространство.

А много железа — это сколько?

Вот теперь можно поговорить о вещах, более близких к моей профессии. И начнём мы с единиц измерения. В России и за рубежом, как ни парадоксально, применяются совершенно разные единицы измерения, хотя химия одна и та же. У нас приняты мг/л и мг-экв/л, у них — ppm.

мг/л (читается: миллиграмм на литр) — это масса исследуемых частиц, содержащаяся в одном литре раствора (а не растворителя!). Если мы исследуем ионный состав воды, то под массой частиц будет подразумеваться масса атомов одного вида. Например, 10 мг/л железа означает, что в 1 литре раствора у вас содержится 10 мг атомарного железа — того самого, у которого молярная масса, согласно таблице Менделеева, 56 г/моль. И не важно, в какой форме это железо — двухвалентный ион или трёхвалентный. Просто некая абстракция — железо, как оно есть в таблице Менделеева. А если мы измеряем содержание какой-то соли, то под массой частиц будет подразумеваться масса молекулы этой соли. Например, 10 мг хлорида натрия NaCl в 1 литре раствора.

мг-экв/л (читается: миллиграмм-эквивалент на литр) — с этого момента начинается особая чёрная магия. Иеремия Рихтер, немецкий химик, открыл закон эквивалентов (и попутно портал в ад) в 1792 году. Закон гласит: вещества реагируют в количествах, пропорциональных их эквивалентам, или m1Э2 = m2Э1. Попробуйте найти химика, который приходит в восторг, считая эквиваленты! Мне такие маньяки пока не встречались, хотя я занимаюсь химией уже 14 лет. Начнём издалека. Возьмём обычную реакцию между мелом и соляной кислотой:

CaCO3 + 2HCl = CaCl2 + H2O + CO2

Улетевший углекислый газ и воду отбросим, как несущественное, и выделим в этой реакции самое важное:

Ca2+ + 2Cl = CaCl2 (в ионной форме)

Теперь возьмём каждый из ионов и заставим его вступить в гипотетическую реакцию гидрирования с катионом водорода, невзирая на знак заряда (да, мы, химики, любим всякие извращения; а на самом деле — масса катиона водорода принята за единицу, и теперь нам нужно найти количество других ионов, эквивалентное этой единице).

1/2Ca2+ + H+ = CaH (фактор эквивалентности = 0.5, а эквивалент водорода — частица 1/2Ca2+)

Cl + H+ = ClH (фактор эквивалентности = 1, а эквивалент водорода — частица Cl)

Итак, с одним катионом водорода может (условно) прореагировать либо один анион хлора, либо половинка катиона кальция. Численное выражение доли вещества, эквивалентной одному катиону водорода, называется фактором эквивалентности. Теперь мы можем сделать простой вывод:

1/2Ca2+ = Cl (1 эквивалент кальция = 1 эквиваленту хлора)

Представим, что мы титруем щёлочность соляной кислотой (об этих страшных словах — позже). С соляной кислотой могут реагировать самые разные соли (гидрокарбонаты, карбонаты, гидроксиды…) самых разных ионов (кальция, магния, натрия…). Как нам всё это выразить в одной единице измерения? Мы не имеем права использовать здесь уже знакомую нам единицу измерения мг/л, потому что просто непонятно — миллиграмм чего? Кальция? Магния? Их смеси? В каком соотношении? Зато с эквивалентами эта проблема снимается сама собой:

Cl = 1/2Ca2+ = 1/2Mg2+ = Na+ = 1/3Al3+ и т.д.

Нам не важно, какой именно вид катиона или аниона мы оттитровали, но мы знаем, что одному эквиваленту потраченной соляной кислоты всегда будет соответствовать один эквивалент неведомой штуки, которая с этой кислотой способна прореагировать. Хорошо, с эквивалентом более-менее разобрались. А что же такое миллиграмм-эквивалент? Это масса одного эквивалента в миллиграммах. Грубо — считается по таблице Менделеева как молярная масса, умноженная на фактор эквивалентности. Для приведённого выше отношения это будет выглядеть так:

35.45 мг Cl = 20.04 мг Ca2+ = 12.15 мг Mg2+ = 22.99 мг Na+ = 8.99 мг Al3+

Заметьте, молярная масса, например, кальция равна 40.08 г/моль, но с 1 граммом водорода может прореагировать только половинка кальция — 20.04 грамма. Вот эта цифра — 20.04 — и будет грамм-эквивалентом кальция. Или миллиграмм-эквивалентом. Или микрограмм-эквивалентом. Эта единица удобна тем, что если мы когда-нибудь выясним, какое именно соединение прореагировало в той реакции с соляной кислотой, мы всегда сможем умножить количество миллиграмм-эквивалентов на массу одного эквивалента — и перевести таким образом миллиграмм-эквиваленты в обычные миллиграммы для конкретного соединения. Итак, мг-экв/л — это количество миллиграмм-эквивалентов вещества в одном литре раствора.

ppm (читается: пи-пи-эм, parts per million) — число частиц на миллион. Показывает, сколько исследуемых растворённых частиц находится в одном миллионе частиц раствора (не растворителя!). Единица измерения применяется на Западе почти повсеместно. Соответствует нашему мг/л (потому что миллиграмм — это, вроде как, тоже миллионная часть от литра, при условии, что плотность раствора равна 1.00, но при таком разбавлении изменением плотности всё равно можно пренебречь).

мкСм/см (читается: микросименс на сантиметр) — единица измерения удельной электропроводности воды. Берут два электрода, погружают в воду. На один подают известное количество тока, на втором измеряют, сколько дошло. Поскольку в водном растворе носителями заряда являются ионы, то по количеству перенесённых с одного электрода на другой электрончиков можно сделать вывод об общей доле ионов в растворе. Сименс — единица, обратная сопротивлению (1 См = 1 Ом-1). Измерение удельной электропроводности иногда может дать достаточно точное представление об общем солесодержании воды. Если вода относительно чистая, то условно можно считать, что 1 мкСм/см ≈ 0.5 мг/л солей. И вот мы вплотную подошли к сущности анализа воды.

Тут надо отвлечься и уточнить, что видов анализов воды — масса. Навскидку, есть химический и микробиологический. А ещё органолептический, радиометрический, несть им числа. Я занимаюсь непосредственно химическим анализом воды, о нём и поговорим. В России документ, регламентирующий качество воды для хозяйственно-бытовых нужд, называется «СанПиН 2.1.4.1074-01». И контролируемых параметров там — тьма тьмущая. Здесь уместно отметить, что такого понятия, как «техническая вода», ни в одном официальном документе не существует. Более того, то, что обычно в простонародье подразумевают под технической водой — это как раз вода, которую можно пить, но нельзя использовать в той самой технике. Подчас на производство или в паровой котёл нужно подавать полностью обессоленную (деионизованную) воду.

Ликбез по водоочистке и пояснения к химическому анализу воды

Смотреть в лаборатории все параметры, подразумеваемые СанПиНом — сумасшествие. Во-первых, на анализ одной пробы уйдёт тогда неделя (тогда как анализ по 12 показателям делается за 2 часа). А во-вторых, существующие фильтрующие материалы всё равно очищают воду только от конечного числа загрязнителей. И, конечно, большая часть указанных в СанПиНе загрязнителей практически не встречается в обычных природных водах или встречается в таком количестве, что заведомо проходит по нормам. Пойдём по порядку со всеми комментариями (по какому именно порядку — я ещё не решил).

Железо. Есть практически во всех подземных водах, а вот в поверхностных — реках, озёрах — обнаружить его можно нечасто. Бывает в двух формах: растворимое, или двухвалентное Fe2+ и окисленное, или трёхвалентное Fe3+. Соли двухвалентного железа прекрасно растворяются в воде (железный купорос FeSO4 ∙ 7H2O многие садоводы найдут в профильных магазинах), однако кислородом воздуха очень быстро окисляются и переходят в соединения трёхвалентного железа. А вот соединения трёхвалентного железа в воде не растворимы — ржавчину все видели, а ржавчина это смесь Fe2O3 ∙ nH2O и Fe(OH)3.

FeCl3 прекрасно в воде растворяется, после чего гидролизуется до оксихлорида и выпадает в осадок. То же самое касается других растворимых соединений трёхвалентного железа — они подвержены гидролизу в водном растворе с образованием нерастворимых продуктов.

Поэтому в поверхностных источниках железа мало: оно если и было изначально, то быстро окислилось при контакте с атмосферой и ушло в ил. Помимо атмосферы, естественным врагом двухвалентного железа являются железобактерии, которые живут за счёт энергии, выделяемой при окислении ими двухвалентного железа. Зато у него есть верный союзник в виде сероводорода. В подземных водах часто содержится сероводород в большом количестве, а он является сильным восстановителем и не даёт железу окисляться даже при контакте с атмосферой. Вообще, зависимость формы железа в растворе от окислительно-восстановительного потенциала и водородного показателя наглядно отображена в диаграммах Пурбе. Железо является одним из микроэлементов и необходимо организму человека (суточная потребность — 10 мг ), и усваивается, в том числе, из воды. Конечно, содержание железа сказывается на органолептических свойствах воды (если его больше 1-2 мг/л), а избыточное его поступление в организм может спровоцировать разные отклонения в здоровье. Ну, это всегда так. Всё есть лекарство и всё есть яд, всё дело в дозе, сказал Парацельс.

ПДК железа общего в воде хозяйственно-бытового назначения составляет 0.3 мг/л. В городском водопроводе с труб при ржавлении летит примерно 0.10…0.15 мг/л (там, где я живу). Удаляют железо просто: сначала окисляют, чтобы наверняка (напомню, окисленное железо в воде не растворимо), затем полученные частички коагулируют (укрупняют), и всю эту конструкцию ловят механическим способом — на слое загрузки. Существуют разные каталитические загрузки, на поверхности которых все указанные процессы и происходят. Представляют они собой песок, покрытый слоем оксида марганца — того самого катализатора окисления железа — и нуждаются в периодической реагентной промывке раствором перманганата калия (нет, соединения марганца не смываются с загрузки и не попадают в очищенную воду — ну, если, конечно, вы не захотите смешать каталитический материал с лимонной кислотой). Есть и безреагентные загрузки, но перед ними требуется предварительное окисление железа, а уж каким способом — атмосферным воздухом, озоном или хлором — решит инженер. Если в Вашей воде железа до 5 мг/л — считайте, что Вам крупно повезло: установка будет подешевле. Если железа 10 мг/л — уже дорого. А вот 30 мг/л и выше — можете распрощаться с планируемой поездкой в тёплые страны. Такая установка может стоить несколько сотен тысяч рублей. Вообще, основная стоимость большинства полупромышленных систем фильтрации как раз зависит от концентрации железа. Чем его больше — тем дороже. Поэтому так важно тщательно пролить воду перед отбором пробы — застоявшаяся в металлических трубах вода может набрать железа, и инженер предложит вам по анализу такую установку, на которую у Илона Маска денег не хватит. Но и это ещё не всё. Отдельно стоит упомянуть про так называемое органическое железо — комплексные органические соединения, содержащие в составе молекулы атом железа (как правило, гуматы — комплексы гуминовых кислот). Выбить железо из таких комплексов нелегко, и оно не окисляется на воздухе. Удаление из воды органического железа может быть затруднительным.

Марганец. От марганца на сантехнике появляется серый налёт, поэтому нормируют его жёстко. Организму человека этот микроэлемент тоже необходим (суточная потребность 2 мг [1]). Из воды легко усваивается. Ещё содержится в свёкле и половине овощей вообще. Валентностей у марганца целых семь, подробно рассматривать не имеет смысла. Двухвалентный марганец хорошо растворим, трёх- и четырёхвалентный обычно подвергается гидролизу и выпадает в виде нерастворимых гидроксидов. В отличие от железа, марганец в поверхностных водах встречается чаще. Особенно если это колодцы, и в подземной воде, питающей их, содержится какой-нибудь двухвалентный ион марганца. Дело в том, что марганец так вот запросто атмосферным воздухом не окисляется. Может захватываться осаждающимся железом и удаляться совместно с ним. Загрузки все те же самые, ибо принцип тот же: окисление, укрупнение и механическая фильтрация. ПДК 0.1 мг/л.

Жёсткость. Жёсткость замыкает тройку параметров, на которые нацелены почти все полупромышленные системы очистки воды. Да-да, есть фильтры-обезжелезиватели (удаляют железо, марганец и некоторые другие тяжёлые металлы) и фильтры-умягчители (удаляют жёсткость). Безусловно, есть другие типы фильтров, которые работают, например, по окисляемости, но в конечном итоге для промышленных нужд вам предложат обратный осмос с предочисткой, тогда вода на выходе будет как по ГОСТу для лабораторий: 3…5 мкСм/см. Но мы отвлеклись. В школе вам рассказывали, что жёсткость — это совокупность ионов кальция и магния. Именно они выпадают в виде накипи при кипячении воды. На самом деле, такое определение не совсем корректно. Да, значительную долю жёсткости составляют ионы кальция и магния, но вообще жёсткость — это сумма всех щелочноземельных ионов, а также некоторых двухвалентных ионов тяжёлых металлов. Цинк, барий, кадмий, даже двухвалентное железо — это всё жёсткость. Другое дело, что химик в лаборатории будет маскировать ионы двухвалентного железа при измерении жёсткости. Зато кадмий вполне себе на величине жёсткости отразится. Но поспешу вас успокоить: ионов кальция в составе жёсткости большинство — как правило, процентов 80, и ещё процентов 15 магния. Нормируют жёсткость исключительно для снижения количества накипи в чайниках, а особо рьяно — в отраслевых стандартах для всяких котельных, где жёсткости в воде быть не должно вообще. Иногда вы можете услышать, что использовать в хозяйстве нужно исключительно мягкую воду, а жёсткая, якобы, вредна. Жёсткая вода увеличивает затраты на мыло, уменьшает срок жизни стиральной машинки… Вас могут начать убеждать, аргументируя тем, что кальций из воды всё равно не усваивается, и организм получает его из молока и сыра. Это некорректно. 

Давайте отвлечёмся и кратко поговорим о процессе скисания молока. В молоке содержится казеинат кальция и молочный сахар лактоза. Микроорганизмы, попавшие в молоко, начинают сбраживать лактозу, постепенно превращая её в молочную кислоту. Молочная кислота выбивает из казеината кальция кальций и замещает его на ион водорода. Казеинат кальция при этом превращается в казеин — белок молока, из которого целиком состоит творог. А кальций остаётся в сыворотке в виде лактата кальция. Так что творог и сыр кальцием бедны. А в натуральном свежем молоке — да, кальций есть. Но, чтобы усвоиться, он сначала должен быть выбит из казеината соляной кислотой желудка. В воде же кальций уже готовый — сразу в ионной форме, и усваивается мгновенно. Поэтому, вода — один из важнейших источников кальция в организме, а нужно нам его немало — суточная потребность составляет не менее 1000 мг. ПДК по жёсткости — 7 мг-экв/л. Если переводить это в кальций, то в воде может содержаться (7 ∙ 20.04) 140 мг/л кальция. Так что вам потребуется выпить 7-8 литров воды, чтобы получить суточную норму. Однако накипь начинает заметно образовываться уже при содержании жёсткости порядка 4 мг-экв/л. Ручное кусковое мыло — смесь натриевых солей высших жирных кислот — при контакте с жёсткой водой превращается в смесь кальциевых солей высших жирных кислот, а кальциевые соли мыла в воде растворяются плохо. Но сейчас производители добавляют в мыло умягчающие агенты — например, трилон Б, которые нивелируют этот процесс. Синтетические же моющие средства — порошки, гели и прочие лаурилсульфаты — вообще жёсткости не боятся и никак ею не осаждаются. Вывод? Пить полезно жёсткую воду (7 мг-экв/л согласно СанПиН), руки с мылом мыть в воде с содержанием жёсткости 2…4 мг-экв/л, на стиральную и посудомоечную машины подавать мягкую воду (< 0.1 мг-экв/л), и то — лишь для того, чтобы не обрастал нагревательный элемент. Что касается чайников, то при жёсткости порядка 2 мг-экв/л образование накипи на нагревательном элементе практически незаметно. Обратите внимание, что не все соединения кальция и магния выпадают в виде накипи при кипячении. Строго говоря, это свойственно только гидрокарбонатам, а всякие хлориды и сульфаты как плавали в воде до кипячения, так и будут плавать после. Обычно в речной воде (а реки обеспечивают водой большинство наших поселений) величина жёсткости, в зависимости от сезона, составляет 2..4 мг-экв/л (зимой ниже). 

Для удаления из воды солей жёсткости используют катионообменные смолы, которые попутно связывают большинство других катионов, в том числе марганец и двухвалентное железо. Поэтому существуют варианты фильтров, удаляющих одновременно железо, марганец и жёсткость на одной загрузке, но есть нюансы — железо и марганец должны содержаться в воде в небольшом количестве, при этом железо обязательно должно быть двухвалентным (в ионной форме). Таким фильтрам необходима регенерация солевым раствором, поэтому расходный материал здесь — таблетированная соль (также как в обезжелезивателях расходным материалом может быть марганцовка). Катионообменная смола заряжена ионами натрия. Жёсткая вода, проходя через слой такой загрузки, будет обмениваться со смолой ионами — отдавать кальций/магний, забирать натрий. В конце концов, заряд ионов натрия на смоле израсходуется, после чего контроллер отключит потребителей и зальёт в фильтр крепкий раствор хлорида натрия. Произойдёт обратная замена, все осевшие на смоле ионы жёсткости перейдут в раствор, который далее сольётся в дренаж. А смола, заново перезаряженная ионами натрия, сможет и дальше чистить воду.

Отдельно хочется рассказать о китайских карманных приборчиках, которые якобы измеряют жёсткость. На самом деле, эти приборчики — обычные кондуктометры, или TDS-метры. Они измеряют удельную электропроводность воды в мкСм/см, полученное значение умножают на примерно 0.5 и получают некую величину в ppm. И весело рапортуют вам, что жёсткость вашей воды, скажем, 250 ppm. Ну, во-первых. На Западе жёсткость действительно измеряют в ppm, при этом они считают по карбонату кальция. 

Молярная масса карбоната кальция 100 мг/ммоль, фактор эквивалентности 0.5, следовательно, один миллиграмм-эквивалент карбоната кальция «весит» 50 мг. Так как мг/л и ppm — практически одно и то же, то при переводе в наши родные единицы измерения 50 ppm = 1 мг-экв/л жёсткости. Во-вторых, кондуктометрическим методом, как я уже говорил, определяют общее солесодержание, сумму всех анионов и катионов в растворе. Измерить этим методом отдельно жёсткость практически невозможно (возможно, если предварительно в лаборатории выяснить, какой процент ионы кальция и магния составляют от суммы всех ионов конкретно в данной воде, вычислить поправочный коэффициент и потом кондуктометрически эту же самую воду измерить). А все эти якобы измерители жёсткости просто определяют общее солесодержание в предположении, что кроме карбоната кальция в воде ничего не растворено.

Щёлочность. Не нормируется, представляет собой всё, что способно прореагировать с 0.1М раствором соляной кислоты. В наших природных водах это, в основном, карбонаты и гидрокарбонаты. По щёлочности можно примерно прикинуть, какой процент карбонатной (временной) жёсткости в вашей воде. Остальная часть жёсткости будет некарбонатной, то есть той, которая в осадок не выпадает при кипячении (хлориды, сульфаты…). Этот параметр больше нужен инженерам в их расчётах (особенно интересно посмотреть на буферность воды). Специфических методов удаления щёлочности нет, да её и удалять не требуется.

Азотистые соединения: нитраты, нитриты, аммоний. Как только в начале лета в продаже появляются арбузы, все вокруг начинают обсуждать нитраты. Между тем, нитраты совершенно безопасны. Их ПДК составляет 45 мг/л. А вот нитриты… Попадая в кровь, нитриты связываются с гемоглобином, превращая оксигемоглобин в метгемоглобин, неспособный переносить кислород. ПДК нитритов в воде хозяйственно-бытового назначения 3 мг/л. Но почему никто не бьёт панику, читая в составе колбасы строку «нитритно-посолочная смесь»? Ведь это смесь нитрита натрия с хлоридом натрия. Благодаря своей способности связываться с белками крови, а также вступать в реакции азосочетания, нитрит помогает окрашивать мясо в красный цвет. Без применения нитритов в составе колбасы вы бы ели совершенно серую и неприглядную продукцию. Зато были бы здоровее, ведь так? Давайте внимательнее рассмотрим этот момент. Производители утверждают, что в их посолочной смеси нитрита натрия всего 0.6%. Ещё у человека есть фермент метгемоглобинредуктаза, который способен починить неработающий гемоглобин, так что рано накрываться простынкой и с колбасой в зубах ползти на кладбище. Превращения нитратов в нитриты в организме человека (а именно этим вас могут запугивать, апеллируя к таинственному ферменту нитратредуктазе), строго говоря, невозможно собственными силами организма. Считается, что у животных и человека этот фермент отсутствует, и я пока не видел статей, доказывающих обратное. Зато у нас в ротовой полости живут микроорганизмы, вырабатывающие этот фермент. Действительно, они способны превращать нитраты в нитриты. Мы все умрём, да? Нет. Процесс редуцирования нитратов не быстрый, КПД не высокий. Да и конечные продукты потребляются, собственно, теми микроорганизмами, которые фермент вырабатывают. Они так азот усваивают. 

Кроме того, этот экзогенный нитратный цикл играет огромную роль в сохранении и улучшении нашего здоровья, хотя бы потому, что нормализует давление, защищает от кариеса и убивает бактерии. Помимо нитратредуктазы, живность в нашей ротовой полости вырабатывает и нитритредуктазу, превращающую нитрит дальше в ион аммония. Ион аммония влияет на кислотно-щелочной баланс жидких сред организма. Есть сведения, что при переизбытке он может защелачивать кровь. Наш организм сам выделяет аммоний при распаде белков и далее связывает его в мочевину (то есть, методы нейтрализации существуют). ПДК аммония в воде хозяйственно-бытового назначения 2.6 мг/л (в СанПиНе: 2 мг/л по азоту). Как правило, в природных водах нитраты, нитриты и аммоний не превышают ПДК, хотя есть нечастые исключения. Удаление этих соединений из воды более-менее гарантируется только обратным осмосом. Конечно, нитраты с нитритами сядут на анионообменной смоле, а аммоний — на катионообменной, но в силу своих физико-химических свойств они могут быть быстро выбиты со смолы другими ионами, содержащимися в воде.

Окисляемость. Иначе — химическое потребление кислорода. Это всё, что способно окислиться перманганатом калия в сернокислой среде: органические молекулы, одноклеточные водоросли, двухвалентное железо… Правда, химик-аналитик при измерении окисляемости железо вычтет. В целом, по окисляемости можно косвенно судить о биологическом загрязнении воды. Единица измерения окисляемости — мгО/л (количество миллиграммов атомарного кислорода, поглощённое литром исследуемого раствора). Органическое железо и окисляемость могут быть связаны между собой. ПДК перманганатной окисляемости 5 мгО/л. Есть загрузки, которые работают по окисляемости. Но при пороговом её содержании в вашей воде инженер скорее предложит угольный фильтр.

Сероводород и радон. Сероводород ядовит и дурно пахнет, радон радиоактивен. Не должны присутствовать в воде вообще, ибо пользы от них никакой. Сероводород можно окислить до элементарной серы на специальных загрузках, но только до определённой концентрации. Самый надёжный метод, позволяющий удалить оба этих растворённых газа из воды, — отдувка. Через воду барботируют атмосферный воздух, в результате чего оба газа выдуваются из воды и уходят вместе с подаваемым воздухом в окружающую атмосферу, отравляя всё вокруг. Помещение, в котором происходит этот процесс, обязательно должно быть техническим (нежилым) с хорошей вентиляцией.

Сульфаты, хлориды. ПДК первых 500 мг/л, вторых 350 мг/л. Токсикологии никакой. Нормируют из-за вкуса: сульфаты горчат, хлориды солонят. Удаляют обратным осмосом.
 

Осмотическое давление, благодаря которому растения всасывают воду из почвы, действует по следующему принципу: если два раствора разделены полупроницаемой перегородкой, через которую могут проникнуть молекулы воды, но не пройдут ионы, то растворитель перетекает из области с меньшей концентрацией в область с большей, уравнивая концентрации. Обратный осмос использует точно такую же полупроницаемую мембрану, но искусственно создаётся давление как раз в области с большей концентрацией, в результате чего растворитель перетекает в область с меньшей концентрацией, а раствор концентрируется. При этом входной поток воды разделяется на два: пермеат (чистая вода) и концентрат, который сливается в дренаж. В бытовых осмосах соотношение пермеат: концентрат составляет примерно 1: 3 (3 части входной воды сливаются в дренаж). В дорогих промышленных этот процесс компенсируют, иначе потери будут страшными.

Водородный показатель. Он же pH. На нём и будем закругляться. Представляет собой отрицательный десятичный логарифм из концентрации ионов водорода, индицирует кислотность среды. Нормируется в диапазоне 6-9 ед. pH. Более кислый раствор растворит вам зубы, более щелочной начнёт раздражать слизистую желудка. Очень важный параметр для подбора оборудования — многие загрузки работают в определённом диапазоне pH. В природных водах почти всегда находится вблизи отметки 7 ед. pH, в каких-то экстраординарных случаях инженер может предложить дозировать в воду щёлочь или кислоту для достижения заданного значения кислотности.

В конце хочу добавить пару слов о типах фильтров. Я упоминал в тексте кабинетные системы и фильтры колонного типа. В сущности, это одно и то же. Есть некий баллон, внутри которого располагаются дренажно-распределительная система и фильтрующий материал. Только в кабинетных системах это всё зажато в небольшой объём и помещено в корпус размером со стиральную машинку. Из плюсов — меньший расход воды и реагентов на промывку, из минусов — один фильтрующий материал на все параметры. Фильтры колонного типа более гибкие в настройке — например, если кабинетник сразу удалит вам железо, марганец и жёсткость в ноль, и вы ничего с этим не сделаете, то, поставив последовательно две колонны — одну по железу, вторую по жёсткости — вы сможете регулировать выходную жёсткость воды так, чтобы вам было комфортно принимать душ (чтобы не было ощущения, будто мыло не смывается), при этом железа и марганца в очищенной воде не будет. Помните, что типоразмер баллона зависит от вашего водопотребления, и нельзя ставить самый маленький баллончик на расход воды в два кубометра в час. Просто начнутся проскоки загрязнений, и в конце концов вы убьёте фильтрующий материал. Фильтрующие материалы, к слову, обычно служат 5-7 лет, после чего их необходимо заменять. Но прежде рекомендую провести анализ воды на выходе, потому что я лично щупал фильтр, который исправно работает 11 лет на одной загрузке.

Материал получился большой, можно почитать на ночь, чтобы быстрее заснуть и крепче спать. Я попытался объять необъятное, рассказал самую суть и сейчас дополню, разве что, про бактериологическую очистку. Есть всего один метод убить живность в воде — окислить её. Для этого в простейшем случае в воду будут дозировать хлор в виде гипохлорита или на выходе поставят ультрафиолетовую лампу. Ультрафиолет ионизирует растворённый в воде кислород, а активный кислород как раз и убьёт бактерии. Оптимальный вариант — озонатор. УФ-лампа или озонатор ставятся на выходе после всей очистки, непосредственно перед подачей воды потребителю, а хлор — наоборот, в начале. Потому что хлор более медленный окислитель и ему нужно дать время, а потом излишки хлора нейтрализовать на угольном фильтре.

В водоочистке ещё очень много нюансов и подводных камней. Но… «Это неописуемо!» — сказала Моська, глядя на баобаб. опубликовано econet.ru 

Автор: Дмитрий Филатов

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.