Детектор напряжения


Раздел: справочные материалы радиолюбителя
материалы в категории

В статье описаны микросхемы для микропроцессорных устройств —   детекторы напряжений (супервизоры), которые служат для четкого и точного определения момента снижения питающих напряжений до заданного уровня.
Показано, что будучи простыми трехвыводными устройствами, эти микросхемы имеют довольно большие функциональные возможности, которые позволяют применять их и в других интересных и полезных устройствах — источниках электропитания, зарядных устройствах для аккумуляторов, импульсных устройствах и т. д. Описаны результаты исследования микросхем супервизоров и даны рекомендации по их применению.

Массовое применение устройств с батарейным (в частности аккумуляторным) питанием сделало непрерывный контроль напряжения питания обязательным для многих устройств» например, калькуляторов, карманных компьютеров, МРЗ-плееров, электронных часов и т.


Разрядка аккумуляторов ниже определенного уровня губительно сказывается на сроке их работы, также как и перезарядка. Кроме того, многие электронные приборы, даже при сетевом питании, чувствительны к изменению напряжения источника. В первую очередь это относится к таким устройствам, как микропроцессоры, аналого-цифровые и цифро-аналоговые преобразователи, модули памяти и т. д.

Одной из наиболее распространенных микросхем- детекторов напряжения является МС34064/33064, разработаннаяДетектор напряжения фирмой Motorola [1). Она выпускается также фирмами LinFinity Microelectronics, On Semiconductor и др. Микросхема (рис. 1) содержит высокоточный температурно-ком-пенсированный источник опорного напряжения, делитель напряжения R1R2, прецизионный гистерезисный компаратор ГИК с нагрузочным резистором R3 и выходной ключевой транзистор VT с диодом VD.
В микросхеме 21 транзистор и она выпускается во всех наиболее распространенных корпусах для транзисторов и микросхем малой степени интеграции, например в транзисторном корпусе Т0226АА и в корпусах восьмивыводных микросхем 751 (SO-8) и 846А (Micro-8).

Основной задачей при разработке новых микросхем было их предельно простое применение по основному назначению (контроль за падением напряжения ниже заданного уровня) и наличие только трех выводов.
о несколько сужает возможные области применения таких массовых микросхем и требует внимательного изучения всех особенностей их работы, что и составляет цель данной статьи.
Прежде всего рассмотрим функциональную схему супервизора (рис. 1, а) более подробно. Ясно, что порог срабатывания задается напряжением опорного источника Uref = 1,2 В и делителем напряжения R1R2. В технической документации задаются пороги срабатывания и гистерезис, они приведены в табл. 1.

Таблица 1.

Параметр Мин. Тип. Макс.
Верхний порог, В 4,5 4,61 4,7
Нижний порог. В 4,5 4,59 4,7
Гистерезис, В 0,01 0,02 0,05

 

Гистерезис необходим для исключения срабатывания компаратора от случайных быстрых изменений напряжения питания и шумов. Из-за существенной нелинейности входящих в супервизор элементов корректная работа устройства обеспечивается вблизи области срабатывания и далеко за ее пределами — примерно 1…9 В, хотя допустимый диапазон входных напряжений шире — 1…10В. Максимальная рассеиваемая мощность 520.. .650 мВт в зависимости от корпуса. Максимальный втекающий в выход ток — 100 мА, диапазон рабочих температур 0…+70°С для микросхем обычного применения и -40…+85 °С для микросхем в промышленном исполнении. 


Статические характеристики микросхем МС34064/33064

В руководстве по микросхеме МС34064/33064 [1] приведено детальное описание статических характеристик микросхем. Рассмотрим основные их них. Главной является передаточная характеристика, показанная на рис. 2.

 Детектор напряжения

 Она описывает зависимость выходного напряжения от входного. Нетрудно заметить, что эта характеристика куда сложнее, чем это можно было бы предположить из идеализированного описания микросхемы. Лишь в средней части (в области входных напряжений примерно 1…9В она соответствует описанию типовой роли прибора.

 В области малых напряжений (менее 0,5 В), когда источник опорного напряжения перестает работать, передаточная характеристика имеет характерный выброс с линейным участком, на котором выходное напряжение равно входному, но уже при напряжении 0,5 В выходное напряжение падает практически до нуля и остается таким до увеличения входного напряжения до основного порога около 4,6 В.
лее, вплоть до напряжения чуть больше 9 В, выходное напряжение после скачка снова становится практически равным входному. А при входном напряжении более 9,2 В выходное напряжение скачком уменьшается практически до нуля. Причина подобного поведения не поясняется, но это означает, что микросхема может использоваться для двухпорогового контроля. Неясно и то, является ли точное значение 2 для отношения напряжений порогов преднамеренным или случайным обстоятельством.

 Исследования показывают, что в малой области главного порога (напряжение около 4,6 В) передаточная характеристика имеет гистерезис, как показано на рис. 3.

Детектор напряжения

При снятии характеристик в статическом режиме ширина петли гистерезиса составляет 20 мВ. Наличие гистерезиса исключает дребезг при переключении, как при нарастании, так и уменьшении контролируемого напряжения, а малая величина гистерезиса делает двойственность порога (при увеличении и уменьшении напряжения) практически незаметной

Детектор напряжения

Высокая стабильность порога — отличительное качество микросхем данной серии. На рис. 4 представлены температурные изменения верхнего и нижнего порогов в диапазоне температуры окружающей среды ТА = -40.. .+85 °С, разность порогов уменьшается при понижении температуры.


Детектор напряжения

Интересный вид имеют зависимости входного тока от входного напряжения, представленные на рис. 5 для трех значений температуры окружающей среды, в целом они носят почти линейный характер с небольшим отклонением от линейности в области малых значений, однако в области порогов (4,6 и 9,2 В) эти зависимости имеют характерные падающие и нестабильные участки, обусловленные регенеративным переключением устройства. В определенных условиях это может порождать паразитные или полезные релаксационные колебания с частотой 1 МГц и выше.

Детектор напряжения

Когда транзистор VT микросхемы открыт, выходное напряжение определяется начальным участком воль-тамперной характеристики насыщенного транзистора. На рис. 6 показана зависимость выходного напряжения от втекающего выходного тока для разных значений температуры окружающей среды ТА.

Максимальное значение выходного тока (до выхода из насыщения) при нормальных условиях составляет около 25 мА> что достаточно для яркого свечения светодиодного индикатора или включения маломощного реле.

Детектор напряжения

Для оценки свойств микросхем полезно также знать вольтамперную характеристику диода VD, она показана на рис. 7. Из нее видно» что диод выдерживает ток до 70 мА при прямом падении напряжения на нем 1,6 В.


 Статические характеристики супервизоров питания неплохо описывают их применение при медленно изменяющихся входных напряжениях, что характерно для многих стандартных применений таких микросхем. Из них следует, что по основному назначению их можно использовать при высокостабильном пороге около 4,6 В. Использование второго порога 9,2 В в технической документации не оговаривается, но, как показала практика, вполне возможно (максимальное  напряжение питания с запасом взято равным 10 В).

 ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ

Узлы порогового контроля со светодиодными индикаторами являются самыми простыми. Устройство (рис. 8, а), приведенное в описании микросхемы, обеспечивает свечение светодиода при падении напряжения источника питания ниже основного порога 4,6 В.
При увеличении питающего напряжения свыше 9,2 В свечения прекращается. Если узел выполнен так, как показано на рис. 13, б, обеспечивается четкая индикация превышения напряжением питания значения 4,6 В, а также и контроль за спадом напряжения ниже 9,2 В. Порог можно увеличивать, включая вход через диод или подключая его к источнику питания через низкоомный (единицы кОм) делитель. К сожалению, способов понизить напряжение порога у данных микросхем нет.

Детектор напряжения

Будучи высокочувствительными регенеративными устройствами со стабильным порогом срабатывания, супервизоры могут применяться в огромном количестве пороговых схем, например, в качестве триггеров Шмитта, устройств контроля сигналов с фоторезисторов, фотодиодов и фототранзисторов, пороговых устройств контроля температуры с резисторными и диодными датчиками температуры и т. д. Принципы построения таких устройств вполне очевидны.


Детектор напряжения

На рис 9 показан основной способ включения микросхемы супервизора питающего напряжения для создания сигнала сброса микропроцессорного устройства.
Резистор RH позволяет изменять петлю гистерезиса (ранее приводились данные для RH = 0), что дает возможность в широких пределах менять условия сброса микропроцессора. Обычно гистерезис позволяет создавать зону нечувствительности, предотвращающую сброс микропроцессорных устройств при небольших случайных скачках напряжения питания.

 Детекторы напряжения питания могут использоваться в зарядных устройствах для контроля уровня зарядки аккумуляторных батарей. Примером может служить схема устройства, показанная на рис. 10.

Детектор напряжения

Устройство служит для контроля зарядки аккумуляторной батареи GB1 от солнечной батареи BL1. Пока уровень напряжения GB1 ниже основного порога, напряжение на выходе микросхемы супервизора равно нулю и внешний транзистор закрыт. Ток от солнечной батареи через диод заряжает GB1. Но если напряжение на GB1 начинает превышать заданный порог, сигнал на выходе супервизора увеличивается и внешний транзистор открывается, замыкая на себя ток элементов солнечной батареи. Перезарядка GB1 предотвращается и можно эксплуатировать аккумуляторную батарею без присмотра.


ИМПУЛЬСНЫЕ УСТРОЙСТВА НА МИКРОСХЕМАХ СУПЕРВИЗОРОВ НАПРЯЖЕНИЯ

Супервизоры также могут применяться при построении разнообразных импульсных устройств. Ниже описаны некоторые из них, рекомендуемые производителями микросхем импульсных устройств. 

Типичным применением супервизора является возбудитель мощного полевого транзистора. Мощные полевые транзисторы крайне нежелательно запускать импульсами с пологими участками нарастания и спада, например треугольными [2]. В этом случае транзисторы длительное время находятся в состоянии, когда одновременно ток стока и напряжение на стоке велики, что ведет к резкому увеличению мгновенной рассеиваемой мощности, перегреву транзисторов и снижению к. п. д. ключевых устройств. На рис. 11 показана схема узла запуска, исключающего из входного напряжения область, где возможна перегрузка мощного полевого транзистора по мгновенной мощности рассеивания. Варианты умощнения выхода микросхемы рассмотрены в [3].

Детектор напряжения


Малая инерционность срабатывания микросхемы супервизора не всегда является достоинством. Даже при создании сигнала сброса микропроцессора (применения микросхемы по прямому назначению) желательно создать задержку сигнала сброса, чтобы сброс не происходил при очень коротких перепадах напряжения питания. Для этого следует использовать дополнительный конденсатор CDLY который создает экспоненциальное нарастание сигнала сброса. Время задержки вычисляется выражением, приведенным в правом нижнем углу типовой схемы сброса микропроцессора (рис. 12).

Детектор напряжения

Микросхема супервизора напряжения может использоваться для формирования из входного сигнала задержанного перепада напряжения или задержанного прямоугольного импульса. Схема формирователя показана на рис. 13, его основой является интегрирующая КС-цепь на входе, которая формирует экспоненциальные фронты и спады на входе микросхемы.

Детектор напряжения

Если предельное напряжение экспоненциального перепада на входе меньше второго порога составляет 9,2 В, выходной перепад формируется с задержкой в момент, когда экспоненциально растущее напряжение достигает уровня основного порога 4,6 В. Осциллограммы входного и выходного напряжения узла (рис. 13) для такого случая показаны на рис 14.
нако если предельное напряжение экспоненциального перепада на входе микросхемы супервизора превышает второй порог 9,2 В, будет формироваться уже не выходной перепад, а выходной прямоугольный импульс. Это связано с тем, при достижении экспоненциальным напряжением значения второго порога транзистор микросхемы снова открывается и напряжение на выходе становится близким к нулю. Осциллограммы входного и выходного напряжения для последнего случая показаны на рис. 15.

Детектор напряжения

Детектор напряжения

Длительность задержки выходного перепада составляет:

Детектор напряжения

где UH — напряжение основного порога 4.6 В. Эта же формула при UH = 9,2 В определяет задержку второго (отрицательного) перепада выходного напряжения» а разность задержек — длительность выходного прямоугольного импульса.

 Используя микросхему супервизора, можно построить и импульсный генератор (мультивибратор). Простейший вариант на основе использования второго порога работает не очень стабильно и дает жесткое самовозбуждение. Для того, чтобы срабатывал основной порог, узел приходится дополнять транзисторным инвертором, как показано на рис 16. Он обеспечивает зарядку и разрядку конденсатора С через резистор R. При достижении верхнего входного напряжения петли гистерезиса транзистор включается и конденсатор разряжается до нижнего порога. Затем транзистор выключается, и конденсатор начинает заряжаться до верхнего входного напряжения петли гистерезиса и т. д.

Детектор напряжения

Осциллограммы напряжения на конденсаторе С и коллекторе внешнего транзистора показаны на рис. 17.

 Поскольку разность порогов мала, напряжение на конденсаторе имеет участки почти линейного нарастания и спада. Импульсы напряжения на коллекторе внешнего транзистора близки к прямоугольным (рис 17). Из-за малой разности порогов и малой допустимой неличины R частота колебаний генератора довольно велика и составляет около 300 кГц при R = 7,5 кОм.

Детектор напряжения

 

Еще один вариант применения супервизора напряжения показан на рис 18. Это маломощный импульсный стабилизатор (преобразователь) напряжения 11,5… 14,5 В в стабильное постоянное напряжение 5 В при токе 50 мА с максимальным изменением 35 мВ. При напряжении питания 12,6 В и изменении тока нагрузки 0.. .50 мА нестабильность выходного напряжения не превышает 12 мВ. Пульсации напряжения на выходе не более 60 мВ (полный размах), а КПД — 77 %. Любопытно отметить, что это довольно высокое значение коэффициента полезного действия, поскольку в маломощных стабилизаторах получить его намного труднее, чем в мощных, из-за значительной мощности, расходуемой на питание вспомогательных устройств.

 Работа устройства основана на импульсном управлении биполярным транзистором МР5У51А,включенным по схеме ключевого понижающего стабилизатора релаксационного типа. Импульсы с коллектора транзистора фильтруются LC-фильтром, и его выходное напряжение используется как входное для микросхемы супервизора. Делитель на его входе повышает порог до уровня 5 В, которое с учетом пульсаций определяет выходное напряжение преобразователя.

Детектор напряжения

За рубежом супервизоры питания выпускаются почти всеми полупроводниковыми
фирмами, например [4, 5]. Относительно  давно существует отечественная серия микросхем К1171СП2хх [6], начат выпуск серии микросхем К1274хх [7], функциональная схема показана на рис 19. Источник опорного напряжения изображен в виде стабилитрона.
Обозначение «хх» указывает на типовое напряжение порога срабатывания— 29 при пороге 2,83…2,97 В, 33 при 3,23…3,37 В и т. д. до 45 при 4,43…4,57 В. Выпуск ряда модификаций микросхем с разными порогами упрощает их выбор. Максимальное допустимое рабочее напряжение увеличено до 15 В. В остальном микросхемы аналогичны описанным МС34064, в том числе и по принципам схемного применения. 

ЛИТЕРАТУРА:
1. МС34064, МС33064. Undervoltage Sensing Circuit. Motorola, 1пс.У 1996.
2.  В. П. Дьяконов, А. А. Максимчук, А. М. Ремнев, В. Ю. Смердов. Энциклопедия устройств на полевых транзисторах. Под общей редакцией проф. В. П. Дьяконова. — М: СОЛОН-Р, 2002.
3.  С. Алексеев. Триггеры Шмита без источника питания. — Схемотехника, 2002, Л«? 12, с. 24.
4.  KIA7019AP/AF/AT- KIA7045AP/ AF/AT. Bipolar Linear Integrated Circuit KEC, 2002.
5. M. Потапчук. Супервизоры серии MCPIOx фирмы Microchip. — Схемотехника, 2006, № 1, с. 10, 11.
6. Микросхемы для линейных источников питания и их применение. —М; Додэка, 1998.
7.  А. Нефедов. Новые микросхемы для источников питания. — М.: Ремонт и сервис, 2006, .№? 5, с. 61, 62.

 Владимир Дьяконов, г. Смоленск

radio-uchebnik.ru

Полезна ли эта статья? Однако, меня заворожила красота математических выкладок и пришедших идей. Поэтому захотел её опредметить…

(Примечание: картинки в статье кликабельны и ведут на увеличенное изображение.)

Вступление

Определение: Супервизор — это микросхема детектор пониженного напряжения, для защиты схемы/устройства от некачественного питания (по англ. «Undervoltage Protection», «Undervoltage Sensing Circuit», «Supply Voltage Supervisor» и т.п.)

Читая даташиты на Супервизоры, и рассматривая функциональные схемы — заметил, что реализация встроенных компараторов напряжений различается:

  1. Некоторые схемы основаны на классической конфигурации, когда эталонный Источник Опорного Напряжения (ИОН) подключается Анодом к Земле и подпирает один из входов Компаратора — это, ИМХО, более естественно и привычно.
    Обычно, в такой схеме, ИОН подпирает инверсный вход (-), тогда при снижении напряжения питания ниже Порога — выход компаратора переключается в состояние «лог.0», что значит: «ошибка» или «нет питания»… (см. схему «Рис.2»)
  2. Но как ни странно, большинство Супервизоров общего назначения реализованы на перевёрнутой конфигурации: когда ИОН подключается как-то хитро… Катодом к шине Питания… Запутанная схема — вызвала желание разобраться… (см. схему «Рис.1»)

А впоследствии, ещё возник вопрос: какой из двух подходов эффективнее? Я тогда искал схемотехническое решение для собственной реализации Супервизора, на дискретных компонентах…

Таким образом, в этой статье представлен разбор принципа работы двух схем. Методика расчёта обвязки компаратора, для обоих схем. И мои рекомендации, какая из двух схем лучше.

1. Типовая схема Супервизора «Рис.1»

По этой схеме выполнены микросхемы Супервизоров: KIA70xx Series; PST529 Series; отечественные серии К1171СП2хх, К1274хх… То есть, здесь, большинство простейших универсальных трехвыводных супервизоров питания общего назначения.

Рис.1 — Типовая схема Супервизора:
Рис.1 - Типовая схема Супервизора

Пояснение работы схемы

На компаратор поступает два напряжения, формируемые:
(1) каскадом со стабилитроном = Vcc — dUстаб. (фиксированная аддитивная добавка)
(2) резистивным делителем = Vcc * R2/(R1+R2) (пропорциональная часть)

Изначально: (1)>(2), компаратор выдаёт «лог.0» на выходе.

При уменьшении Vcc, пропорциональная часть (2) от Vcc — уменьшается медленнее, чем целое Vcc (1)… В конце концов, потенциал (1) нагонит и сравняется с (2).

Смещение dUстаб. не влияет на скорость схождения — это лишь небольшая фора для (1), чтобы успеть нагнать напряжение (2), которое стартует при изначально более «выгодных» условиях {Упрощённо: если напряжение (1) бежит аж от Vcc до 0V, то напряжение (2) бежит от Vcc*R2/(R1+R2) до 0V…} Хотя, скорость снижения напряжения (1) быстрее. Однако, если бы не было смещения dUстаб., то (1) никогда бы не догнал (2), но они бы лишь сравнялись только в точке =0V.

Практически, процессы можно проиллюстрировать графиком «Рис.3», который облегчает настройку параметров системы и делает вещи более очевидными.
Точка равенства напряжений (1)=(2): Uпорог-dUстаб. = Uпорог*R2/(R1+R2)

Рис.3 — Точка переключения компаратора:
Рис.3 - Точка переключения компаратора

Примечание: Для универсальности, далее в расчётах и по тексту, будем обозначать смещение и Стабилитрона, и ИОНа одинаково: dUстаб. (номинал стабилитрона) = Uref (номинал ИОН). По сути, это одно и тоже, тождественно…

Расчёт схемы

Пусть, требуется Uпорог=3.2V

Номинал стабилитрона: Uref=3/4*Uпорог=2.4V (меньше не бывает, и в рекомендуемый диапазон попадает)
Стабилитрон BZV55-B/C2V4 имеет ток утечки Irmax=50uA.
Следовательно, в него надо загонять ток на порядок больше >500uA.
Следовательно, номинал токоограничивающего резистора должен быть менее R3 < (Uпорог-Uref)/500uA=1600R, т.е. R3=1.5k

Компаратор должен иметь «Выход с открытым коллектором»…
В модели использован Идеальный компаратор (для безглючности симуляции и чётких графиков), но входные каскады рассчитаем, для примера, на реальные компараторы общего назначения:

LMx39 (4шт. Компаратора, Питание single +2..36V, или dual +-1..18V)
у него, средний входной ток: «Input Bias Current Max.» = 250nA
плюс, для верности, дифференциал между входами: «Input Offset Current Max.» = 50nA

LMx93 (2шт. Компаратора, Питание single +2..36V, или dual +-1..18V)
у него, средний входной ток: «Input Bias Current Max.» = 500nA
плюс, для верности, дифференциал между входами: «Input Offset Current Max.» = 200nA
(хм, этот — вообще, так себе…)

Предположим, реальная схема будет построена на компараторе «LMx39». Максимальный ток по входу, при самых неблагоприятных условиях, будет = «Input Bias Current Max.» + «Input Offset Current Max.» = 300nA
Следовательно, через резистивный делитель должен протекать ток, как минимум, на порядок больше >3uA. Тогда, сумма номиналов резисторов должна быть, как минимум, меньше: (R1+R2) < Uпорог/3uA=1M
Хотя, для точности — желательно, конечно, чтобы через резистивный делитель протекал ток на два порядка больше >30uA. Тогда, сумма номиналов резисторов должна быть меньше: (R1+R2) < Uпорог/30uA=100k…
Но при таком грубоватом компараторе (со значительными утечками) — мы не будем гнаться за идеальной схемотехникой. Тем более, что «типичные» токи утечки ожидаются на порядок меньше, чем «максимальные»… Поэтому, здесь, рекомендую рассчитывать на границу: (R1+R2)<1M

Второе уравнение системы, для расчёта резисторов:
(Uпорог-Uref)=Uпорог*R2/(R1+R2) или
R2/R1=(Uпорог/Uref-1)
а учитывая, что у нас Uref=3/4*Uпорог:
R1=3*R2.
Решив систему уравнений, получаем номиналы: R1=150k, R2=51k…
Окончательную подстройку границы срабатывания производим экспериментально…

2. Классическая схема Супервизора «Рис.2»

По этой схеме выполнены микросхемы Супервизоров: ADM705, ADM706, ADM707, ADM708; TLC7701, TLC7725, TLC7703, TLC7733, TLC7705; и возможно, MN1280x, MN1281x… Это всё сложные специализированные супервизоры питания для микропроцессоров, с кучей дополнительных функций. Диапазон питания у данных супервизоров ограничен максимумом 6-7V. А компаратор напряжений, выполненный по «классической схеме», присутствует в них отдельным функциональным узлом.
Но сюда же попадают и простейшие супервизоры общего назначения: MC34064, MC33064…

Рис.2 — Классическая схема Супервизора:
Рис.2 - Классическая схема Супервизора

Расчёт схемы

Первая часть расчётов — абсолютно такая же, как и для схемы «Рис.1» — можно не смотреть…
Различия проявляются только во второй части расчётов. Причём, заметьте: полученные номиналы для R1 и R2 — абсолютно те же, что и для схемы «Рис.1», но взаимообратные, т.к. схема симметрична!

Второе уравнение системы, для расчёта резисторов:
Uref=Uпорог*R2/(R1+R2) или
R1/R2=(Uпорог/Uref-1)
а учитывая, что у нас Uref=3/4*Uпорог:
R2=3*R1.
Решив систему уравнений, получаем номиналы: R1=51k, R2=150k…
Окончательную подстройку границы срабатывания производим экспериментально…

3. Сравнение схем

Предыдущая схема «Рис.1», поначалу, меня очень удивляла: странно, почему Диод Зеннера в верхнем плече (это же источник опорного напряжения — обычно, его ставят от Земли до некоторого порога Uref)? Да ещё и выходы компаратора пришлось менять местами, для требуемой логики переключения (схема «Рис.1» выглядит перевёрнутой)?
Классическая схема «Рис.2» — прямая и ясная: здесь, чётко виден уровень Vref; делитель входного (тестового) напряжения Vtest… Диод Зеннера (или ИОН) задаёт эталонное опорное напряжение, равное части Uпорогового…

Так зачем же путать себя (и природу), выдумывая хитрости конфигурации «Рис.1»?
Догадываюсь: возможно, схема «Рис.2» хоть и проще/понятнее, но менее технологична для настройки и изготовления? У производителей свои причины…

По схемотехнике и принципиальной возможности для реализации — разницы нет, куда ставить Стабилитрон/ИОН, в верхнее плечо или в нижнее. Реализовать ИОН «от верхнего уровня» плавающего Питания (VCC) — столь же просто, в схемотехническом плане, как и «от нижнего уровня» фиксированной Земли (GND).
Если задействуется простой Стабилитрон — там напряжение смещения формируется чисто физическими процессами PN-перехода, а не хитрой схемой ИОН — нет схемотехнических изысков, которые нужно упорядочивать… Однако, микросхемы ИОН имеют столь же простое подключение к схеме: имеют выводы условно именуемые «Анод» и «Катод». А «универсальные микросхемы» имеют ещё вывод обратной связи «ADJ» или «FB», для подстройки порогового номинала внешним резистивным делителем (вместо встроенного и фиксированного), но от своих же выводов «Анод» и «Катод»…

Что лучше: Типовая схема «Рис.1» или Классическая «Рис.2»?

В чём эффективная разница между схемами «Рис.1» и «Рис.2»?
При медленно изменяющихся входных сигналах — эти схемы одинаково эффективны, поскольку наклон графиков нивелируется… Но на больших частотах — это имеет значение!

  1. Ведь, что такое наклон прямой графика? Это изменяющееся входное напряжение.
  2. А что означает «изменение входного напряжения» — это перетекание зарядов, переходные процессы.
  3. А переходные процессы — конечны во времени! Следовательно, имеют место «гонки сигналов».
  4. А гонки сигналов — нарушают стабильность характеристик переключения Компаратора…

Т.е. Классическая схема «Рис.2», где уровень Uref (один из входных напряжений на Компаратор) фиксирован во времени — теоретически, более стабильная. Кроме того, схема «Рис.2» чуток проще рассчитывается… Поэтому, для дальнейшего продвижения и воспроизводства я бы рекомендовал идею «Рис.2»…

Однако, Vga обратил внимание на важный параметр Компараторов и ОУ: «Input Common Mode Voltage Range» (в datasheet обозначается как: Vicm или Vcmr), учёт которого разительно меняет всю картину:

Vga : при использовании LM358 или LM393 лучше поставить стабилитрон сверху, т.к. допустимый уровень сигнала на входах этих микросхем — 0V..Vcc-1.5V, т.е. при опоре в 2.4В снизу питание требуется не менее 4В. При стабилитроне сверху будет работать от 3В (ограничение самого LM358).

Действительно, «допустимые уровни входных сигналов» — для большинства Компараторов и ОУ (исключая «Rail-to-Rail»), специфицируется как:

  • Vicm = [0… Vcc-1.5V], при температуре +25°C
  • Vicm = [0… Vcc-2.0V], во всём температурном диапазоне

А те микросхемы, что не поддерживают входные сигналы до самого нуля — как правило, ассиметрично ближе к нулю, например: [Vss+0.5V… Vdd-1.5V]. Такова тенденция…

Отдельного слова заслуживают элементы «Rail-to-Rail». Современная элементная база развивается по направлению к низковольтной и малотоковой электронике — микросхем «Rail-to-Rail» выпускается всё больше… Я не сильно искал. Потому, мне встретились только два экземпляра, поддерживающих полный диапазон входных напряжений (но их, конечно же, больше):

  • Компаратор серии «MCP6541,1R,1U,2,3,4» имеет: «Input Voltage Range» Vcmr = [Vss-0.3V… Vdd+0.3V]
  • Линейный ОУ серии «MCP6001/2/4» — также, специфицирует: «Common Mode Input Range» Vcmr = [Vss-0.3V… Vdd+0.3V] (и обещает полный «Rail-to-Rail Input/Output»)

Компоненты из категории «Rail-to-Rail» («от шины до шины») — имеется в виду способность принимать на вход или выдавать на выход напряжения «от уровня Земля до уровня Питания»… Кстати, замечу: спецификации на вход и на выход ОУ различаются — и далеко не все ОУ, способные выдавать «Rail-to-Rail» напряжения на выход, поддерживают также и полный диапазон входного напряжения!

  • Вот, например, ОУ серии «MCP601/1R/2/3/4» специфицирует: «Common Mode Input Range» Vcmr = [Vss–0.3V… Vdd–1.2V] (т.е. обещают лишь «Input Range Includes Ground»)…

В принципе, при использовании «Rail-to-Rail Input» компараторов — уже не играет роли какую схему использовать для Супервизора: Типовую «Рис.1» или Классическую «Рис.2». Но следует учитывать, что элементы «Rail-to-Rail» — как правило, низковольтные и дороже обычных (что тоже немаловажно), их ассортимент и доступность более ограничены. Поэтому, в общем случае, не следует на них особо рассчитывать…

Таким образом, абсолютное большинство существующих Компараторов/ОУ (и все традиционные, схемотехника которых рассчитана на широкий диапазон напряжений питания +2..36V) — очень плохо переносят высокие входные напряжения (приближённые к питанию). Хотя, при этом, зачастую хорошо принимают низкие напряжения, вплоть до уровня Земли. Это очень важный аргумент в пользу схемы «Рис.1»!
Наверное, это всё и объясняет: Производители выбирают Типовую схему «Рис.1» для всех простейших Супервизоров — поскольку они предназначены для работы в широком диапазоне напряжений питания, и в особенности для пониженных напряжений (смотри пример на «Рис.5»).

Что лучше: Стабилитрон или ИОН?

Стабилитрон гораздо дешевле и доступнее (везде можно купить)…
Модельный ряд Стабилитронов гораздо шире: существуют Диоды Зеннера на довольно большие номиналы напряжений (до 100-200V)!
В то время как, ИОНы: выпускаются только на малые напряжения (до ~10V), и только для характерных пороговых напряжений (что диктуется технологически).

Однако, для Супервизора большие номиналы напряжений не нужны — чаще требуются малые… И вот тут, ограничение: стабилитроны не бывают на очень малые напряжения! До <2.4V — используются только ИОНы (по технологии Бандгап?)
А ещё, по сравнению с ИОН, Стабилитроны гораздо менее точны (разброс параметров в серии, и температурный дрейф)…

Поэтому, для построения Супервизора — предпочтительнее использовать ИОНы.
Хотя, если не требуется большая точность срабатывания (если у вас не супер мощный микропроцессор с узким диапазоном напряжений питания), и если порог срабатывания схемы не очень мал (выше >4V) — то можно использовать и Стабилитрон, как дешёвую альтернативу.

Зачем нужен выходной транзистор Q1?

Этот вопрос лучше задать иначе: Почему на функциональной схеме Супервизора, в datasheet, после ОУ изображён дополнительный выходной каскад на биполярном транзисторе?
Ответ: Нет там никакого ключа! Это условное графическое изображение (УГО) того факта, что выход Супервизора — с открытым коллектором (англ. «Open collector» or «Open-Drain» Output).

Типовая функциональная схема Супервизора из datasheet

Есть одно важное Функциональное Требование: от Супервизора требуется ВЫХОД С ОТКРЫТЫМ КОЛЛЕКТОРОМ. Ведь, одно из самых традиционных применений Супервизоров — это давить шину RESET к Земле (при некачественном питании)…

Как правило, и для большинства выпускаемых Компараторов это так: выход Компаратора напряжений представляет собой «выход с открытым коллектором»!
Почему именно выход с открытым коллектором? Это лёгкий и доступный, и наверное самый простой, способ обеспечить необходимую универсальность применения Компараторов: совместимость выходов логическим уровням TTL и CMOS. А также, для специфических схем, где требуется открытый коллектор: например, соединять выходы нескольких компараторов по «логике ИЛИ»… или вот, подобно Супервизору, для непосредственного подключения к «Шине с открытым коллектором»…

Но не смотря на то, что Компаратор — это разновидность ОУ… Однако, выходные каскады Операционных усилителей (ОУ) — построены по Двухтактной схеме (как в комплементарной логике), и не являются «выходами с открытым коллектором»!
Поэтому, Операционные усилители (такие как LM324, LM358 и LM741), обычно, не используются в радиоэлектронных схемах в качестве компаратора напряжений, из-за их биполярных выходов (и низкой скорости). Тем не менее, эти операционные усилители могут быть использованы в качестве компаратора напряжений, если к выходу ОУ подключить диод или транзистор — для того чтобы воссоздать выход с открытым коллектором… (Приятный бонус: использование внешнего транзистора позволит обеспечить бОльший ток нагрузки, чем у обычного компаратора.)

Операционный Усилитель (ОУ) может быть использован в качестве Компаратора напряжения, если к выходу ОУ подключить диод или транзистор

Поскольку условное графическое изображение (УГО) компараторов и ОУ практически не различаются, то на схемах в datasheet, чтобы подчеркнуть факт «открытого коллектора» — специально дорисовывают дополнительный выходной каскад на биполярном транзисторе (с открытым коллектором)…

Какой номинал «эталонного смещения» выбрать?

Теоретически, можно построить всю серию Супервизоров (весь номинальный ряд от и до [Uпорог_min..Uпорог_max]) на одном единственном ИОН, с фиксированным опорным Uref. Единственное условие, здесь: чтобы опорное напряжение было меньше всех, Uref<Uпорог_min<Uпорог_max.

Сразу забрезжили «розовые перспективы»: Для всей серии, внутри микросхемы, использовать один и тот же Стабилитрон/ИОН — отлаженной схемы, исследованных и фиксированных характеристик. А вся подстройка на требуемый порог (Uпорог) осуществляется только подбором резисторов в делителе R1:R2…
Преимущества: Технологичность производства (повторяемость характеристик изделий с конвейера), Простота проектирования и перенастройки оборудования для разных номиналов серии… Температурная нестабильность параметров одинаковая во всей серии (т.к. схема одна и та же).

Но это теоретически… А так ли это здорово практически?

Disclamer: На самом деле, я конечно не знаю наверняка, как в промышленных интегральных супервизорах — используется ли один и тот же стабилитрон во всей серии? всеми ли производителями?
В зависимости от технологии производства, в микросхеме могут использоваться как простые «стабилитроны в интегральном исполнении», так и некие «схемы ИОН»… И их может быть несколько номиналов на всю серию, для повышения точности и надёжности конечного Супервизора…

Разбор графиков, ниже, показывает: для повышения точности и надёжности конечного Супервизора — на разные поддиапазоны Uпорогового, следует подбирать своё оптимальное эталонное смещение (Uref)…

4. Методические рекомендации по расчёту Компаратора напряжений в схеме Супервизора

Для настройки схемы Супервизора (точнее, его центрального узла: Компаратора) на конкретный порог срабатывания — первым делом, нужно выбрать оптимальный номинал эталонного смещения: Стабилитрон (dUстаб.) или ИОН (Uref)…

Сперва, разберём Типовую схему «Рис.1» — как самую непонятную, и потому, интересную.

Если есть возможность выбирать номинал Стабилитрона/ИОН (а в схеме на дискретных компонентах такая возможность имеется) то, для повышения надежности работы схемы и чёткости настройки: лучше брать Стабилитрон/ИОН номиналом = [1/2*Uпорог… 3/4*Uпорог], чтобы прямые (1) и (2) на графиках «Рис.4»,«Рис.5»,«Рис.6» сходились под как можно более тупым углом!

Вот здесь-то и становится очевидным, почему нельзя построить всю серию Супервизоров на одном ИОН:

  • Если взять большое опорное напряжение — это очень сильно ограничит диапазон пороговых напряжений, на которые можно построить Супервизор — потому что требуется: Uref<Uпорог_min.
  • Но при слишком маленьком опорном, графики (1) и (2) сходятся уже под таким острым углом, что начинает играть очень большую роль чувствительность входов реального Компаратора/ОУ (см. влияние параметров «Input offset voltage» и «Input offset Drift») — пропорционально, набегает очень большая погрешность измерений входного/тестируемого напряжения питания. Например, пусть Vcc упало на -1V, но при делителе R1:R2 в 1000 раз, Vtest упадёт всего на -1mV!..

Рис.4 — Рекомендуемый диапазон выбора dUстаб. для Типовой схемы «Рис.1»:
Рис.4 - Рекомендуемый диапазон выбора dUстаб. для Типовой схемы Рис.1

А теперь, чтобы проверить методику (и себя), рассмотрим самый трудный случай для этой «Типовой схемы» (стабилитрон в верхнем плече): при малом Uпороговом=2V и размахе питания до Vcc_max=16V — замечу, что этот режим достигается и промышленными микросхемами Супервизоров, самыми малыми в серии.

График, ниже, показывает, что углы схождения прямых сохраняются — методика работает… Номинал эталонного смещения, при этом, выбирается из диапазона dUстаб.=[1-1.5V] — конечно, это будет не Стабилитрон (столь малых не существует), но ИОН стандартного номинала 1.25V.

Рис.5 — Пример режима работы при малом Uпор. (самый трудный случай) для Типовой схемы «Рис.1»:
Рис.5 - Пример режима работы при малом Uпор. (самый трудный случай) для Типовой схемы Рис.1

Далее, разберём Классическую схему «Рис.2» — традиционную и понятную, хороший пример для сравнения.

Аналогичный анализ углов схождения графиков для схемы «Рис.2» (классической) показывает, что для повышения надёжности работы схемы и чёткости настройки, рекомендуется использовать Стабилитрон/ИОН с номинальным Uref, также, из диапазона [1/2*Uпорог… 3/4*Uпорог].
И в целом, такая схема выгоднее (стабильнее) — при равных граничных условиях, углы на графике «Рис.6» больше (тупее), чем на графике «Рис.4»… Поэтому, с некоторой натяжкой, допустимо ещё использовать Стабилитрон/ИОН с Uref из диапазона [1/4*Uпорог… 1/2*Uпорог].

Рис.6 — Рекомендуемый диапазон выбора Uref для Классической схемы «Рис.2»:
Рис.6 - Рекомендуемый диапазон выбора Uref для Классической схемы Рис.2

Здесь, в точках пересечения графиков (1) и (2), соблюдается условие: Vref=Uпорог*R2/(R1+R2)

Таким образом, итоговая методика расчёта входного каскада Компаратора напряжений:

  1. Сперва, выбирается «эталонное смещение» (dUстаб. или Uref) как часть от требуемого Uпорогового,
    ближайшим номиналом из диапазона [1/2*Uпорог… 3/4*Uпорог],
    из доступных в наличии Стабилитронов или ИОНов.
  2. Затем, окончательная подстройка точки схождения производится номиналами резисторов R1 и R2.

Примечание к выбору dUстаб. и Uref:
Почему рекомендованы такие ограничения?
Все ОУ плохо работают при входных напряжениях в окрестностях 0V или приближённых к VCC. Поэтому, настоятельно не рекомендуется выбирать точку переключения (напряжение компарации) в верхней или нижней четверти Uпорогового. Т.е. не следует (нельзя) выбирать значение dUстаб./Uref из диапазонов [0… 1/4*Uпорог] && [3/4*Uпорог… Uпорог].

Кроме того, есть и чисто схемотехническое ограничение: Не забывайте о необходимости наличия токоограничивающего резистора R3 (необходимого как Стабилитрону, так и ИОНу). На этом резисторе упадёт ещё очень приличное напряжение! Так что, точка компарации естественно опустится из верхней четверти (для схемы «Рис.2») или поднимется над нижней четвертью (для схемы «Рис.1»)… Слишком уменьшать номинал R3 тоже нельзя — увеличится лишний ток через стабилитрон. (Рекомендации по оптимизации токопотребления схемы — см. в следующем блоке.)

Как следствие, принципиально нельзя отказываться от наличия резистивного делителя R1:R2 по входу компаратора. Не смотря на то, что резисторы вносят дополнительную погрешность измерений, усложняют схему — но точку компарации приходится смещать. Рассмотренные схемы содержат необходимый минимум деталей…

Рекомендации к выбору номиналов токоограничивающих резисторов:
Резисторы каскадов (1) и (2) на входе ОУ следует выбирать максимальных номиналов, чтобы минимизировать нецелевой ток, но так чтобы…

  1. В цепи делителя R1:R2 должен протекать ток, как минимум, на порядок больше (в x10 раз), чем входной ток ОУ (который мал, но ненулевой).
  2. Аналогично, и для тока через каскад со Стабилитроном/ИОНом… Но тут есть ещё и дополнительное условие: ток должен быть на порядок больше, чем «минимальный требуемый схеме стабилизации ток для выхода на режим» — см. в datasheet:
    • для Стабилитрона — это параметр «Max reverse Leakage Current, Ir»;
    • а для ИОН — это параметр «Minimum Operating current, Irmin».
  3. Наконец, если в схеме, после Компаратора, присутствует ещё выходной усиливающе-инвертирующий транзисторный ключ Q1… То базовый резистор этого выходного ключа (ранее обозначавшийся как R4, на первых версиях схем «Рис.1»/«Рис.2») рассчитывается по правилам «Инвертора на биполярном транзисторе» (методика)… Основной тезис здесь: базовый ток должен быть достаточным для уверенного поддержания открытого биполярного транзистора в насыщении, даже при минимальном напряжении питания Vcc_min — это определяет верхнюю границу для номинала R4 (реальный номинал выбирается чуть меньше, но приближённым к границе, чтобы минимизировать нецелевой ток).

Приложение: Улучшение работы Супервизора с помощью ПОС

Рис.7 — ПОС на Компараторе добавляет гистерезис переключения:
Рис.7 - ПОС на Компараторе добавляет гистерезис переключения

Пояснение работы схемы:

Положительная Обратная Связь (ПОС) на Компараторе добавляет гистерезис переключения. (Это как «взрывающийся вертолёт» улучшает любой «экшн» — так и ПОС улучшит любой Супервизор!)

Возьмём за основу Классическую схему, где Стабилитрон подключается от Земли — здесь, к «прямому» входу компаратора подключён каскад резистивного делителя (повезло: гистерезис получится).

Особо замечу, что если бы в схеме к «прямому» входу компаратора подключалась цепочка со Стабилитроном D1, то последний бы нивелировал весь ток через резистор R4, и поддерживал бы уровень Vref неизменным — и никакого гистерезиса не наблюдалось бы, как ни крути!

Силу ПОС — а значит и ширину петли гистерезиса — можно регулировать величиной резистора R4. Номинал R4 рекомендую выбирать на порядок больше, чем (R1+R2)… Можно рассчитать и точно, но предупреждаю, что формулы будут скучные (громоздкие, а толку мало):

Когда выход ОУ в «High» состоянии, то R4 запараллелен с R1 в резистивном делителе (R1||R4):R2.
пусть a=1/(1/R1+1/R4),
тогда Vtest1 = Vcc * R2/(a+R2)

Когда выход ОУ в «Low» состоянии, то R4 запараллелен с R2 в резистивном делителе R1:(R2||R4).
пусть b=1/(1/R2+1/R4),
тогда Vtest2 = Vcc * b/(R1+b)

Итоговая Ширина Гистерезиса: dVtest=|Vtest1-Vtest2|
или dVtest = Vcc * |1/(a/R2+1) — 1/(R1/b+1)|

Таким образом, последняя формула показывает, что величину гистерезиса лучше считать не в абсолютных единицах, а в процентах от Vcc. Кроме того, величина гистерезиса меняется от изменения уровня Vcc (что логично)… Поэтому, нас интересует гистерезис именно в окрестностях порогового значения: Uпорог=3.2V
Например, если подставить текущие схемные номиналы в вышеприведенные формулы, то получим: dVtest=3.7% от VCC, или в абсолютной величине (при VCC=Uпорог) dVtest=0.117V

Только учтите, что данное значение дельты dV — действительно применимо к показателю Vtest (который является малополезным)! Чтобы получить оценку гистерезиса применительно к уровню Vcc, нужно ещё домножить эту дельту пропорционально резистивному делителю: dVcc = dVtest * (R1/R2+1)
Например, если подставить текущие схемные номиналы в вышеприведенные формулы, то получим: dVcc=5% от VCC, или в абсолютной величине для dUпорог=0.16V

Недостатки схемы:

Обратите внимание, что у Компаратора выход «с открытым коллектором» — не обеспечивает стабильность «высокого уровня» напряжения. Уровень «лог.1» обеспечивается схеме внешней подтяжкой выхода к шине Питания (в данном случае: цепью условной нагрузки R5). Однако, если таковая подтяжка слаба, если подтягивающее сопротивление сравнимо с величиной R4 — то будут сильны побочные эффекты:

  • ПОС R4 будет значительно засаживать выходное напряжение!
  • И как следствие, на внешнюю схему (на всю шину к которой подключён выход Супервизора) пойдут очень большие глюки.
  • А также, из-за просадки выходного напряжения — эффективность ПОС тоже будет неконтролируемо уменьшаться (ширина гистерезиса входных сигналов будет сужаться).

Поэтому, предупреждение: внешняя подтяжка выходной шины к Питанию должна быть значительно (пусть на 2 порядка) сильнее, чем ПОС. То есть, при R4=1M, подтяжки R5=100k недостаточно для поддержания выходного уровня. И на графике (кликни на картинку «Рис.7») видна эта просадка уровня «OUT» относительно «VCC»! Требуется уменьшить R5, хотя бы до величины R4/100: R5=10k…

we.easyelectronics.ru

Виды приборов для обнаружения скрытой проводки

Приборы для обнаружения скрытой проводки есть нескольких типов. Они работают на основе различных явлений и служат для разных целей.

Разговор о типах приборов начнем с того, как называют данное оборудование. Официальное название — прибор для обнаружения скрытой проводки. Называть могут: обнаружителем, индикатором, сигнализатором, искателем, определителем, тестером. В общем, названий масса, но суть одна. Эти приборы (некоторые из них) могут найти скрытую в стене проводку, каркас (металлический или деревянный), металлические или пластиковые трубы.

Обнаружение металлов в стене

Есть детекторы проводки, арматуры, металлокаркасов, которые являются миниатюрными металлодетекторами. Они вокруг себя создают магнитное поле, на которое реагируют спрятанные в стене металлы. Обнаруживают любой металл, будь то шуруп, водопроводная труба или проводка.

Эти устройства обычно недороги, многие довольно точно могут указывать на расположение в стене, а некоторые и под полом (при достаточной дальности обнаружения). Недостаток — при обилии металлов сложно определить где что находится. Например, в железобетонной стене определить где арматура, а где проводка. Если быть точными, то имея прибор для обнаружения проводки этого типа, это просто невозможно.

Некоторые  модели приборов-металлоискателей могут определять не только металл, но и дерево или пластик, спрятанный в стене. Они работают по другому принципу — определяют плотность материалов по скорости прохождения импульсов. Это уже довольно сложные устройства более дорогие, чаще всего имеют жидкокристаллический дисплей, на котором отображается информация о том, что именно найдено в стене.

Детекторы проводки

Есть другой тип оборудования для поиска проводки — детекторы (называют еще тестерами или индикаторами). Эти приборы реагируют на электромагнитное поле, которое создает ток, проходящий по проводнику. То есть этот тип приборов хорошо определяет наличие проводки под нагрузкой или напряжением. Если проводник оборван или необходимо найти трубу или металлокаркас, детекторы проводки окажутся бесполезны.

Есть у этих приборов еще один недостаток — они бесполезны на влажных стенах, так как подают сигналы почти постоянно. Влажные стены «отзываются» на электромагнитное поле прибора, заставляя его постоянно звенеть.

Универсальные устройства

Так как при работе часто требуются оба типа оборудования, был создан универсальный прибор для обнаружения проводки. У такого оборудования обычно несколько режимов работы — для обнаружения металлов вообще и отдельно для поиска проводки. Эти режимы бывают с разной степенью чувствительности — для определения точного расположения найденных коммуникаций с стене.

Обычно такой прибор для обнаружения скрытой проводки относится к классу профессионального оборудования или пролупрофессионального. Работают они обычно более точно, но и стоят в разы дороже. Также стоит обратить внимание, что некоторые модели (в частности ВOSCH DMF 10 Zoom) требуют преднастройки. Перед тем как его использовать по назначению, его надо включить и некоторое время подержать прижатым к стене. Причем в стене не должно быть пустот, металла и других неоднородностей. После такой настройки прибор очень хорошо все идентифицирует, но если им работать сразу после включения, показывает чушь.

Особенности и недостатки

Есть несколько моментов, общих для всех приборов для поиска скрытой проводки. Только проявляются они в разной мере — у дешевых моделей больше, у дорогих — меньше. Итак вот проблемы:

  • У каждого сканера есть предельная глубина определения металла (и не только). Чем ближе к этой глубине находятся искомые объекты, тем больше вероятность ошибки: два, находящихся в нескольких сантиметрах друг от друга объекта, могут определится как один или не определиться вовсе.
  • Лучше всего определяются объекты, которые находятся прилично выше максимальной глубины сканирования, располагающиеся с определенным шагом. Например, лаги пола, арматура в плите или фундаменте и т.д.
  • Если рядом (на расстоянии пары сантиметров) располагаются два объекта, один из которых значительно больше, то меньший может не «ловиться» совсем, а местонахождение большего будет выдаваться с ошибкой — прибор «усредняет» положение.

Как уже говорили, эти явления тем меньше, чем выше класс прибора. Так что при работе всегда помните, что ошибки могут быть и работайте аккуратно и уж точно с выключенным электропитанием.

На что обратить внимание при покупке

Сперва вам нужно определиться с набором функций, которые вам необходимы. Если вам надо только найти проводку, с этим вполне справится недорогой детектор. Если придется еще и определять каркасы или трубопроводы, потребуется устройство посерьезнее.

Глубина сканирования

При покупке обращайте внимание на то, какие материалы может определить данная модель, на то, на какой глубине эти материалы могут находится. Дешевые модели обычно ищут на глубине 20 мм, чего явно недостаточно — слой штукатурки обычно больше — порядка 30-40 мм. В общем, желательно, чтобы «видел» прибор для обнаружения скрытой проводки как можно глубже. Правда, такие модели стоят дороже.

Тип индикации

Определиться надо будет с типом оповещения. Он бывает трех типов:

  • Сигналы подаются звуком разной тональности и/или длительности. По типу сигналов можно различить что именно нашел прибор в этом месте.
  • Световая индикация. Есть светодиоды, которые зажигаются при обнаружении проводки или коммуникаций. Светиться они могут разным цветом, с разной интенсивностью. Зная каким образом прибор реагирует на какие материалы или степень приближения, приноровившись, можно довольно точно идентифицировать «находки».
  • Жидкокристаллический экран. Самый дорогой тип приборов, но и самый удобный. Информация отображается в понятной форме, никаких проблем с расшифровкой. Наличие экрана не мешает использовать и звуковую сигнализацию — такая комбинация наиболее удобна.

В общем и целом, к любому детектору надо привыкать — изучить какие сигналы он подается при приближении к каждому типу «находок». Для этого надо сначала проверить реакцию на открытых проводах, арматуре, древесине, потом пытаться найти скрытое в стене или в полу. К тому же перед началом работы желательно сделать невероятное — прочесть инструкцию по эксплуатации. Это обычно помогает быстрее научиться обращаться с прибором.

Тест в магазине

Перед покупкой выбранной модели протестируйте ее. В качестве объекта можно использовать любой провод, идущий к электроприбору. Посмотрите, соответствует ли заявленная глубина сканирования реальной — попробуйте «найти» провод на разном удалении от него, закройте его доской, куском пластика и т.д., повторите попытки. Если все тесты пройдены нормально, можно покупать.

Лучшие варианты

В этом разделе мы попытались собрать наиболее удачные по отзывам модели обнаружителей скрытой проводки. Как обычно, на одну и ту же модель порой есть противоположные отзывы. Мы постарались отобрать те, у которых количество позитивных отзывов значительно превышает негативные.

Детектор проводки Дятел

Этот аппарат выпускается в Украине, стоит относительно немного 25-30$. Получил в три раза больше положительных оценок, чем отрицательных. Может использоваться для нахождения проводников под напряжением. При работе свет не выключать, а сеть желательно чем-то нагрузить (например, включить лампу). Провода под напряжением определяет успешно, но если проводник уложен в пластиковой трубе, он его не видит.

Прибор для обнаружения скрытой проводки Дятел имеет четыре режима чувствительности:

  1. определяет местоположение проводника с точностью до 10 мм;
  2. до 100 мм;
  3. до 300 мм;
  4. до 700 мм.

То есть, начинать работу надо включив 4-й режим. При приближении к проводнику, начинает мигать светодиод, раздается писк. Чем ближе к проводнику, тем мигание чаще, звук громче. Выяснив границу наиболее интенсивных сигналов ставим отметку на стене. Операцию повторяем с другой стороны. Далее переключаем режим и поиск начинаем с уже обозначенных границ. Так, постепенно, находим местоположение проводника с точностью до 1 см в обе стороны.

Bosch DMF 10 Zoom

Этот прибор имеет жидкокристаллический монитор и два режима работы: определение металла (магнитного и немагнитного), древесины и проводки. Есть режим Zoom для увеличения чувствительности прибора. Но его включение приводит к тому, что детектор начинает реагировать не только на проводку, например, но и на расположенные вблизи металлические стойки или прутья арматуры.

При приближении к искомому объекту включается звук и световая индикация. На экране прибора светится шкала, по которой можно определить насколько близко находится прибор к проводнику — чем ближе, тем больше закрашенных полосок на шкале.

Также на дисплее высвечиваются графические изображения найденных материалов:

  • перечеркнутый магнит означает немагнитный металл (алюминий, например);
  • молния с делениями — проводка под напряжением;

Для того чтобы можно было нормально находить объекты, необходимо изучить инструкцию по эксплуатации. Там описано много нюансов, которые позволят правильно истолковать различные ситуации и не ошибиться при работе.

Определить скрытой проводки Bosch GMS-120

Еще один детектор знаменитой фирмы. Кроме проводки и металлов ищет древесину. Есть три режима работы:

  1. металлы магнитные и немагнитные;
  2. проводка;
  3. древесина.

Имеет неплохие отзывы, от предыдущего вариант отличается отсутствием функции Zoom. Зато посреди корпуса есть отверстие, через которое можно отметить на стене место прохождения проводника или наоборот, место, свободное от всяческого металла — для безопасного сверления в стене, потолке или в полу.

Из всех отзывов можно вывести несколько практических рекомендаций:

  • если прибор «звенит» по всей стене, прикоснитесь второй рукой к стене (уберите наводки), работать будет нормально;
  • если не разберетесь в показаниях, прочтите инструкцию, там все описано четко — в каких случаях использовать какие режимы.

В общем, при определенном опыте, можно довольно точно определить где находится проводка.

Прибор ПОСП 1

Продукт отечественного производства хорош тем, что позволяет не только обнаружить проводку под напряжением. Он может даже найти обрыв провода в стене. Для этого включенный прибор надо вести вдоль проводника. Пока провод цел, включена световая индикация. В месте, где индикатор потухнет и будет обрыв. Для уверенности провести подобную операцию с другой стороны (можно тест повторить дважды).

Стоит данное устройство немного — 20-25$, но популярность у него не очень высокая, отзывов не нашлось.

stroychik.ru

Нормальный индикатор. Надо только знать что он показывает разность потенциалов начиная от 3-4В, а вот на какое напряжение он начнет реагировать — зависит от сопротивления изоляции между проводом под напряжением и кончиком индикатора.
В базовом варианте он слишком инерционный, я срисовал схему и несколько модифицировал его, во первых уменьшил инерционность(раньше если водить им по поверхности он срабатывает с опозданием, и поэтому создается впечатление что он реагирует как-то непонятно) и увеличил частоту «пикания» примерно до 10Гц, теперь он вместо того чтобы пикать с частотой примерно 2Гц очень даже противненько пищит практически непрерывно. Что так же увеличивает скорость реакции.
Входное сопротивление у него порядка 260МОм.

Когда розетка под нагрузкой, и на нейтральном проводе появляется потенциал обусловленный падением напряжения на проводе — детектор его улавливает. Где-то 5-6В хватает.
Ещё удобно находить жилу прям под оплеткой кабеля, что иногда спасает когда надо найти кабель который идет от выключателя.

На кнопку кстати нажимать не нужно — эта кнопка просто подключает белый светодиод к батарейке, для подсветки. А сам детектор работает всегда когда вставлены в него батарейки, при этом потребляя сущие микроамперы.
Да, его основой служит микросхема 74HC14 представляющая собой набор из 6 триггеров шмидта, поэтому регулировать чувствительность не получится.

Вообще, обнаружить скрытый провод в стене не так просто, даже металлоискатель зубы обламывает как и большинство детекторов поля — в стене провод может «фонить» равномерно на пол стены.
Чтобы действительно искать скрытую проводку, её и правда надо нагрузить и шарить по стене индуктивным датчиком, желательно конечно чтобы нагрузка была с высокочастотным потреблением тока, на 50Гц слишком много наводок от приборов вокруг, надо сделать специальную нагрузку небольшой мощности но с частотой порядка 10-ти килогерц тогда позиционировать провод можно будет достаточно просто, но только в случае если провод не витая пара, иначе надо будет объединять таким приборчиком две независимые розетки.

mysku.pro

Выбираем прибор для поиска скрытой электропроводки по параметрам

Сегодня в продаже имеются простые приспособления и уже более усовершенствованные. В этом разделе рассмотрим, как советуют делать выбор приборов специалисты, отлично разбирающиеся в подобной технике:

  • непосредственно перед покупкой данной техники, следует определить с какой целью она будет применяться, и для каких условий;
  • соотнесите черты всех возможных вариантов, остановитесь на том, который будет по вкусу именно вам. То есть он может оказаться одноразовым или уже более профессиональным и поможет в масштабных делах;
  • обратите внимание на показатель глубины сканирования прибора для обнаружения скрытой проводки;
  • выбирая сигнализатор для промышленности, вам необходимо, чтобы сигнал был более мощным. Если вы будете практиковать индикатор в квартире, достаточно и самых минимальных значений;
  • многие останавливаются на самых дешевых вариантах. Это не запрещено, однако прибор является менее функциональным и способен в стенах дома обнаружить лишь ту проводку, что на данный момент находится под напряжением. Плюс использования приспособления данного типа заключается в его возможности предупредить получение электротравмы.

Важно! Не пренебрегайте «хорошим происхождением прибора», вероятнее всего, он изготовлен по высоким требованиям и стандартам.

Виды сигнализаторов

Среди предложенного ассортимента приспособлений для нахождения электропроводки в стене, есть масса достойных внимания вариантов.

Электростатические сигнализаторы. Устройство отличается надежностью и простотой использования. Создано на основе новой технологии, поэтому имеет широкий радиус функционирования. Если говорить о недостатках, можно выделить неспособность индикатора обнаружить обесточенную электропроводку.

Электромагнитные детекторы. Имеют весьма высокую точность сканирования пространства, практически не наблюдаются погрешности при вычислениях. Средство довольно надежное и способно прослужить больше отведенного срока службы. Чтобы получить точное определение нахождения электричества в стенах необходимо наличие напряжение от 1 кВт.

Важно! Электромагнитные детекторы не способны обнаружить слабонагруженную и ненагруженную электрическую сеть.

Металлодетекторные устройства. Подобный прибор способен обнаружить любой металлический элемент, замурованный в стену. Эта функция является как достоинством, так и недостатком прибора. При помощи подобного приспособления, вы сможете найти каждый гвоздь или старую не работающую электрику.

Скомбинированные приспособления. Эти приборы считаются максимально точными и дорогостоящими. В функции прибора входит одновременное включение нескольких вариантов поиска электричества. К таким механизмам относят средства, способные найти расположение труб из цветного металла. Кроме того, есть возможность обнаружения кабелей на большой глубине.

Внимание! Не поддавайтесь на уловки дешевых цен, возможно прибор такой стоимостью не будет выполнять важных для вас функций.

Как проверить купленный сигнализатор скрытой проводки

Если купленный прибор имеет достойное и проверенное качество, вам не запретят проверить его прямо в торговой точке. От вас требуется:

  • включить приобретенное приспособление и попробовать найти любую видимую проводку включенных электроприборов или освещения. Подойдут точечные светильники и проводка от кондиционера;
  • проделать тот же самый процесс, но немного отдалившись от проверяемой проводки;
  • попробовать найти провод с отсутствующим напряжением с разных расстояний;
  • попробовать накрыть приборы каким-то изолирующим средством (пенопластом, резиновым ковриком либо доской), разумеется, если вам позволит сделать это продавец.

Обращаем ваше внимание, проведенная проверка должна совпадать с описанием в инструкции, если так — это говорит о соблюдении качества при изобретении прибора.

Рейтинг обнаружителей скрытой проводки

Внимание! В каждом из мультидетекторов могут встречаться полезные дополнения, такие как цифровая рулетка и лазерный уровень.

Приспособление Bosch GMS 120 Prof в буквальном смысле слова, признан по итогам исследования эталоном качества. Спектр обнаружения металла среди всех существующих индикаторов, является наиболее высоким. Это детектор металла и скрытой проводки способен найти сталь, медь, алюминий и другие элементы в стенах.

Успешный результат поиска сопровождается световыми и звуковыми оповещениями.

Black and Decker BDS200 — это прибор имеет средние характеристики и относится к средней классификации по собственной функциональности. Подобное приспособление сосредоточено исключительно на поиске металлических частей. Имеет не высокую величину обнаружения. Изготовлен детектор с ударопрочным покрытием и регулятором чувствительности.

Результат передается путем световых и звуковых сигналов, а также дублируется на ЖК-мониторе. Ориентировочная стоимость 1300 рублей.

DSL8220S — приспособление выпускается в Китае и РФ. Глубина поиска металлического материала составляет порядка 20 см. Имеет способность находить фазный проводник, не может обнаружить древесину и пластик. Приспособление защищено от влаги, подает звуковые и световые сигналы при обнаружении металлического элемента в стене. Его средняя цена составляет от 600 до 900 рублей.

Процедура поиска скрытой проводки

Прибор для поиска скрытой проводки имеет свои особенности работы. Некоторые из вариантов способны находить древесные балки и перекрытия. Рассмотрим порядок действий, при помощи которых мы с помощью индикатора сможем найти скрытую проводку в стене.

  1. Подключаем прибор к проводу. Если у вас кабель имеет концевой коннектор, тогда зажим красного цвета цепляется к проводу, а черный зажим крепится на заземление прибора. Когда отсутствует коннектор, следует подсоединить красную клемму к одному проводу, а черную к другому.
  2. Включаем рычаг индикатора, таким образом приводим его в рабочее состояние.
  3. Включаем кнопку индуктивного пробника.
  4. Теперь преподносим изолированный пробник к электрокабелю, с целью обнаружения исходящего сигнала детектора.
  5. Приступаем к вращению регулятора, благодаря чему настраиваем уровень прибора и находим кабель, оцениваем его работоспособность.

Важно! Чтобы избежать слишком громкого сигнала, необходимо использовать наушники, выход для них находится в нижней части корпуса приспособления.

Как работает индикатор поиска проводки: схема прибора

Для наглядности рассмотрим два несложных индикатора со схемой его механизма.

Второй вариант более усовершенствованный, однако не имеет сложности в работе. В этом приспособлении присутствует не только звуковой сигнал, но еще имеются световые импульсы.

Что такое бесконтактный индикатор скрытой проводки?

Бесконтактные приспособления для обнаружения электропроводки предназначены исключительно для поиска неисправностей в электрической цепи и находки обрыва. Данный прибор называют специальным, ведь иногда без него обойтись невозможно, а оставлять проводку с отсутствующим контактом очень опасно для имущества и для жизни человека в целом.

Особенностями работы подобных устройств считается их возможность не повреждать оборванный проводник и установить точное место возникшей неполадки в стене. При работе с бесконтактным индикатором вы получите точные сведения о нахождении неисправности, следовательно, сможете легко ее устранить.

Можно ли сделать индикатор своими руками? Принцип изготовления

Покупка прибора, обнаруживающего проводку, находящуюся в стене доступна каждому. Однако в этом не всегда есть надобность. В большинстве случаев требуется лишь найти кабель под напряжением, а значит, подойдет и любительский уровень прибора, который легко можно сделать самостоятельно.

  • Начнем процесс создания оборудования с подготовительного этапа, как это делается во всех электрических работах. Для этого подготовим специальный материал. В таких случаях подойдет старый рабочий омметр и полевой транзистор. Идеально приобрести головной телефон с аккумулятором.

Важно! Наличие телефона с заряженной батареей позволит передавать более точный импульсный и звуковой сигнал.

  • Приступим к соединению инструментов. Для начала соединяем транзистор с омметром. Если все крепежи произведены правильно, прибор придет в радиус действия электромагнитных волн. Это будет заметно по отклонению стрелки, — если она будет перемещаться по максимуму, значит в этой зоне находится кабель, который вы ищите.
  • Есть и иная схема подсоединения. Здесь непосредственно подключаются полевой транзистор, телефон и аккумулятор. В этих случаях сигнал обнаружения будет более громким.

Изготовление такого прибора подойдет лишь для поиска в сети проводников, находящихся под напряжением. Пустую, неисправную или старую проводку найти в стене не удастся. К тому же вам удастся избежать случайного поражения током при монтажных работах.

Как отыскать электропроводку в квартире?

Чтобы найти электрическую проводку необязательно прибегать к приобретению специальных приспособлений. Для таких целей существует два способа поиска: визуальный, магнитный и радиоприемником.

Что представляет собой визуальная методика?

Подобный вариант поиска заключается в осмотре стен. Для этого требуется знать возможности прокладки электрокабелей. В многоквартирных домах панельного типа это не составит труда, так как здесь прокладка проводки к мощным потребителям совершалась строго в вертикальном положении, разумеется, если такие манипуляции проводились профессионально.

Как находит провод радиоприемник?

Такой способ может производится любым, даже самым простым радиоприемником. Все что требуется, это включить радио и слушать его, перемещая вдоль стен, если возникают потрескивания и шумы, значит найдена электрическая проводка. Она создает слышимые помехи.

Кроме того, радиоприемником легко обнаружить, обрыв проводника или возникшее короткое замыкание. Определить его можно по изменению шумов, которые передает радиоустройство.

Важно! Радиоприемник действует по принципу современного детектора, которым пользуются профессионалы. Различие этих устройств в использовании технологий, а принцип действия приспособлений аналогичен.

Как использовать магнитный метод?

Эта методика доступна владельцам смартфонов. Нужно установить на него специальную программу, и благодаря магнитным элементам, обеспечение улавливает сигнал и передает его на монитор мобильного устройства.

Чем заменить индикатор отслеживания проводки?

Чтобы не растрачивать собственный бюджет, всегда есть возможность воспользоваться более альтернативными способами. Например,

  • индикаторной отверткой;
  • мультиметром;
  • тестером;
  • транзистором.

Важно! Всеми перечисленными приборами нужно уметь пользоваться, а также понимать и расшифровывать пришедшие сигналы.

Если говорить о профессиональном подходе к этой работе, используются различные датчики.

  1. Е-121 — приспособление отечественного изготовления. Среди людей его называют «дятел». В способности прибора относят поиск проводки в стене и обнаружение обрыва любого из токоведущих проводников. Глубина обнаружения составляет порядка 5-7 метров.
  2. Приспособление МS — выполнено китайским производителем. Имеет массу модификаций. Способен найти любой металлический предмет в стене. Часто вместо электропроводки реагирует на тонкую арматуру.
  3. VP-440 — тестирующее устройство европейского качества. Имеет ряд аналогов, применяется опытными электриками в качестве обнаружителя и как прибор, определяющий состояние проводов в штукатурке.

Функциональные особенности сигнализаторов

Какой бы сигнализатор скрытой проводки вы не купили — все они одинаково должны иметь следующий перечень функций:

  • присутствие переменного напряжения и возможность его переключать в диапазоне от 70 до 600 В;
  • наличие идентификации магнитных излучений с показателем не менее 0,5 мВт/см;
  • определение направления скрытых кабелей и их поиск на глубине не менее 55 мм;
  • ревизия электрической цепи на целостность и вычисление сопротивлений от 0 до 50 мОм;
  • присутствие питающего оборудования;
  • оптимальный диапазон температур для работоспособности от -10 до +50.

Важно! Перед использованием детектора его необходимо проверить на работоспособность и осуществить калибровку.

prokommunikacii.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.