Ультрафиолетовый свет


Подтипы УФ излучения

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:

 

Наименование Длина волны в нанометрах Количество энергии на фотон Аббревиатура
Ближний 400—300 нм 3,10—4,13 эВ NUV
Ультрафиолет А, длинноволновой диапазон 400—315 нм 3,10—3,94 эВ UVA
Средний 300—200 нм 4,13—6,20 эВ MUV
Ультрафиолет B, средневолновой 315—280 нм 3,94—4,43 эВ UVB
Дальний 200—122 нм 6,20—10,2 эВ FUV
Ультрафиолет С, коротковолновой 280—100 нм 4,43—12,4 эВ UVC
Экстремальный 121—10 нм 10,2—124 эВ EUV, XUV

 

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Воздействие на здоровье человека УФ излучения

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного света через земную атмосферу. Излучение из диапазона УФ-A достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A и в небольшой доле — УФ-B.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине.
офилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)». Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и преждевременное старение.

Действие на глаза

Ультрафиолетовое излучение средневолнового диапазона (280—315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение — ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются т. к. человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий.


сле регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью. Мягкий ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[3]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают. Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).

Защита глаз

  • Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
  • Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
  • Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными.
    пример, обычное стекло непрозрачно при λ < 320 нм[4]; в более коротковолновой области прозрачны лишь специальные сорта стекол (до 300—230 нм), кварц прозрачен до 214 нм, флюорит — до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Источник: www.spb-svet.ru

Где взять УФ-излучение зимой

Существующая ранее проблема дефицита или практически полного отсутствия УФ излучения от естественного источника в зимний период времени полностью разрешили ультрафиолетовые лампы. Кроме того, УФ-лампы способны давать ультрафиолетовое излучение с конкретно заданной длинной волн. Благодаря этому такие лампы можно применять для конкретных целей с максимальной отдачей.

Ультрафиолетовая лампа

На сегодняшний день существует много видов ультрафиолетовых ламп, отличающихся по форме, материалу изготовления, способу излучения, задаваемой длине волн ультрафиолетового спектра.

Ультрафиолетовый спектр: разделение на категории

Ультрафиолетовый спектр по длине волн условно делиться на три диапазона:

  • 400-315 нм – длинноволновой диапазон, граничащий с видимым спектром, обозначают UVA;
  • 315-280 нм – средневолновой диапазон, получивший классификацию UVB;
  • 280-100 нм – коротковолновой спектр, обозначаемый UVC.

В зависимости от требуемого спектра излучения, изготавливают различные виды ультрафиолетовых ламп. Однако регулирование узкого спектра с четко заданной длинной волн имеется не во всех приборах. Максимально точно задавать длину волны позволяют ультрафиолетовые лампы, имеющих светодиодный источник излучения.

Используют источники ультрафиолетового излучения в самых разных сферах:

  • в медицине,
  • в домашней терапии,
  • для стимулирования роста растений,
  • в соляриях для получения красивого загара,
  • в маникюрных кабинетах для сушки геля,
  • в сфере криминалистики, в определении подлинности банкнот,
  • в индустрии развлечений, для дискотек.

В зависимости от назначения используют источники ультрафиолетового излучения с различной длиной волны. Ультрафиолетовый светильник может иметь самую разную мощность – от 8W в приборах где используется лишь ультрафиолетовая подсветка, до 100-200W – в мощном бактерицидном оборудовании.


Сфера применения ультрафиолетовых ламп

Медицина

Наиболее известно применение ультрафиолетовой лампы в медицине. С помощью стационарной установки можно быстро дезинфицировать целое помещение. В приборах такого типа используют излучения коротковолнового спектра. Так называемая бактерицидная лампа имеет пиковою длину волны 253,7 нм. При излучении с длиной волны меньше 257 нм провоцируется образование озона, обладающего сильными окисляющими свойствами. Озон также способствует уничтожению любых микроорганизмов, но он также вреден и для человека.

Ультрафиолетовая бактерицидная лампа позволяет уничтожить различные бактерии и грибки, находящиеся на поверхности стен, пола, потолка, мебели, приборов. При облучении погибают даже бактерии и споры плесени, которые находятся в спящем состоянии. Ультрафиолет короткого диапазона уничтожает яйца пылевых клещей, эктопаразитов, насекомых. Для разного типа паразитов требуется различное время воздействия. Никак не воздействует ультрафиолетовое излучение на паразитов или грибок, находящихся не на поверхности, а например, в обшивке мебели или под штукатуркой в стене.

Большое практическое применение излучения ультрафиолетового спектра в терапии, для лечения лор-органов, в стоматологии. Изготавливают такие приборы и для домашнего использования. Диапазон волн здесь может использоваться в пределах 280 – 400 нм, в зависимости от поставленных терапевтических задач.


Ульрафиолетовое излучение в лечении ребёнка

В приборах для соляриев используют лампы длинноволнового диапазона ультрафиолетового спектра излучения. Ультрафиолетовая лампа для создания загара работает в диапазоне 300-400 нм.

Для растений

В оранжереях и теплицах, где выращивают растения зимой, применяют ультрафиолетовые лампы с несколькими стандартами длины волны. Связано это с различным физиологическим воздействием на растения источников ультрафиолета с различной длиной волны.

Так, излучения с длиной волны 315-380 нм способствуют стимулированию процесса синтеза у растений, 280-315 нм обеспечивает им устойчивость к холоду. Коротковолновой спектр ультрафиолета в растениеводстве не используется. Коротковолновое излучение опасно для растений!

Ультрафиолетовая лампа для растений

Специфические способы применения

В криминалистике и для определения подлинности банкнот используют лампы, с источником излучения близким к видимому спектру – 350-400 нм. Лампы такого источника света имеют черный цвет. Используется в них увиоленовое стекло, дающее луч, невидимый для человеческого глаза. Но при этом в его лучах некоторые предметы дают флуоресцентное свечение.


Для террариума используют специальные лампы с комбинированным спектром длины волны. Это 12% UVB – диапазона и 30% — UVA диапазона. В качестве источников света используют преимущественно LED-лампы, мощностью около 8W.

Для дискотек используют лампы диапазона UVA – преимущественно с длиной волны 380-400 нм. Вредность такого излучения нулевая – они совершенно безвредны для организма человека. В лампах для дискотек применяют специальный люминофор, делающий ультрафиолетовый диапазон видимым. Для дискотечного применения используют лампы синего и черного цвета преимущественно с цоколем Е27. Такой прием позволяет создавать необычные эффекты свечения, особенно ярко проявляющиеся в восприятии белых цветов.

Ультрафиолетовые лампы на дискотеке

Используя коротковолновой диапазон УФ-излучения, производят специальные аппараты для очистки воды. Такие приборы имеют закрытую емкость, внутри которой проходит вода и осуществляется ее обеззараживание, облучением ультрафиолетового спектра UVC-диапазона. Используемая мощность такого прибора, как правило, не превышает 8W. Подключение его осуществляется в обычную сеть с напряжением 220В.

Виды ультрафиолетовых ламп

К наиболее часто используемому источнику излучения УФ-спектра относится известная всем люминесцентная лампа.


Подбирая химический состав стеклянной колбы, и компонуя ее с различным видом напыления, получают ультрафиолетовое освещение в любом диапазоне длин волн. Производят ультрафиолетовые лампы как форме лампы накаливания с цоколем е27, так и в форме колбы со штырьковым типом цоколя. Мощность ламп имеет широкий диапазон. В зависимости от предназначения лампы могут быть от 8W и до 100 – 300 W.

Существуют различные виды ультрафиолетовых ламп. Можно подобрать модель любого размера и функционального назначения. К примеру, большую ультрафиолетовую лампу, представляющую собой стационарную установку, используют для обеззараживания помещений в медицинских учреждениях. Компактные конструкции применяют для мобильного использования, например для дома.

Ультрафиолетовые лампы

По принципу работы

По своей конструкции лампы ультрафиолетового излучения делятся на закрытые, отрытые и специализированные.

  • Закрытые формы ламп, или так называемые рециркуляторы, используют для обработки конкретного объекта. Благодаря тому, что ультрафиолетовые облучатели закрыты, такие лампы можно применять в присутствии людей.
  • Открытые лампы получили такое название благодаря тому, что ультрафиолет от работающего источника свободно распространяется по всему помещению. При включении таких ламп в помещении не должны находиться люди или животные. Используется такая ультрафиолетовая лампа для дезинфекции помещений.
  • Специализированные лампы могут иметь любые габариты, использоваться как в медицинских или специализированных учреждениях, так и в домашних условиях. Их применяют в физиотерапии для лечения простудных или легких воспалительных процессов, для загара. В комплектацию таких приборов входят защитные очки.

В домашнем использовании применяют компактные специализированные лампы.

По типу установки или способу крепления

Различают лампы с такими видами крепления и установки:

  • напольные,
  • настольные,
  • настенные или навесные.

По габаритам или мобильности

Исходя из самого названия, существуют лампы следующих видов:

  • переносные, которые легко переносить из помещения в помещение;
  • стационарные, предназначенные для обеззараживания конкретного помещения, в котором они установлены.

По способу образования озона

  • Озоновые – это лампы, в процессе работы которых образуется озон. Происходит это из-за взаимодействия излучения лампы с кислородом. При работе таких приборов важно часто проветривать помещение, так как озон вреден для организма.
  • Безозоновые – это приборы, у которых лампа выполнена из кварцевого стекла, покрытым специальным слоем. У таких приборов излучение при взаимодействии с кислородом не генерирует озон. В более современных моделях вместо кварца используют амальгаму – сплав висмута, индия и ртути. При нагреве ртуть испаряется и дает нужное излучение, которое при взаимодействии с кислородом не образует выделение озона.

Как выбрать ультрафиолетовую лампу для дома

В домашних условиях можно использовать как бактерицидную лампу, так и лампу для терапевтических целей.

УФ-лампа для терапии

Ультрафиолетовая лампа для домашнего использования наиболее целесообразна в терапевтических целях. Чаще всего это небольшой прибор, имеющий защитный экран и комплект различных насадок для удобного применения излучения в лечении лор-органов. В таких приборах используют специальные очки, защищающие глаза от случайного попадания ультрафиолетовых лучей.

Ультрафиолетовая лампа для дома имеет небольшие габариты и стоит недорого. Производится ультрафиолетовая лампа для лечения под многими брендами. При их покупке следует обращать внимание на мощность прибора, наличие различных насадок, необходимых для физиотерапии.

Бактерицидная лампа

Бактерицидную лампу использовать в домашних условиях можно только в том случае, если есть возможность очистить на некоторое время помещение от людей и животных и вынести из него цветы и другие растения. Такой процесс чаще всего называют кварцеванием из-за типа лампы, используемой в самом приборе.

Название этого процесса закрепилось, хотя сейчас уже есть много подобных приборов с использованием амальгамы вместо кварца.

Ультрафиолетовая кварцевая лампа принадлежит к приборам открытого типа. Ее мощность может быть самой разной, начиная от 8W. При покупке бактерицидной лампы очень важно уточнять, какой объем помещения она способна обработать.

Кварцевая бактерицидная лампа

Многие умельцы изготавливают ультрафиолетовые лампы самостоятельно. Несмотря на то, что схема такого прибора очень проста, все же не стоит забывать об опасности, которую он может представлять в случае допущения ошибки при изготовлении. И здесь речь не идет о том, вредна ли ультрафиолетовая лампа или полезна, важна корректность ее изготовления.

Полезна ли ультрафиолетовая лампа в домашних условиях

Использование ультрафиолетового излучения принесет пользу, только в случае его правильного применения.

Ультрафиолетовая лампа для дома – это неоспоримая польза при ее корректном использовании и вред – при неправильном. В домашних условиях использовать лампу не сложно, главное – соблюдать все меры предосторожности. У польза от нее – здоровье детей и всех членов семьи.

Источник: kaksvet.ru

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой ультрафиолетовое излучение, применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный вид спектра света только при очень высоких температурах от 1500 до 20000С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах — от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны — 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны — 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа — для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя — Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через озоновый слой и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты — исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники — это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников — лазеры. Их работа основана на генерации различных газов — как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника — как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать правила техники безопасности. На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия — основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях — специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы — бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая язва желудка.
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ — это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения — это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд — красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита — сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях — разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Источник: FB.ru

Данная брошюра содержит информацию о различных типах существующего террариумного освещения, дополненную подробными объяснениями о свете и его роли в успешном содержании рептилий.

Что такое свет?

Солнечный свет достигает верхних слоёв атмосферы земли, имея мощность около одного киловатта на квадратный метр. Именно эта энергия, в конечном итоге, управляет всеми жизненными процессами на земле. Без солнечной энергии, постоянно питающей нашу землю, её собственная энергия в короткие сроки была бы исчерпана, всё живое погибло бы. Со светом мы получаем электромагнитную радиацию, так как истинная природа света – мельчайшие электромагнитные поля или фотоны. Эти световые фотоны могут обладать различными уровнями энергии, или длиной волн, которая измеряется в нанометрах. Наиболее известные длины волн – видимые. Каждая длина волны представлена своим цветом. Например, солнце обозначено жёлтым цветом, так как его свет наиболее мощный на видимой длине волны жёлтого цвета. Однако существует очень много волн кроме видимого света. Все вместе они образуют электромагнитный спектр. На более мощном конце спектра находятся лучи гамма, за ними лучи рентгена, затем ультрафиолетовый свет, а затем видимый свет, который занимает совсем небольшой отрезок электромагнитного спектра, и находится между ультрафиолетовым и инфракрасным светом. Инфракрасный свет мы воспринимаем как тепло. Спектр продолжают микроволны и заканчивают радиоволны, фотоны, имеющие наименьшую мощность. Из всего электромагнитного спектра нас сейчас интересуют только ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет

Кроме того, что он позволяет нам (и рептилиям тоже) как следует видеть, очень важной функцией является различение дня и ночи (светлого и тёмного времени суток). Спектр видимого света располагается на отрезке от 390 до 700 нм. Свет, регистрируемый глазом, и его цвет зависит от силы каждой длины волны. Индекс цветопередачи (CRI) выражает способность источника света освещать объект в сравнении с естественным освещением, которое имеет CRI 100. На сегодняшний день каждый искусственный источник света с CRI от 95 до 100 принято считать светом, имеющим полный спектр, с тех пор как стало возможным освещать объект так, будто он находится в естественном освещении, то есть получить некоторое количество длин волн в пределах видимого спектра. С этим тесно связана цветовая температура, измеряющаяся в кельвинах (К), которая определяет цвет испускаемого света.Низкая цветовая температура соответствует тёплому или красно-жёлтому свету, например, инкандесцентные (сверкающие) лампы, около 2500 К. Флуоресцентные лампы, от 4500 К и выше, испускают бело-синеватый свет. Чем выше показатель в Кельвинах, выше цветовая температура, тем свет белее и голубее. Стандартный средний показатель температуры дневного света – около 5600К, хотя она может колебаться в диапазоне от столь низкой температуры как 2000К на закате солнца до более чем 18000К в пасмурную погоду или при высокой влажности. Для того чтобы в террариуме создать видимый свет, приближенный к естественному, важно выбрать источники освещения с самым высоким индексом светопередачи (CRI) и цветовой температурой от 6000К для оптимального восприятия цветов животных и растений. Террариумные растения используют некоторые длины волн, в том числе видимый свет для фотосинтеза. Это процесс, в ходе которого растения используют световую энергию для выработки сахара, «топлива», использующегося всеми живыми существами. В преобразовании света в полезную энергию участвует зелёный пигмент, хлорофилл. Источник света с высокой мощностью, диапазон 400-450 нм, обеспечивает здоровый рост растений.

Ультрафиолетовый свет

Ультрафиолет – сегмент электромагнитного спектра, имеющий большую энергетическую мощность, большую имеет только видимый свет.

Спектр ультрафиолета разделяется на три группы по длине волн:

UVA – длинная волна ультрафиолета А, диапазон 320-400 нм, она имеет существенное значение для рептилий.

UVB– Средняя волна ультрафиолета В, диапазон 290-320 нм, имеет наибольшую важность в жизни рептилий.

UVC– Короткая волна ультрафиолета С, диапазон 180-290 нм, опасна для всех живых организмов.Было продемонстрировано, что UVA могут оказывать влияние на агрессивность, сигнальные функции, на размножение рептилий. То, что рептилии могут видеть в диапазоне UVA (320-400 нм), имеет отношение к тому, какими они видят предметы. Цвет пищи или собственных тел в восприятии рептилий отличается от того, который видим мы, если они подвергнуты радиации UVA. Подача сигналов при помощи демонстрации частей тела, как, например, у анолиса испанского или изменения цвета, например, у хамелеона испанского, — распространена у рептилий. Эти сигналы воспринимаются, а также интерпретируются рептилиями по-другому, если отсутствует UVA радиация. Неправильное обеспечение дневных рептилий UVA может вызвать у них стресс, причина которого в изменении восприятия рептилиями окружающего мира. Это также оказывает огромное влияние на размножение рептилий, продолжительность их жизни. UVB, вообще, определяется как длина волны в диапазоне 290-320 нм. В дикой природе большинство рептилий синтезируют витамин D3 из UVB, имеющегося в составе солнечного света. Витамин D3 необходим для метаболизма диетического кальция в организме рептилий. В коже рептилий UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом, в результате которой образуется провитамин D3. Под воздействием высоких температур и при помощи механизмов кожи провитамин D3 сам преобразуется в витамин D3. Печень и почки трансформируют витамин D3 в его активную форму, гормон (1,25, гидрокси-витамин D), который регулирует метаболизм кальция.Плотоядные и всеядные рептилии в больших пропорциях получают витамин D3 с пищей. Однако растения не содержат D3 (холикалциферол), его заменяет D2 (ергокалциферол), который гораздо менее эффективен в метаболизме кальция, чем витамин D3.Поэтому травоядные рептилии значительно более зависимы от качества и количества искусственного освещения, чем плотоядные особи. Если животное не получает достаточного количества витамина D3, у него очень быстро разовьётся метаболическая болезнь костей, при которой изменяется плотность костей. Появляются следующие симптомы: опухоли, сонливость, общая слабость, судороги, размягчение панциря у черепах. Наряду с источниками UVB света должен присутствовать необходимый уровень кальция в рационе, или он должен быть обеспечен дополнительными диетическими добавками. Рептилии-подростки наиболее подвержены риску, хотя и взрослые особи также могут заболеть, если испытывали дефицит в течение довольно долгого периода. Женские особи в период кладки яиц, которым необходимы для этого дополнительные запасы кальция, также подвержены большому риску возникновения данного заболевания.

Инфракрасный свет

Ектотермическая природа рептилий (хладнокровие) подчёркивает важность инфракрасной радиации (высоких температур) для терморегуляции. Инфракрасный сегмент электромагнитного спектра расположен вниз от «инфра» до красного цвета и является невидимым. Он также может быть воспринят кожей как тепло. Солнце вырабатывает большую часть своей энергии в инфракрасном сегменте спектра. Лучший способ искусственного поддержания высоких температур для рептилий, ведущих дневной образ жизни, — прикрепление сверху яркого источника света, оснащённого инкандесцентными лампами, испускающими большие порции инфракрасного света (+700нм).

Интенсивность

Климат земли определяется количеством солнечной энергии, которая попадает на поверхность. Такие факторы, как положение солнца, вращение земли, географическое положение, слой озона, облака, влажность воздуха, положение над уровнем моря, окружающая среда, и т.д., — влияют на интенсивность света. Также в пределах среды обитания интенсивность освещения, как видимого, так и невидимого света, зависит от плотности растительности и от геологических особенностей. Количество света, падающего на плоскость, называется иллюминацией и измеряется в люминах на кв. м или в люксах. Иллюминация прямого солнечного света составляет приблизительно 100,000 люксов, но нормальный дневной свет, который пробивается через облака, — 5,000 — 10,000 люксов, белый лунный свет равен менее чем 0,25 люксам. Ультрафиолетовая радиация измеряется в микроваттах на кв. см (mW/cm2) и чрезвычайно меняется от полюсов (низкий уровень) к экватору (высокий). Уровень UVB радиации, излучаемой на экваторе в ясный день в полдень, составляет около 270 mW/cm2 . Однако этот высокий уровень понижается по мере приближения вечера, таким же образом он повышается с восхода солнца до полудня, принимая в расчёт то, что не все дни бывают ясными. В дикой природе большинство рептилий греются ранним утром и вечером. Остаток дня они проводят в тени, в норах, щелях или других тенистых местах, также в тени раскидистых кустарников, кустов, деревьев. В тропических лесах, среде обитания многих видов рептилий и земноводных лишь небольшое количество прямых солнечных лучей проникает сквозь завесу леса, а нижний слой растительности не пропускает их к земле. Уровень UV радиации и освещения, который необходим рептилиям, может изменяться, что зависит от многих факторов:

 

Среда обитания:

В лесах и кустарниках больше тени, чем на равнинах и в пустынях. В густых лесах больше градиентов UV радиации, имеющей высокий уровень на кронах деревьев и очень низкий внизу. Поля и саванны обеспечивают те же градиенты для видов, имеющих меньшие размеры. В пустынях меньше защиты от прямых солнечных лучей, и уровень UV радиации может быть усилен отражением. В некоторых горных районах есть долины, что означает, что солнечный свет проникает в среду обитания только лишь в течение нескольких часов после восхода солнца, значительно уменьшая продолжительность подверженности ультрафиолетовым лучам.

 

Образ жизни:

Ведущие дневной образ жизни (активные в дневное время суток) животные получают большее количество ультрафиолета, чем виды, активные ночью, по очевидным причинам. Но даже рептилии, ведущие дневной образ жизни, не проводят целый день под прямыми солнечными лучами. Многие разновидности ищут укрытия в жаркое время суток, чтобы уберечься от перегревания. Время, когда они греются, ограничивается утренними и вечерними часами. Такие циклы могут меняться со сменой времён года. Некоторые особи, ведущие ночной образ жизни, получают необходимый уровень UV радиации, когда солнечный свет достигает их укрытий, и некоторые даже выходят из своих нор погреться на солнце, что служит целям терморегуляции.

 

Время суток:

Солнце находится в самой высокой своей точке в полдень. В это время солнечные лучи преодолевают наименьшее расстояние до земли через атмосферу, и уровень UVB остаётся самым высоким. Ранним утром и вечером солнечные лучи проходят через атмосферу под углом, и их интенсивность значительно уменьшается.

 

Время года:

Угол солнца меняется в зависимости от времени года, тем самым изменяя интенсивность ультрафиолетовых лучей, которая бывает самой высокой в летние месяцы. В северном полушарии солнце светит прямо сверху в полдень, в тропике Рака — в первый день лета, на экваторе – в первый день весны и осени, в тропике Козерога – в первый день зимы.

 

Широта

Солнечные лучи имеют самую большую интенсивность на экваторе, где солнце светит прямо сверху, и солнечные лучи проходят наименьшее расстояние через атмосферу. Также слой озона в тропиках, естественно, тоньше в сравнении со средними и высокими широтами, таким образом, там меньше озона, который поглощает UV радиацию, когда она проходит через атмосферу. В высоких широтах солнце стоит ниже в небе, так что ультрафиолетовые лучи должны проходить большие расстояния через слои атмосферы, богатые озоном, что в свою очередь, уменьшает уровень UV радиации в этих широтах.

 

Высота:

Интенсивность UV радиации растёт с высотой, оттого что в высоких районах меньше атмосферы, поглощающей солнечные лучи.

 

Погодные условия:

Облака оказывают большое влияние на количество UV радиации, достигающей земли. В облачный день, в зависимости от формы и толщины облаков, они могут поглощать и отражать 35-85% световой энергии солнца, и наряду с другими эффектами предотвращают попадание на землю значительного количества радиации. Многие рептилии прячутся в свои норы или другие скрытые места во время дождя, бури и в пасмурную погоду.

 

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) имеют свойство отражать большое количество UV радиации, достигающей их. Из-за этого отражения, интенсивность UV может быть обманчивой и оказаться выше в тенистых районах.

 

Озон:

Слой озона поглощает UV радиацию, которая в противном случае достигла бы поверхности земли. Уровень содержания озона в атмосфере меняется со сменой времени года (и даже в течение дня), также в зависимости от географического положения.

 

Террариумное освещение ExoTerra

 

Большинство рептилий нуждаются в соответствующем высококачественном освещении, чтобы обеспечить удовлетворение различных метаболических потребностей. Так как практически невозможно осуществить это с помощью одного источника света, в большинстве случаев требуется комбинация различных источников искусственного света.

 

Искусственное освещение, используемое для террариумов, делится на 2 категории:

 

 

Инкандесцентные лампы (лампы накаливания)

Лампы, в которых электрический ток проходит по вольфрамовой нити сопротивления, помещающейся в вакуумной тубе. Нить нагревается до тех пор, пока не начинает светиться и испускать видимый свет. Инкандесцентные лампы – самые распространённые в террариумном освещении. Хотя инкандесцентные лампы более пригодны как источник тепла, чем источник видимого света, они являются идеальной формой дополнительного освещения, так как все рептилии нуждаются в источнике тепловой радиации. В некоторых случаях достаточно инкандесцентных ламп, так как не все рептилии нуждаются в дополнительном видимом свете, что зависит от их поведения; например, рептилии, ведущие ночной образ жизни, паукообразные насекомые или некоторые земноводные. Некоторые змеи будут прекрасно себя чувствовать, если будет использован только этот тип ламп, так как они не нуждаются в ультрафиолетовой радиации. Инкандесцентные лампы не испускают UVB. Exo-Terra дневные инкандесцентные лампы (исключая лампу дневного света напряжённый луч) имеют стеклянный рукав, в который вкраплён неодимий, редкий земной металл, который оказывает влияние на цветовой баланс иллюминации, что позволяет террариумным животным, аксессуарам и растениям выглядеть естественно. Пики в спектре этих ламп также больше способствуют росту растений, чем обычные лампы. Ночная лампа имеет стеклянный рукав тёмно-синего цвета, позволяющий испускать свет, схожий с лунным. Exo-Terra лампы не покрыты, а изготовлены целиком из цветного стекла, тем самым предотвращаются повреждения и трещины, которые видны на стекле с покрытием. Цветное стекло также повышает передачу излучаемого тепла. Непригодна для обеспечения достаточным уровнем ультрафиолетовой радиации!

 

Флуоресцентные лампы (люминесцентные лампы)

Состоят из длинной, закрытой стеклянной тубы с электродами на концах. В тубе содержится небольшое количество ртути. Внутренняя поверхность тубы покрыта смесью флуоресцентного порошка. Когда электрический ток поступает в лампу, ртуть начинает испаряться и отдаёт невидимую ультрафиолетовую радиацию, которая поглощается флуоресцентным покровом, который затем испускает видимый свет. Самая важная особенность флуоресцентных ламп – способность испускать в достаточном количестве ультрафиолетовый свет В (UVB), который является компонентом солнечного света, тогда как инкандесцентная лампа испускает только небольшое количество UVA-света. Невозможно достичь высокой эмиссии видимого света большим количеством ультрафиолета. Чем более видимый свет испускается, тем меньше ультрафиолетовая радиация, и наоборот. Другой фактор, который нужно принять во внимание: не все рептилии или террариумные животные нуждаются в одинаковом уровне UVB радиации, ночные животные противопоставляются ведущим дневной образ жизни, также следует учитывать географические и климатические особенности (тропики противопоставляются пустыням).

 

 

Есть четыре важных свойства, которыми террариумные флуоресцентные лампы должны обладать:

1. Выработка UVB – необходимой для синтеза витамина D3 и метаболизма кальция

2. Выработка UVA – многие рептилии могут видеть в UVA диапазоне (320-400 нм), и это, вероятно, оказывает большое влияние на поведение, и, определённо, на то, как они визуализируют свою пищу.

3. Правильная цветовая температура – не имеет ничего общего с теплом, а, скорее, с цветом от «тёплого» красного до «холодного» синего, измеряется в градусах Кельвина. Дневной свет имеет обычно цветовую температуру от 5,500К. В тропиках цветовая температура может достигнуть 6,500К.

4. Высокий индекс световой отдачи – Световая отдача – величина, которая определяет, насколько верно передаются цвета объектов, освещённых искусственным источником света. Единица измерения – индекс цветовой отдачи (CRI), в норме — от 0 до 100. Обычная флуоресцентная лампа, например, имеет показатель 54 по CRI шкале. Флуоресцентные лампы высокого качества, предназначенные для использования в террариуме, имеют показатель 90-98 по той же самой шкале. Цветовая отдача очень важна, так как многие рептилии полагаются на цветовые сигналы, например, в процессах размножения. Комбинация достаточной UVA радиации содержит «естественную» цветовую температуру, которая активизирует деятельность в том случае, если в террариуме используется высококачественное освещение, имеющее полный спектр.

 

Кроме качества лампы, её приспособленности к нуждам животных, её мощность и срок службы также являются важными факторами. Если вы инсталлируете тубы, испускающие полный спектр или UVB радиацию, важно, чтобы не было посторонних предметов между тубой и животным. Стекло, пластик или небольшие петли заметно понижают уровень UVB. Нормальная петля обеспечивает самую высокую трансмиссию, но UVB лучи теряют ещё 90% своей обычной силы. Уровень испускаемого лампой UVB также понижается с увеличением расстояния. Рекомендуется устанавливать Repti Glo UVB на расстоянии не больше 30 см от объекта. На большем расстоянии уровень полученной UVB будет минимальным. Для рептилий с потребностями в высоком уровне UVB, например, для животных, обитающих в пустыне, тубы должны быть размещены на расстоянии 20-25 см от объекта. Также ограничен срок годности туб, их необходимо менять по крайней мере один раз в год, чтобы обеспечить гарантированное испускание UVB. Также возможно появление невидимых неисправностей в работе тубы. Невидимое содержимое ультрафиолета распадается со временем. Неплохо на тубе сделать маркировку с указанием даты, когда была осуществлена замена. Exo Terra флуоресцентные тубы, предназначенные для рептилий, классифицируются по уровню испускаемого ультрафиолета в процентном выражении. Наиболее популярны тубы, испускающие 5% UVB (Repti Glo 5.0). В подавляющем большинстве случаев 5%-тубы отвечают всем требованиям, если верно расположены, регулярно меняются и включаются на достаточное время. Доказано, что за 10-12 часов большинство видов получают достаточное количество UVB. Только животные, среда обитания которых – пустыня (области с высоким уровнем UVB радиации), должны облучаться 8%-UVB лампами. Repti Glo 2.0 испускают низкий уровень UVB света, в большинстве случаев недостаточный для синтеза витамина D3. Чем больше испускается ультрафиолета (невидимого света), тем меньше света (видимого). Ультрафиолетовый свет имеет синеватый оттенок. По этой причине рекомендуем для достижения наилучшего результата комбинировать тубы с высоким уровнем испускаемого ультрафиолета (Repti Glo 5.0 и 8.0) с тубами с высоким уровнем видимого света (Repti Glo 2.0).Флуоресцентные лампы не обеспечивают достаточно тепла!

Источник: cherepahi.info

Авторы: Skin cancer foundation

Всем известно, что Солнце — центр нашей системы планет и стареющая звезда — испускает лучи. Солнечное излучение состоит из ультрафиолетовых лучей (УФ / UV) типа А, или UVA — длинноволновых, типа В, или UVB — коротковолновых. Наше понимание того, какие виды повреждений они могут причинять коже и как лучше всего защититься от УФ, похоже, меняется каждый год — по мере появления новых исследований. Например, когда-то считалось, что только UVB вредны для кожи, но мы все больше и больше узнаем из исследований о повреждениях, вызванных UVA. Как следствие, появляются и улучшенные формы защиты от UVA, которые способны при правильном применении предотвратить повреждения от воздействия солнца.

Ультрафиолетовый свет

Что такое УФ-излучение?

УФ-излучение является частью электромагнитного (светового) спектра, который достигает Земли от Солнца. Длина волн УФ-излучения меньше спектра видимого света, что делает его невидимым для невооруженного глаза. Излучение по длине волн делится на UVA, UVB и UVC, причем UVA — наиболее длинноволновое (320–400 нм, где нм — миллиардная часть метра). UVA подразделяется еще на два диапазона волн: UVA I (340–400 нм) и UVA II (320–340 нм). Диапазон UVB — от 290 до 320 нм. Более короткие лучи UVC поглощаются озоновым слоем и не достигают поверхности земли.

Однако два типа лучей — UVA и UVB — проникают в атмосферу и являются причиной многих болезней — преждевременного старения кожи, повреждения глаз (включая катаракту) и рака кожи. Они также подавляют работу иммунной системы, уменьшая способность организма бороться с этими и другими заболеваниями.

Ультрафиолетовый свет

УФ-излучение и рак кожи

Повреждая клеточную ДНК кожи, чрезмерное УФ-излучение вызывает генетические мутации, которые могут привести к раку кожи. Поэтому и Департамент здравоохранения и социальных служб США, и Всемирная организация здравоохранения признали УФ доказанным канцерогеном для человека. Ультрафиолетовое излучение считается основной причиной рака кожи немеланомы (NMSC), включая карциному базальной клетки (BCC) и плоскоклеточную карциному (SCC). Эти виды рака поражают ежегодно более миллиона людей в мире, из которых более 250 000 — граждане США. Многие эксперты считают, что, особенно для людей с бледной кожей, УФ-излучение часто играет ключевую роль в развитии меланомы — самой опасной формы рака кожи, которая ежегодно убивает более 8 000 американцев.

УФ А-излучение

Большинство из нас подвергается воздействию большого количества ультрафиолета на протяжении жизни. Лучи UVA составляют до 95 % УФ-излучения, достигающего поверхности Земли. Хотя они менее интенсивны, чем UVB, лучи UVA в 30–50 раз более распространены. Они присутствуют с относительно равной интенсивностью в течение всего светового дня в течение года и могут проникать сквозь облака и стекло.

Ультрафиолетовый светИменно UVA, которое проникает в кожу более глубоко, чем UVB, виновато в старении кожи и возникновении морщин (так называемая солнечная геродермия), но до недавнего времени ученые полагали, что UVА не наносило значительного ущерба эпидермису (самый внешний слой кожи), где локализуется большинство случаев рака кожи. Однако исследования последних двух десятилетий показывают, что именно UVA повреждает клетки кожи, называемые кератиноцитами, в базальном слое эпидермиса, где развивается большинство случаев рака кожи. Базальные и плоскоклеточные клетки — это разновидности кератиноцитов.

Также именно UVA вызывает в основном загар, и теперь мы знаем, что загар (безразлично, где он получен — на открытом воздухе или в солярии) наносит коже ущерб, который усугубляется с течением времени, поскольку повреждаются ДНК кожи. Оказывается, кожа темнеет именно потому, что таким образом организм пытается предотвратить дальнейшее повреждение ДНК. Данные мутации могут привести к раку кожи.

Вертикальный солярий в основном излучает UVA. Лампы, используемые в салонах для загара, излучают дозы UVA в 12 раз больше, чем солнце. Неудивительно, что у людей, которые используют салон для загара, в 2,5 раза чаще развивается плоскоклеточный рак и в 1,5 раза чаще — базально-клеточный рак. Согласно недавним исследованиям, первое воздействие солярия в молодом возрасте повышает риск меланомы на 75%.

Ультрафиолетовый свет

УФ В-излучение

UVB, которые являются главной причиной покраснения кожи и солнечных ожогов, наносят в основном ущерб более поверхностным эпидермальным слоям кожи. UVB играет ключевую роль в развитии рака кожи, старении и потемнении кожи. Интенсивность излучения зависит от сезона, местоположения и времени суток. Самое значительное количество UVB поражает США в период с 10:00 до 16:00 с апреля по октябрь. Однако лучи UVB могут повреждать кожу круглый год, особенно на больших высотах и на отражающих поверхностях, таких как снег или лед, которые отдают назад до 80% лучей, так что они попадают на кожу дважды. Радует только то, что UVB практически не проникают через стекло.

Ультрафиолетовый свет

Защитные меры

Помните, что защищаться от УФ-излучения следует как внутри помещений, так и снаружи. Всегда ищите тень на улице, особенно между 10:00 и 16:00. А поскольку UVA проникает через стекло, подумайте над укреплением тонированной UV-защитной пленки на верхних частях боковых и задних стекол вашего автомобиля, а также на окнах дома и офиса. Такая пленка блокирует до 99,9% УФ-излучения и пропускает до 80% видимого света.

На открытом воздухе одевайте, чтобы ограничить воздействие УФ-излучения, специальную солнцезащитную одежду с UPF (коэффициент защиты от ультрафиолетового излучения). Чем выше значения UPF, тем лучше. Например, рубашка с UPF 30 означает, что только 1/30-я ультрафиолетового излучения Солнца может достичь кожи. Существуют и специальные добавки в средства для стирки, которые в обычных тканях обеспечивают более высокие значения UPF. Не игнорируйте возможность защититься — выбирайте те ткани, у которых лучшая защита от солнечных лучей. Например, яркая или темная блестящая одежда отражает больше УФ-излучения, чем светлые и отбеленные хлопчатобумажные ткани; правда, свободная одежда обеспечивает больший барьер между вашей кожей и солнечными лучами. Наконец, широкополые шляпы и солнцезащитные очки с УФ-защитой помогают защитить чувствительную кожу на лбу, шее и вокруг глаз — именно в этих областях обычно бывают наиболее тяжелые повреждения.

Защитный фактор (SPF) и УФ В-излучение

С появлением современных солнцезащитных кремов появилась традиция измерять их эффективность фактором защиты от солнца, или SPF. Как ни странно, SPF — это не фактор и не мера защиты как таковой.

Ультрафиолетовый свет

Эти числа просто указывают, сколько времени потребуется, чтобы UVB-лучи вызвали покраснение кожи при использовании солнцезащитного крема по сравнению с тем, как кожа будет краснеть без применения данного продукта. Например, пользуясь солнцезащитным кремом с SPF 15, человек продлит время безопасного нахождения на солнце в 15 раз по сравнению с пребыванием в аналогичных условиях без солнцезащитного крема. Солнцезащитный крем SPF 15 экранирует 93% солнечных лучей UVB; SPF 30 — 97%; и SPF 50 — до 98%. Крем с SPF 15 или даже выше необходимы для адекватной повседневной защиты кожи в солнечное время года. Для более длительного или интенсивного воздействия солнца, например нахождения на пляже, рекомендуется SPF 30 или выше.

Солнцезащитный компонент

Поскольку UVA и UVB вредны для кожи, то нужна защита от обоих видов лучей. Эффективная защита начинается с SPF от 15 или выше, также важны следующие ингредиенты: stabilized a avobenzone, ecamsule (также известный как MexorylTM), oxybenzone, titanium dioxide, и zinc oxide. На этикетках солнцезащитных средств можно прочесть фразы типа «защищает от нескольких спектров лучей», «с широким спектром защиты» или «защита от UVA/UVB — все это указывает на то, что предусмотрена защита от UVA. Однако такие фразы могут не совсем соответствовать действительности.

В настоящее время 17 активных ингредиентов одобрены FDA (Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов) для использования в солнцезащитных кремах. Эти фильтры делятся на две широкие категории: химические и физические. Большинство УФ-фильтров — химические, то есть они образуют тонкую защитную пленку на поверхности кожи и поглощают УФ-излучение, прежде чем лучи проникнут в кожу. Физические солнцезащитные средства чаще всего состоят из нерастворимых частиц, отражающих УФ-лучи от кожи. Большинство солнцезащитных кремов содержат смесь химических и физических фильтров.

Ультрафиолетовый свет

Солнцезащитные средства, одобренные FDA

Название активного ингредиента / УФ-фильтра

Диапазон охвата

UVA1: 340-400 nm

UVA2: 320-340 nm

UVB: 290-320 nm

Химические абсорбенты:

Aminobenzoic acid (PABA)

UVB

Avobenzone

UVA1

Cinoxate

UVB

Dioxybenzone

UVB, UVA2

Ecamsule (Mexoryl SX)

UVA2

Ensulizole (Phenylbenzimiazole Sulfonic Acid)

UVB

Homosalate

UVB

Meradimate (Menthyl Anthranilate)

UVA2

Octocrylene

UVB

Octinoxate (Octyl Methoxycinnamate)

UVB

Octisalate ( Octyl Salicylate)

UVB

Oxybenzone

UVB, UVA2

Padimate O

UVB

Sulisobenzone

UVB, UVA2

Trolamine Salicylate

UVB

Физические фильтры:

Titanium Dioxide

UVB, UVA2

Zinc Oxide

UVB,UVA2, UVA1

Если следовать современным рекомендациям по профилактике солнечных ожогов, можно наслаждаться досугом на открытом воздухе, оставаясь защищенным от UVA и UVB круглый год — независимо от погоды и места, где вы находитесь.

Профилактические рекомендации

  • Ищите тень, особенно между 10:00 и 16:00.
  • Не обгорайте.
  • Избегайте интенсивного загара и вертикального солярия.
  • Носите закрытую одежду, в том числе широкополую шляпу и солнцезащитные очки с ультрафиолетовыми фильтрами.
  • Используйте солнцезащитный крем широкого спектра (UVA/UVB) с SPF 15 или выше каждый день. Для продолжительной активности на открытом воздухе используйте водостойкий солнцезащитный крем с широким спектром (UVA/UVB) с SPF 30 или выше.
  • Наносите достаточную порцию (2 столовые ложки минимум) солнцезащитного крема на все тело за 30 минут до выхода на улицу. Повторно применять крем следует каждые два часа или сразу после купания/чрезмерного потоотделения.
  • Берегите новорожденных от солнца, поскольку солнцезащитные кремы можно использовать только для младенцев старше шести месяцев.
  • Каждый месяц проверяйте свою кожу с ног до головы — если обнаружили что-то подозрительное, то бегом к доктору.
  • Ежегодно посещайте врача для профессионального обследования кожи.

опубликовано 12/07/2018 11:53
обновлено 27/08/2018
— Детский отдых, спорт и путешествия, Безопасность детей

Источник: lib.komarovskiy.net


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.