Проверка автоматических выключателей


Проверка автоматических выключателей по току короткого замыкания: методика

Проверка автоматов на отключающую способность

После замены электропроводки в помещении важно грамотно и надежно установить приборы учета и все необходимые автоматы для бесперебойной и корректной работы подключенного оборудования. После установки все электрические устройства нужно проверить на работоспособность – прогрузить.

Кратко об автоматах защиты

Автоматические автоматы необходимо проверять на работоспособность, чтобы избежать аварийной ситуации

Автоматы защиты или автоматические выключатели – это электрические механизмы, основная задача которых при появлении нештатных или аварийных ситуаций обесточить проблемную линию или все помещение. Он отслеживает в режиме реального времени напряжение в электрической цепи.


Автоматические выключатели получили широкое распространение благодаря приемлемой цене, надежности и простоте использования, установки и обслуживания. Большое количество модификаций позволяет устанавливать устройство в электроустановки большой и малой мощности. Также выключатели бывают оснащены ручным и дистанционным управлением.

Методы прогрузки

При проведении прогрузки изменяются все основные характеристики устройства – время срабатывания защиты при появлении аварийных ситуаций, номинальный ток и ток срабатывания защиты. Проверка автоматических выключателей должна проводиться квалифицированным персоналом, после чего в удостоверении оставляют отметку с разрешением на дальнейшую эксплуатацию.

В удостоверении обязательно указывают группу по технике безопасности и напряжению, при котором сотрудники могут проводить проверку электрического оборудования. Подписывается бумага главным энергетиком предприятия.

Оборудование для проверки автоматов на отключающую способность

Чтобы проверить дифавтомат на работоспособность, предварительно требуется собрать простую схему, в состав которой входит следующее оборудование:

  • трансформатор тока – ТТ;
  • соединительные провода;
  • амперметр, выполняющий роль шунта;
  • ключ управления – КУ;
  • лабораторный автотрансформатор для наблюдения за изменениями нагрузки – ЛАТР или нагрузочный трансформатор – НТ.

Проверка дифавтомата требует частичного демонтажа устройства, а после проверки обратной установки.

Как проверить автоматический выключатель на работоспособность

Для полноценной проверки на пригодность требуется использовать специальное оборудование. Его прогрузка осуществляется для вычисления времени срабатывания в пределах защищаемых пределов по заводским характеристикам. На испытуемом устройстве выставляется параметр тока нагрузки, который равен максимальному амперажу для конкретной модели.

При проверке теплового расцепителя на автоматическом выключателе выставляется трехкратный ток нагрузки и максимальное время срабатывания. Как правило, этот временной интервал колеблется в пределах 5 секунд – 0,5 минуты.

Результаты проводимых испытаний обязательно должны быть занесены в специальный протокол. В нормативном документе должны быть отображены величины времени срабатывания электрического устройства и наводимый ампераж. Образец заполнения документа находится в интернете в свободном доступе.

Необходимость эксплуатационной проверки

В нормативных документах нет четких указаний о сроках и периодичности производимых проверок, поэтому частота полностью зависит от человека, который отвечает за полную техническую безопасность жилплощади.

Электрики, полагаясь на свой опыт, рекомендуют время от времени проверять электрическое оборудование на пригодность. Обусловлено это тем, что каждый прибор с течением времени и изнашивается и может работать некорректно или вовсе не выполнять поставленные перед ним задачи.

Задавая определенную периодичность, лучше руководствоваться рекомендациями изготовителя устройства. Как правило, оборудование европейского производства нет необходимости проверять слишком часто. Если же автоматический выключатель был изготовлен в Китае или на одном из отечественных заводов, проверки лучше проводить как можно чаще. В любом случае у владельца есть право выбора.


При разработке алгоритмов проверки используется нормативный документ – ГОСТ 50345-2010: Автоматические выключатели бытового назначения для защиты от сверхтоков.

Результаты проверки

Результаты проверки обязательно должны быть занесены в специальный протокол. Обязательно фиксируются сведения о срабатывании или, напротив, несрабатывании устройства, время и сила тока в момент срабатывания.

Устройство подлежит утилизации и замене новым автоматическим выключателем в следующих случаях:

  • оборудование срабатывает, но по истечении допустимого промежутка времени;
  • при токе срабатывания не происходит расцепления;
  • при токе несрабатывания фиксируется расцепление.

Строгое соблюдение регламента испытаний исключает вероятность дальнейшего использования неисправного оборудования. Дефектные автоматические выключатели вычисляются с высокой точностью.


Сроки испытаний

С какой частотой должны проводиться проверки, написано в сопроводительных нормативно-правовых документах, но рекомендуемая периодичность – один раз в три года при соблюдении всех правил эксплуатации. При некорректной работе или регулярных аварийных срабатываниях периодичность должна изменяться, проводится внеплановая проверка. Данная рекомендация относится ко всем бытовым автоматическим выключателям.

Часто из-за короткого замыкания наблюдается поломка других рабочих элементов электрической цепи, например, вентиляционной системы. Это приводит к большим финансовым растратам. Чтобы предотвратить подобные ситуации и в долгосрочной перспективе сэкономить, рекомендуется регулярно подвергать испытаниям автоматические выключатели и в случае выявления проблемы заменять их новыми. Чтобы убедиться, что автоматические выключатели выполняют свою защитную функцию, требуется на дисплее установить определенную периодичность, с которой будут проводиться испытания на пригодность.

Источник: https://strojdvor.ru/elektrosnabzhenie/proverka-avtomaticeskih-vyklucatelej/

Автоматический выключатель

Проверка автоматов на отключающую способность

Автоматические выключатели служат для проведения, включения и автоматического размыкания электрических цепей при аномальных явлениях (например при токах перегрузки, КЗ, недопустимых снижения напряжения), а также для нечастого включения цепей вручную.


Защиту от токов коротких замыканий выполняет электромагнитный расцепитель. Срабатывание электромагнитного расцепителя обеспечивает электромагнит, якорь которого при срабатывании давит на расцепитель, обеспечивая отключение автомата. Электромагнитный расцепитель имеет свой ток отключения при КЗ (уставка КЗ). Этот ток выражается в амперах, или чаще, — в кратности к номинальному току.

Время срабатывания электромагнитного расцепителя при токе КЗ мгновенное (собственное время срабатывание расцепителя сотые доли секунд).

Электродинамический расцепитель используется для защиты от коротких замыканий в автоматах с большими номинальными токами. Срабатывание обеспечивается электродинамическими силами, размыкающие силовые контакты.

Защиту от токов перегрузок выполняет тепловой расцепитель. Основа теплового расцепителя -биметаллическая (в последнее время триметаллическая) пластина, которая при нагреве изменяет свою форму, и этим обеспечивает срабатывание расцепителя. Тепловой расцепитель не имеет постоянного времени отключения автомата, его время срабатывания зависит от величины тока перегрузки.

Полупроводниковый расцепитель осуществляет защиту от токов коротких замыканий и перегрузок в цепи. В отличие от электромагнитного и теплового расцепителей полупроводниковый расцепитель допускает ступенчатый выбор параметров:

  • номинального тока расцепителя;
  • уставки по току срабатывания в зоне токов короткого замыкания;
  • уставки по времени срабатывания в зоне токов перегрузки;
  • уставки по времени срабатывания в зоне токов короткого замыкания;
  • уставки по току срабатываний при однофазном коротком замыкании.

Для расцепителя в зоне токов перегрузки сигнал на срабатывание выдается с обратно зависимой от тока выдержкой времени (чем больше ток, тем меньше выдержка времени на отключение). Для расцепителя в зоне токов короткого замыкания, при значениях тока меньше предельного тока селективности, сигнал на срабатывание выдается с выдержкой времени.

При значениях тока больше предельных токов селективности сигнал на отключение подаётся мгновенно. Также сигнал на отключение подается мгновенно, при не установленной выдержке времени.

 Автоматы на основе таких расцепителей получают сигнал от измерительного устройства и формируют соответствующую защитную характеристику, выдающую сигнал через промежуточное реле на независимый расцепитель.

Отключающая способность

Её синонимы: номинальная наибольшая отключающая способность Icn, номинальная рабочая наибольшая отключающая способность Ics, номинальная предельная наибольшая отключающая способность Icu. Является основным параметром для выбора и замены автоматического выключателя.


Для бытового применения (ГОСТ Р 50345-99 (МЭК 60898)) автомат должен обладать номинальной наибольшей отключающей способностью Icn перекрывающую максимальный ток КЗ в данной цепи.

Для промышленного применения, имеющего доступ обученного персонала (ГОСТ Р 50030.2-99 (МЭК 60947.2), ГОСТ 9098-78, автомат должен обладать номинальной предельной наибольшей отключающей способностью Icu. перекрывающую максимальный ток КЗ в данной цепи. Автоматический выключатель работавший при токе равном Icu в соответствии с установленным циклом не обязан длительно проводить ток.

Категория применения

По ГОСТ Р 50030.2-99 (МЭК60947.2) выключатели с категорией А не предназначены, а с категорией В предназначены для обеспечения селективности при КЗ. Выключатели категории В имеют номинальный кратковременно выдерживаемый ток Icw, и время прохождения этого тока (обычно 0.25, 0.5 или 1с).

Если категория не оговаривается, имеется в виду категория А.

Токоограничение

Выключатель с токоограничением не позволяет току КЗ принять его максимальное значение и быстрее производит отключение. Класс токоограничения -2 ограничивает по времени КЗ в пределах ½ полу периода, класс -3 ограничивает КЗ в пределах 1/3 полу периода. Если автомат с токоограничением, но не указан класс, предоставляется интегральная характеристика I²t.

Выключатели изготавливаются со следующими дополнительными сборочными единицами (только те марки, для которых это предусмотрено):


  • свободными контактами (СК), (определяют положение автомата (вкл / выкл.);
  • вспомогательными контактами сигнализации автоматического отключения (ВСК), (сигнализируют срабатывание защиты автомата);
  • электромагнитным приводом (ЭП);
  • независимым расцепителем (НР), (обеспечивает отключение выключателя при подаче на катушку независимого расцепителя напряжения);
  • нулевым расцепителем (РНН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.1-0.35 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.1 номинального и ниже);
  • минимальным расцепителем (РМН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.35-0.7 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.35 номинального и ниже).
  • дополнительным кожухом (для увеличения степени защиты автомата от окружающей среды);
  • блокировкой положения «включено» и «отключено» замком.

По способу присоединения автоматы делятся на стационарные и выдвижные. Стационарные автоматы по способу монтажа могут быть как переднего присоединения, так и заднего. Переднее присоединение бывает как с креплением на din-рейке, так и с креплением винтами или болтами.


Буквенные характеристики расцепителей модульных выключателей

В — применяется для осветительных сетей. С — применяется для осветительных сетей с удаленным потребителем.

D — обеспечивают защиту установок с высокими значениями пусковых токов (двигатели, иногда лампы с пуско-ругулируещем устройством, трансформаторы).

Испытание расцепителей автоматических выключателей

Собирается схема проверок срабатывания расцепителей автоматических выключателей (АВ) согласно руководству по эксплуатации испытательного оборудования (нагрузочного устройства). Устанавливается испытательный ток соответствующий уставке тока данного типа расцепителей АВ.

Установившееся превышение температуры для контактов автомата при нагрузке всех полюсов номинальным током расцепителя и температуре окружающей среды 25 градусов С не должно превышать 80 градусов С. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен срабатывать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют.

В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.


Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов, должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно.

При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную, присоединяя к одному из полюсов нагрузочное устройство. Устанавливается такая величина испытательного тока, при которой автомат отключится.

После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.

Время срабатывания автомата определяется по шкале секундомера. Время — токовые характеристики срабатывания расцепителей автоматических выключателей должны соответствовать калибровкам и паспортным данным завода изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Источник: http://www.eliks.ru/info/index.php?ELEMENT_ID=3184

Как выполняется проверка автоматических выключателей

Проверка автоматов на отключающую способность

Любая электрическая сеть является потенциальным источником двух факторов опасности: поражение электрическим током и вероятность пожара вследствие короткого замыкания. И если первый фактор присутствует только в сетях с напряжениями свыше 42 вольт, то опасность короткого замыкания сохраняется даже в низковольтной электропроводке. В связи с чем, проверка автоматических выключателей – обязательный пункт в смете как приёмосдаточных, так и планово-профилактических испытаний, выполняемых электролабораторией.

В отличие от дифференциального контроля токов утечки, эта категория защитной аппаратуры присутствовала в электросетях с момента их появления, поэтому технология их проверки достаточно строго стандартизирована.

Из каких этапов состоит проверка защитных автоматов

Схема АВ

Согласно ГОСТ Р 50031-2012 полный цикл испытаний автоматических выключателей состоит из следующих этапов:

  • контроль стойкости маркировки;
  • проверка надёжности винтовых соединений;
  • тестирование выводов для внешней коммутации;
  • контроль электрической безопасности прибора (защита от поражения электротоком);
  • проверка электрического сопротивления диэлектриков, задействованных в конструкции прибора;
  • тест на соответствие температурным нормам;
  • проверка работоспособности в ходе длительного приложения нагрузки (28 суточный испытательный цикл);
  • измерение характеристик отключения при рабочем срабатывании прибора;
  • проверка коммутационной способности прибора;
  • устойчивость по токукороткого замыкания;
  • контроль сопротивляемости механическим ударам;
  • тестирование работоспособности в условиях повышенной температуры внешней среды;
  • проверка соответствия нормативам пожарной устойчивости (то есть, время сохранения коммутационных характеристик в условиях пожара или критической тепловой нагрузки);
  • тестирование устойчивости диэлектрика к образованию токопроводящих каналов (трекингостойкость);
  • проверка коррозионной устойчивости конструкционных элементов прибора при работе в нормальной или агрессивной среде (коррозиестойкость).

Приведенный перечень испытаний разработан, прежде всего, для первичной сертификации новых изделий и в полном объёме выполняется только после разработки нового прибора (цена такого «исследования» гораздо выше обычных лабораторных проверок).

Эксплуатационные испытания в электроустановках, проводимые ЭТЛ, разрабатываются на основе трёх базовых этапов:

  • проверка характеристик отключения;
  • контроль коммутационной способности;
  • испытание на устойчивость к токам короткого замыкания.

Следует отметить, что каждый из перечисленных этапов состоит из нескольких циклов, выполняемых с применением специального оборудования и различных схемных решений.

Измерение характеристик отключения

Таблица время-токовых характеристик

Целью данного этапа проверки является определение фактических рабочих уставок прибора и их соответствие время токовым характеристикам, оговоренным в заводской документации прибора.

Тестируемыми характеристиками в данном случае являются:

  • номинальный рабочий ток;
  • время отключения;
  • ток и время мгновенного действия (проверка электромагнитного расцепителя);

Обратите внимание, что в некоторых моделях автоматов время отключения увеличено, что необходимо для создания эффекта селективности при построении последовательных цепей защиты.

Согласно стандарту, этот этап тестирования также должен сопровождаться проверкой стабильности параметров защиты при изменении температуры окружающей среды. Но в эксплуатационную технологию испытаний электроустановок до 1000 в данный пункт, как правило, включает только при наличии соответствующих производственных условий.

Контроль коммутационной способности

Чтобы подтвердить работоспособность автоматического выключателя необходимо не только проверить его детекторы перегрузок, но и выполнить тест на отключающую способность под штатной и критической нагрузкой.

Данный тест заключается в многократном выполнении цикла «включение-отключение» с последующей проверкой переходного сопротивления контактов.

Устойчивость к токам короткого замыкания

Поскольку номинальный рабочий ток автоматического выключателя значительно меньше тока короткого замыкания, данный этап электроизмерительных испытаний предназначен для подтверждения работоспособности прибора после пропускания через его полюса токов короткого замыкания.

Испытание считается успешным, если коммутационный механизм сохранил свою работоспособность, и переходное сопротивление контактов осталось в пределах нормы.

Когда необходима проверка

Согласно требованиям ПУЭ и ПТЭЭП, контроль исправности защитных автоматов производится во всех случаях официальных электроизмерительных испытаний.

То есть, такая необходимость возникает:

  • при сертификации изделия после его разработки;
  • при вводе электроустановки в эксплуатацию (приёмосдаточные испытания);
  • в ходе планово-профилактических проверок электросети;
  • после капитальных, плановых или аварийных ремонтов.

Отдельно подчеркнём важный момент: проверку автоматических расцепителей может производить только квалифицированный персонал, имеющий удостоверения по электробезопасности не ниже 3 группы и при наличии соответствующего оборудования.

В ходе испытаний производится прогрузка выключателя мощными импульсами тока и фиксируются временные показатели процесса срабатывания. Поскольку в данном случае граница между «годен» и «не годен» лежит в пределах нескольких миллисекунд, ни о каких самостоятельных выводах о работоспособности прибора и речи быть не может.

Любой вариант самостоятельных проверок (включая срабатывание по кнопке «тест» в тех устройствах, где она есть) подтвердит лишь факт исправности механической системы, но никак не правильность регулировок прибора.

Официальное экспертное заключение о соответствии характеристик автоматического расцепителя нормам и требованиям, озвученным в соответствующих стандартах, может дать лишь сертифицированная электроизмерительная лаборатория.

Какие нормативные документы используются при разработке алгоритмов проверки

  1. Основные термины и определения, а также базовые нормативные диапазоны, используемые для описания характеристик расцепляющих автоматов, приведены в стандарте ГОСТ 50031-2012.
  2. Конкретные алгоритмы проверок и рекомендуемые схемы стендовых испытаний приведены в ГОСТ Р 50345-2010 (а также в 8 разделе ГОСТ Р 50030.2-99).
  3. Измерение сопротивления изоляции производится согласно ПУЭ (п.1.8.37.3) и ПТЭЭП (Приложение 3.1, таблица 37).

  4. Организация условий измерений проводится в соответствии с приведенными выше стандартами и с учётом положений отраслевых СНИП.

Несмотря на достаточно чёткую нормативную проработку алгоритмов ревизии и наладки аппаратуры для защиты от сверхтоков, для каждого конкретного случая разрабатывается свой вариант технологической инструкции, ориентированный, как правило, на конкретный тип расцепителей и имеющееся в наличии измерительное оборудование.

Электротехническая лаборатория «Мега.ру» оказывает услуги по организации и проведению всех видов испытаний в электроустановках, включая всестороннюю проверку автоматических выключателей. Уточнить расценки и сделать заказ на выезд специалистов можно по телефонам, опубликованным на странице «Контакты».

Источник: https://m-e-g-a.ru/elektrolaboratoriya/kak-vypolnyaetsya-proverka-avtomaticheskih-vyklyuchatelej

Проверка автоматических выключателей. Прогрузка и испытание автоматов

Проверка автоматов на отключающую способность

Заказать услугу или задать вопрос /Электролаборатория/Проверка выключателей

Электротехническая лаборатория компании Эколайф оказывает услугу Проверка автоматических выключателей. Прогрузка и испытание автоматов. По результатам испытания составляется протокол в технический отчет ЭТЛ.

1. Проверка работы расцепителей автоматических выключателей2. Как проверяется срабатывание автоматических выключателей?3. Сколько автоматических выключателей требуется проверить?4. Необходимость эксплуатационной проверки и прогрузки автоматов

5. Результаты проверки автоматических выключателей

Для подтверждения безопасности электрооборудования его требуется проверять на исправность и соответствие установленным требованиям. Ситуации, в которых требуется проверка автоматических выключателей:

  • прием в эксплуатацию после установки электроустановки;
  • спустя установленный системой ППР срок эксплуатации;
  • после проведения капитального ремонта электрических устройств;
  • после текущего ремонта;
  • в профилактических целях в межремонтный период.

В ходе испытаний проводится проверка соответствия характеристикам, которые задаются оборудованию производителем. Цель проверки — установить, обеспечивает ли оборудование такие параметры:

  • предотвращение поражения электрическим током при коротком замыкании (это условие обязательно в том случае, если других защитных мер для полной безопасности недостаточно);
  • защиту электросети от возгораний и перегрузок при технологических неисправностях или повреждении изоляции.

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:

  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?

Проверка работы расцепителей автоматических выключателей

Основная часть испытаний автоматов — это проверка исправной работы их расцепителей. Дополнительно проверяется качество монтажа выключателей, затяжка контактов, соответствие защитного оборудования проектной документации, но эти параметры уже второстепенны.

Существует большое количество модификаций автоматических выключателей: воздушные, модульные, предназначенные для защиты двигателей, в литом корпусе. Самыми распространенными являются модульные автоматические выключатели, устанавливаемые на DIN-рейку, поэтому целесообразно будет рассмотреть ход проверки на их примере.

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В этих элементах мгновенное расцепление происходит при таких стандартных диапазонах:

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения» регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7 Время-токовые рабочие характеристики

Испытание Тип
расцепителя
Испытательный
ток
Начальное
состояние
Время расцепления
или нерасцепления
Требуемый
результат
Примечание
a B, C, D 1,13 In Холодное

t < 1 ч (при In < 63 А)
t < 2 ч (при In> 63 А)

Без
расцепления
b B, C, D 1,45 In  Сразу же после испытания

t < 1 ч (при In < 63 А)
t < 2 ч (при In> 63 А)

Расцепление Непрерывное нарастание тока в течение 5 с
c B, C, D 2,55 In  Холодное

1 с < t < 60 с (при In < 32 А)
1 c < t < 120 c (при In > 32 A)

Расцепление
d B 3 In Холодное t< 0,1 с Без
расцепления
Ток создается замыканием вспомогательного выключателя
C 5 In
D 10 In
e B 5 In Холодное t< 0,1 с Расцепление Ток создается замыканием вспомогательного выключателя
C 10 In
D 20 In
(в особых случаях 50 In)

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают.Примечание — Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d.

a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Как проверяется срабатывание автоматических выключателей?

Порядок проведения проверок утвержден в нормативной документации. Так, срабатывание электромагнитных расцепителей проверяется согласно ПУЭ 1.8.37 путем проведения испытаний, которые рекомендует завод производитель.

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-3600». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

Для проведения испытаний выводы аппарата подключают к вводам автоматического выключателя. После этого подается ток и засекается, какое время пройдет до срабатывания механизма расцепления. При этом испытание проводится поэтапно:

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In32 А расцепление должно произойти за 2 минуты.

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

Подобным же образом проводится и испытание автоматических выключателей с электромагнитными расцепителями:

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Даже на среднем объекте автоматических выключателей может быть сотни, поэтому проверить все может быть достаточно проблематично. К тому же это вызовет дополнительные траты.

Согласно ПУЭ (ПУЭ, п. 1.8.37, пп. 3) проверять необходимо определенную часть от всех выключателей.

В жилых, административных, общественных, бытовых зданиях, спортивных сооружениях, клубных учреждениях, на зрелищных мероприятий проверять должно не менее 2% автоматических выключателей распределительного типа и групповых сетей, а также вводные, пожарной сигнализации, автоматического пожаротушения, цепи аварийного освещения, секционные выключатели. В прочих электрических установках возможно снижение количества проверяемых автоматов распределительного типа и групповых сетей до 1%. В остальном — правила те же.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети.

Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Требуется ли проведение проверку автоматических выключателей в ходе эксплуатационных испытаний, может решать технический руководитель объекта. В нормативной документации не указано точно, с какой периодичность должны проводиться проверки, поэтому их частота полностью в компетенции лица, ответственного за техническую безопасность объекта.

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей

Результаты проведения испытательных работ заносятся в специальный протокол. В документе фиксируется срабатывание или несрабатывание автомата, время срабатывания и ток в момент срабатывания.

Выключатель должен быть исключен из сети и заменен аналогичным в следующих случаях:

  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

К НАЧАЛУ СТРАНИЦЫ

Источник: https://vnt24.ru/proverka-vyklyuchatelej

Источник: avia-life.com

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов, называемых электродами. При нормальных условиях работы, эти контакты остаются замкнутыми и не будут автоматически открываться до тех пор, пока система не выйдет из строя. Конечно, контакты могут быть открыты вручную или с помощью пульта дистанционного управления, когда это необходимо. При возникновении неисправности в какой-либо части системы, отключающие катушки выключателя срабатывают автоматически, а движущиеся контакты раздвигаются механизмом, тем самым размыкая цепь.

Когда контакты автоматического выключателя разъединяются в условиях неисправности, между ними возникает электрическая дуга. Таким образом, ток может проходит до тех пор, пока разряд не прекратится. Появление дуги не только задерживает процесс прерывания тока, но и генерирует огромное количество тепла, которое может привести к повреждению системы или самого выключателя. Поэтому основная задача автоматического выключателя состоит в том, чтобы погасить дугу в кратчайшие сроки, дабы выделяемое тепло не достигло опасного значения. Это основной принцип работы автоматического выключателя.

Автомат

Зачем нужен этот прибор

Автоматические выключатели выполняют три основные задачи:

  • они должны проводить ток максимально эффективно, когда отключены;
  • будучи включенными, они должны надежно изолировать контакты друг от друга;
  • в случае короткого замыкания, устройства должны отключать ток как можно быстрее и надежнее, тем самым защищая все последующее оборудование.

Почему важно проверять устройство

Автоматический выключатель может простаивать годами, но при возникновении короткого замыкания он должен тут же, в течение нескольких миллисекунд, защитить электрические цепи. Основными ошибками, возникающими в приборах, являются: неправильное соединение, короткие замыкания в катушках, повреждение/износ механических соединений или изоляционного материала. Поэтому автоматы должны регулярно и тщательно проверяться на исправность работы.

Автоматический выключатель

Автоматические выключатели выполняют жизненно важную роль в защите дорогостоящего оборудования от повреждений из-за неисправностей, то есть надежно подключают и отключают электроэнергию. Это требует подтверждения их надежности с помощью полевых испытаний во время монтажа и регулярных эксплуатационных испытаний в течение всего срока службы, чтобы предотвратить неполадки и проблемы, которые могут поставить под угрозу безопасность подстанции. Поэтому регулярное тестирование производительности является важной и экономически эффективной частью любой стратегии технического обслуживания.

Как определить, что автоматический выключатель неисправен

Автоматический выключатель может испортиться преждевременно, например, из-за летней жары. Если это произойдет, устройство перестанет сработать, даже если через эту цепь проходит слишком много электричества. Проще говоря, возникнет серьезная проблема, потому что она может в конечном итоге привести к пожару в доме. Стоит отметить, что в домашних условиях можно только визуально проверить устройство. Тесты и замену стоит предоставить профессионалам.

Причины выхода устройства из строя:

  1. Короткое замыкание. Обычно возникает, когда некоторые провода случайно соприкасаются.
  2. Перегрузка электрической цепи. Прибор пропускает больше тока, чем предусмотрено производителем.

Типичные признаки неисправного автомата:

  • запах гари в щитке, исходящий от электрического оборудования;
  • прибор горячий на ощупь;
  • видны сгоревшие детали, оборванные провода и явные признаки износа.

Короткое замыкание

Если при проверке автоматического выключателя наблюдается какой-либо из вышеперечисленных признаков, значит пришла пора вызывать электриков с просьбой замены устройства.

Этапы заводского тестирования автоматических выключателей

Типовые испытания организуются с целью проверки возможностей и обеспечения точной номинальной характеристики автоматического выключателя. Такие испытания проводятся в специально построенной испытательной лаборатории в соответствие с ПУЭ.

Механическое испытание — это испытание типа механической способности, включающее повторное отключение и включение устройства. Автоматический выключатель должен закрываться и открываться с надлежащей скоростью, и выполнять свою работу и функцию без каких-либо сбоев.

Механическое испытание

Тепловые испытания проводятся для проверки теплового поведения автоматов. Из-за протекания номинального тока через его полюс в номинальном состоянии, испытуемый выключатель подвергается установившемуся повышению температуры. Повышение температуры для номинального тока не должно превышать 40 °C.

Диэлектрические испытания. Эти тесты проводятся для проверки мощности частоты и импульсного напряжения выдерживаемой емкости. Испытания частоты мощности проводятся на новом устройстве. Испытательное напряжение изменяется с номинальным напряжением выключателя. При импульсных испытаниях на выключатель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание. Электроустановка подвергается внезапным коротким замыканиям в испытательных лабораториях, и осциллограммы используются, чтобы знать поведение автоматических выключателей во время включения, во время разрыва контакта и после гашения дуги. Осциллограммы изучаются с особым учетом токов возбуждения и размыкания, как симметричных, так и несимметричных напряжений рестрикции, а распределительное устройство иногда испытывается в номинальных условиях.

Регламент испытания автоматического выключателя

Плановые испытания проводятся на основании и со стандартами ПУЭ. Эти тесты проводятся на территории завода-изготовителя. Обычные и плановые испытания подтверждают правильность функционирования автоматического выключателя. Некоторые руководящие принципы и рекомендации по этим испытаниям включают регулярное техническое обслуживание и проверку того, что производительность автоматического выключателя соответствует калибровочным кривым производства. Крайне важно, чтобы испытания автоматических выключателей проводились в стабильных условиях при подходящей температуре, чтобы не было никаких отклонений в данных.

Профилактическое обслуживание автомата защиты цепи, осмотр и испытание

Профилактическое обслуживание зависит от условий эксплуатации. Первичные проверки будут направлены на выявление твердых частиц, загрязняющих внутреннюю работу устройства. Накопление твердых частиц обычно можно утилизировать, щелкнув на выключателе «Выкл» и «Вкл», чтобы очистить накопившуюся пыль.

Профилактическое обслуживание

Испытание отключения автоматического выключателя

Анализируя ток, потребляемый катушкой отключения во время работы выключателя, можно определить, имеются ли механические или электрические проблемы. Во многих случаях такие проблемы могут быть локализованы, и с помощью них можно найти первопричину.

Испытание сопротивления изоляции

Для испытания сопротивления выключателя, проводники нагрузки и линии должны быть предварительно отключены. Если их не отсоединить, то тестовые значения будут также включать характеристики подключенной цепи. Испытание на сопротивление имеет решающее значение для проверки того, что изоляционный материал работает корректно. Для проверки сопротивления изоляции используется прибор, известный как мегаомметр. Прибор подает напряжение постоянного тока на провод в течение заданного периода времени, чтобы проверить сопротивление внутри изоляции на конкретном проводе или обмотке. Следует также отметить, что если включить напряжение, которое слишком высоко для того, чтобы эта изоляция выдержала, то потенциально можно повредить изоляцию.

Испытания соединения

Проверка соединения важна для того, чтобы убедиться в наличии соответствующего электрического соединения и распознать следы перегрева. Важно, чтобы электрические соединения были установлены по правилам — это предотвращает и уменьшает перегрев.

Испытание контактного сопротивления

Нормальный износ контактов возникает после длительного использования. Простой способ определить следы ослабления внутри выключателя — это оценить сопротивление на каждом полюсе. Признаки аномальных отклонений внутри устройства, таких как эрозия и загрязнение контактов, очевидны, если на выключателе имеются чрезмерные падения милливольт. Проверка контактного сопротивления важна для определения того, пригоден ли прибор к работе.

Испытание контактного сопротивления

Испытание на срабатывание при перегрузке

Компоненты отключения от перегрузки можно проверить, введя 300 % номинальной мощности выключателя в каждый полюс автоматического выключателя, чтобы определить, будет ли он автоматически реагировать на срабатывание. Цель состоит в том, чтобы убедиться, что автоматический выключатель работает корректно.

Как проводится прогрузка автоматического выключателя

В современной электронике используются различные устройства для проверки автоматических выключателей. Также проверка проводится с помощью разных методов тестирования и типов тестеров. При выполнении прогрузки делается частичный демонтаж прибора, а по окончанию тестов — возврат выключателя на место.

Чтобы начать проверку, требуется глубокое знание самого устройства, а именно надо:

  • понимать, как оно работает;
  • ознакомиться с ПУЭ;
  • знать исходные значения предыдущих тестов;
  • иметь начальные значения, с которыми сравниваются фактические результаты;
  • иметь установленные настройки или начальные характеристики, заданные производителем.

Для тестов используются специальные устройства, например, анализатор, микроомметр, а для проверки автоматических выключателей напряжением до 1000 В — СИНУС-1600 или Сатурн-М.

Прогрузка с помощью анализатора автоматических выключателей

Испытание с помощью анализатора — это эффективный способ проверки выключателя. Тестер анализирует не только время срабатывания, но и существенную синхронность полюсов в различных операциях. Это показывает время открытия или закрытия каждого полюса в одиночных или комбинированных операциях, а также проверяет возможную разницу между полюсами или время рассогласования, которое может привести к опасному отсутствию синхронизации.

Испытание с помощью анализатора

Способ тестирования автоматического выключателя с помощью анализатора может выявить и дополнительные проблемы, что приводит к проверке других характеристик, таких как время сопротивления, время хода, время скорости, состояние катушек и механический анализ.

Прогрузка с помощью микроомметра

Автоматические выключатели обычно несут огромную величину тока. Большее контактное сопротивление вызывает большие потери и низкую пропускную способность тока, также высокую температуру. Так что тестирование сопротивления с помощью микроомметров является другим способом проверки прибора для выявления и предотвращения предстоящих проблем.

Прогрузка с помощью микроомметра

Синус-1600

Синус-1600 — достаточно функциональный прибор для испытаний, причем он безопасен и прост в эксплуатации. Его применение эффективно и рационально при предъявлении к форме испытательного тока повышенных требований относительно параметра нелинейных искажений.

Синус-1600

Сатурн-М

Сатурн-М применяется для прогрузки автоматических выключателей с тепловыми и электромагнитными расцепителями. Применяется также и в лабораторных условиях в целях контроля тока, протекающего по прибору.

Сатурн-М

Источник: ProFazu.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.