Расцепитель автоматического выключателя


Независимый расцепитель для автоматического выключателя

Независимый расцепитель является дополнением защитного устройства для электросети. Он механически связан с автоматическим выключателем. Независимый расцепитель выполняет функцию разрыва цепи при обнаружении факторов, способных привести к повреждению линии и включенных в нее приборов. К таковым относятся возрастание силы тока выше предела, который может выдержать кабель, пробой электрического тока на землю или корпус включенного в цепь прибора, а также короткое замыкание. Этот материал поможет вам разобраться, что такое расцепители автоматических выключателей, какие бывают типы этого устройства и каков принцип действия каждого из них. Кроме того, мы расскажем, как проверять работоспособность этих элементов.

Автоматический защитный выключатель с независимым расцепителем


Независимый расцепитель, как было сказано, представляет собой добавочный элемент устройства защиты цепи. Он позволяет отключить АВ на расстоянии при поступлении напряжения на его катушку. Чтобы вернуть его в исходное состояние, следует нажать на устройстве кнопку с надписью «Возврат».

Переключатели на независимом расцепителе Siemens

Расцепители автоматических выключателей этого типа могут использоваться в однофазных и трехфазных сетях.

Независимый расцепитель наиболее часто используется в электроцепях и автоматических щитах крупных объектов. Управление энергоснабжением в этих случаях, как правило, производится с пульта оператора.

Пример срабатывания независимого расцепителя на видео:

Из-за чего срабатывает расцепляющий элемент независимого типа?

Независимый расцепитель может срабатывать по различным причинам. Мы перечислим наиболее распространенные из них:

  • Чрезмерное снижение или, напротив, возрастание напряжения.
  • Изменение заданных параметров или состояния электротока.
  • Нарушение функции автоматических выключателей, сбой в работе по неизвестной причине.

Кроме независимых расцепляющих устройств, существуют аналогичные элементы, входящие в состав защитных автоматов. Встроенные расцепители автоматических выключателей подразделяются на тепловые и электромагнитные. Эти устройства также помогают защитить линию от чрезмерных нагрузок и короткого замыкания. Рассмотрим их более подробно.

Тепловой расцепитель автоматического защитного выключателя


Основным элементом этого устройства является биметаллическая пластина. При ее изготовлении используется два металла с различными коэффициентами теплового расширения.

Биметаллическая пластина

Будучи спрессованными вместе, они при нагревании расширяются в разной степени, что приводит к искривлению пластины. Если ток не нормализуется в течение длительного времени, то по достижении определенной температуры пластина касается контактов АВ, прерывая цепь и обесточивая проводку.

Основной причиной чрезмерного нагрева биметаллической пластины, из-за которого срабатывает тепловой расцепитель, является слишком высокая нагрузка на определенном участке линии, защищенном автоматом.

Например, сечение выходного кабеля АВ, идущего в помещение, составляет 1 кв. мм. Можно подсчитать, что он способен выдерживать подключение приборов суммарной мощностью до 3,5 кВт, при этом сила проходящего в линии тока не должна превышать 16А. Таким образом, в эту группу можно спокойно подключить телевизор и несколько осветительных приборов.

Если хозяин дома решит включить в розетки этой комнаты дополнительно стиральную машину, электрокамин и пылесос, то общая мощность станет намного выше той, что способен выдержать кабель. В результате возрастет сила тока, проходящего по линии, и проводник станет нагреваться.


Тепловой снимок работающей электропроводки

Перегрев кабеля может привести к тому, что изоляционный слой расплавится и загорится.

Чтобы этого не произошло, в действие вступает тепловой расцепитель. Его биметаллическая пластина нагревается вместе с металлом провода, и через некоторое время, изогнувшись, отключает питание группы. Когда она остынет, защитное устройство можно снова включить вручную, предварительно вытащив из розетки шнуры питания приборов, которые привели к перегрузке. Если этого не сделать, через некоторое время автомат вырубит снова.

Пример использования расцепителя в противопожарной защите на видео:

Важно, чтобы номинал АВ соответствовал сечению кабеля. Если он будет меньше нужного, то срабатывание будет происходить даже при нормальной нагрузке, а если больше, то тепловой расцепитель не отреагирует на опасное превышение тока, и в итоге проводка сгорит.

В целях защиты электромоторов от длительных перегрузок и обрыва фаз на эти агрегаты могут также устанавливаться тепловые реле расцепления. Они представляют собой несколько биметаллических пластин, каждая из которых отвечает за отдельную фазу силового агрегата.

Тепловое реле трехфазное


Автоматический выключатель защиты сети с электромагнитным расцепителем

Разобравшись, как работает автомат с тепловым расцепителем, перейдем к следующему вопросу. Защитное устройство, разбор действия которого мы провели только что, срабатывает не сразу (на это требуется не менее секунды), поэтому оно не в состоянии эффективно защитить цепь от сверхтоков короткого замыкания. Для решения этой задачи в АВ дополнительно устанавливается электромагнитный расцепитель.

Расцепители автоматических выключателей электромагнитного типа включают в себя катушку индуктивности (соленоид), а также сердечник. Когда цепь работает в обычном режиме, поток электронов, проходя сквозь соленоид, формирует слабое магнитное поле, неспособное оказывать влияние на функцию сети. При возникновении короткого замыкания происходит мгновенное увеличение силы тока в десятки раз, и пропорционально ей возрастает мощность магнитного поля. Под его влиянием ферромагнитный сердечник мгновенно сдвигается в сторону, оказывая воздействие на механизм отключения.

Поскольку процесс усиления магнитного поля при коротком замыкании происходит за доли секунды, электромагнитный расцепитель под его воздействием срабатывает моментально, отключая питание сети. Это позволяет избежать серьезных последствий, связанных со сверхтоками КЗ.

Автоматический выключатель, защищающий каждую фазу


Проверка работоспособности расцепителей

Довольно часто электрики-любители интересуются, можно ли самостоятельно проверить исправность расцепителей автоматических выключателей. Следует сказать, что своими силами проводить такое тестирование нельзя, и если им занимается начинающий монтажник, то работу должен контролировать опытный специалист. Приводим пошаговую инструкцию по выполнению этой процедуры:

  • В первую очередь поверхность коробки следует осмотреть визуально, чтобы удостовериться в целостности корпусной части.
  • Затем нужно несколько раз пощелкать рычажком выключателя. Он должен легко устанавливаться ка во включенное, так и в выключенное положение.
  • После этого производится прогрузка устройства. Так называется проверка качества работы оборудования в неблагоприятных условиях. Этот этап предусматривает наличие специализированной аппаратуры, и при его выполнении должен обязательно присутствовать квалифицированный электрик. Во время тестирования фиксируется время, которое проходит с момента начала возрастания силы тока до отключения расцепителя.

Тестирование тепловых расцепителей

  • Наконец, аналогичное испытание производится на устройстве, с которого снят корпус.
  • В ходе проверки на срабатывание теплового расцепителя фиксируется время, требующееся для отключения устройства под воздействием электротока повышенной силы.

Проверка исправности защитных устройств в соответствии с требованиями ПУЭ выполняется только в спецодежде. Как было сказано выше, эту процедуру должен контролировать опытный специалист.

На видео процесс установки независимого расцепителя в автоматический выключатель:

Заключение

В этой статье мы разобрались с темой расцепляющих устройств, рассказали о том, что собой представляют и как работают независимые, а также встроенные в автоматический выключатель расцепители. Теперь вы знаете, по какому принципу работают различные типы этого оборудования, и какую функцию выполняет каждый из них.

Источник: YaElectrik.ru

Из-за чего срабатывает расцепляющий элемент независимого типа


Срабатывает автоматический выключатель с независимым расцепителем обычно при неисправности автомата, например, если не фиксируется переключатель. Также срабатывание происходит при резком превышении предела нагрузки силы тока, на которую рассчитан кабель, при резком снижении или увеличении напряжения и коротких замыканиях, порождающих сверхтоки. Расщепляющий элемент срабатывает и при утечке тока в корпус подключенного к сети прибора или на «землю» при его неисправности.

Независимый расцепитель для автоматических выключателей

Элементы, обеспечивающие дополнительную защиту электрической цепи — это независимые расцепители. Именно благодаря им происходит самостоятельное выключение автоматов или нагрузочных выключателей.

Наибольшее распространение они получили при создании вентиляционных шахт, обеспечивая выключение вентиляционной системы при задымлении или пожаре. Они подключаются к автоматам в щитах, обеспечивающих функционирование вентиляции. При возникновении внештатной ситуации устройства централизованно блокируют поступление электропитания на распределительные щиты вентиляции, предотвращая распространение задымления и угарного газа по этажам здания.

Электромагнитный расцепитель

Общее устройство расцепителя и схема его подключения


Любой расцепитель — это приспособление для отключения защитного аппарата цепи. Используются же расцепители в основе всех автоматических выключателей.

При поступлении импульса на конструкцию автомата рычаг давит на механизм, обеспечивающий выключение автоматического защитного устройства и тем самым прерывает подачу электричества, предохраняя линии от выгорания.

Стандартная схема подключения расцепителя проста — его подсоединяют к вводному автомату, чтобы при возникновении внештатной ситуации имелась возможность моментально обесточить щиток полностью и предохранить питаемые им устройства от выгорания.

Расцепители, их типы и назначения

В автоматическом выключателе устанавливаются разные типы расцепителей. Обычно используют электромагнитный и тепловой. Еще применяются автоматические выключатели с комбинированным расцепителем, отличающиеся повышенной надежностью и долговечностью.

Электромагнитный расцепитель автоматического выключателя

Тепловой расцепитель хорошо справляется с перегрузами энергосети, электромагнитный – моментально реагирует на сверхтоки, а комбинированный расцепитель объединяет в себе оба свойства, но все выполняют одну функцию – аварийное отключение напряжения в системе.


Также существуют расцепители минимального напряжения, принцип работы которых основан на отключении автомата при понижении тока ниже нормы.

Тепловой расцепитель автоматического защитного выключателя

Главным элементом данного расцепителя является пластинка, сплавленная из нескольких металлов с разным термическим расширением.

При нагреве пластины металлы, из которых она сплавлена, расширяются с различной скоростью. Это ведет к деформации пластинки, и если ток не выравнивается после определенного времени, пластина искривляется настолько серьезно, что касается контактов, разрывая цепь и прекращая подачу электричества.

Самая частая причина нагрева – высокая нагрузка на линию, защищаемую выключателем, например, одновременное подключение микроволновки, кофемашины, чайника и холодильника в одну цепь.

Стандартные времятоковые характеристики автоматических выключателей

Огромный минус теплового расцепителя в том, что он срабатывает не мгновенно, так как требуется время на нагрев пластинки. Из-за этого он не спасет от сверхтока, однако хорошо справляется с перегрузом сети.


Автоматы с электромагнитным расцепителем

Чтобы оперативно отключить сразу несколько линий при образовании короткого замыкания, применяется электромагнитный расцепитель, представляющий собой индукционную катушку. Внутри этой катушки находится сердечник. При работе системы в стандартном режиме, ток в катушке не создает сильного магнитного поля и никак не влияет на положение сердечника. Но когда происходит короткое замыкание, сила тока многократно возрастает за миллисекунды, и под влиянием увеличившейся силы магнитного поля сердечник моментально двигается в сторону, оказывая давление на механизм выключения автомата.

Сила тока при замыкании возрастает мгновенно, что ведет к такому же моментальному срабатыванию приспособления. Быстрое отключение энергосети дает возможность избежать тяжелых повреждений от сверхтоков.

Проверка работоспособности расцепителя

Расцепители

Тестирование расцепителей всех трех типов проводится с помощью воздействия первичного тока от независимого источника, как при установке автомата, так и регулярно на всем сроке его эксплуатации. Выключатели проверяются в одно и то же время с другим защитным оборудованием.

Основным параметром при проверке является соответствие заявленных параметров механизма с его техническими показателями в момент испытания. Первое, что проверяют при оценке работоспособности, — время, прошедшее от начала подачи критической нагрузки на автомат до расцепления цепи. Параметры нормального временного диапазона указываются производителем в приложенных к устройству технических документах. В случае несоответствия нормам выключатели заменяются на новые.

Такие проверки необходимы, для того чтобы обеспечить стабильную и безопасную работу устройства, и пренебрежение ими может стать фатальным.

Источник: pauk.top

ВВОДНАЯ ЧАСТЬ.

1.1. Испытания расцепителей автоматических выключателей проводятся с целью проверки соответствия пределов их срабатывания данным завода-изготовителя, ПУЭ, ПЭЭП, ГОСТ Р 50345-2010г., ГОСТ Р 50030.2-99.

1.2. Автоматические выключатели (далее по тексту «выключатели») выпускаются с расцепителями с:

• обратнозависимой выдержкой времени (тепловыми);

• независимой выдержкой времени и мгновенного действия (электромагнитные и электронные).

1.2.2. Тепловые расцепители срабатывают с выдержкой времени, зависящей от величины тока — чем больше ток, тем меньше выдержка времени.

1.2.3. Электромагнитные расцепители (отсечка) срабатывают без выдержки времени.

1.3. Выключатели бытового и аналогичного назначения по ГОСТ Р 50345-99 классифицируются по диапазонам токов мгновенного расцепления и подразделяются на типы расцепления В, С, D

1.4. Диапазоны токов мгновенного расцепления выключателей этих типов приведены в таблице 1. Где:

In — номинальный ток выключателя (номинальный ток расцепителя с обратно зависимой выдержкой времени);

Iа — ток мгновенного расцепления.

Таблица 1

Тип расцепителя

Диапазоны токов мгновенного расцепления

B

3 In < Ia <5 In

C

5 In < Ia <10 In

D

10 In < Ia <20 In

 

1.5. Дополнительно к этим типам выключателей, в соответствии со стандартом МЭК 898, выпускаются выключатели с типами расцепления L, 1C, 2С, ЗС, 4С.

Выключатели, не относящиеся к категории «бытового и аналогичного назначения» (ГОСТ Р 50030.2-99), имеют конкретные значения уставок расцепителей по токам коротких замыканий.

1.5.2. Токи мгновенного расцепления этих выключателей должны находиться в диапазоне 0,8 Iук < Ia .1,2 1ук, где 1ук — уставка расцепителя по току короткого замыкания (отсечка).

1.6. Диапазоны токов мгновенного расцепления для каждого типа выключателя указываются в паспортных данных.

2. МЕТОДЫ ИЗМЕРЕНИЙ.

3.1. На объектах магистрального нефтепроводного транспорта испытаниям подвергаются автоматические выключатели до 1000В всех номиналов по току.

3.2. Испытания автоматических выключателей проводятся:

• перед приемкой электроустановки в эксплуатацию

• в процессе эксплуатации в сроки, устанавливаемые системой ППР;

• «к» — после капитальных ремонтов электрооборудования;

• «т» — после текущих ремонтов электрооборудования;

• «м» — межремонтные профилактические испытания.

3.3. Нормируемые величины.

3.3.2. Параметры срабатывания автоматических выключателей должны соответствовать данным завода-изготовителя и обеспечивать:

• защиту от поражения электрическим током (в случае недостаточности других защитных мер) при коротких замыканиях;

• защиту сетей от перегрузок и пожаров, вызванных технологическими перегрузками или повреждениями изоляции.

3.3.3. Обеспечение требований защиты от поражения электрическим током при косвенных прикосновениях путем автоматического отключения питания достигается нормированным временем отключения поврежденного участка цепи, зависящего от тока однофазного замыкания (см. п. 3 №14-МИ «Методика проведения измерения полного сопротивления цепи (петли) «фаза-нуль» и токов однофазных замыканий»).

3.3.2.1. Время срабатывания автоматического выключателя проверяется в случае, когда измеренный или расчетный ток однофазного замыкания меньше верхнего предела диапазона токов мгновенного расцепления этого выключателя и разброс времени срабатывания выключателя по время-токовой характеристике выходит за пределы нормированного времени отключения, приведенные в таблице 2.

Таблица 2

Наибольшее допустимое время защитного автоматического отключения для систем с глухозаземленной нейтралью (TN):

Номинальное фазное напряжение U, (В)

Время отключения (с)

127

0,8

220

0,4

380

0,2

более 380

0,1

 

3.3.2.2. При этом расцепители автоматических выключателей испытываются током, равным измеренному или расчетному значению тока однофазного замыкания.

3.3.3. При проверке защиты сетей от перегрузок для автоматических выключателей допустимое время срабатывания в зависимости от кратности номинального тока и температуры окружающей среды определяется по паспортным данным.

3.3.3.1. При проверке времени срабатывания автоматического выключателя кратность тока испытания должна приниматься такой, чтобы время срабатывания было не менее 5 секунд.

3.3.3.2. Время срабатывания должно соответствовать данным завода-изготовителя.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ.

Таблица 3

Допустимые расстояния до токоведущих частей, находящихся под напряжением

Напряжение, до 1 кВ

Расстояние от людей и применяемых

ими инструментов и

приспособлении, от временных

ограждении, м

 

Расстояния от механизмов и грузоподъемных

машин в рабочем и транспортном положении,

от стропов, грузозахватных приспособлении и

грузов, м

 

На ВЛ

0,6

1,0

В остальных

электроустановках

 

Не нормируется (без прикосновения)

1,0

 

 

4.2.2.4. Не допускается при работе около не огражденных токоведущих частей располагаться так, чтобы эти части находились сзади работника или с двух боковых сторон.

4.2.2.5. Не допускается прикасаться без применения электрозащитных средств к изоляторам, изолирующим частям оборудования, находящегося под напряжением.

4.3. Не допускаются работы в неосвещенных местах. Освещенность участков работ, рабочих мест, проездов и подходов к ним должна быть равномерной, без слепящего действия осветительных устройств на работающих.

4.4. Для автоматических выключателей, находящихся во взаиморезервируемых цепях или в цепях источников электрической энергии, включаемых на параллельную работу, особое внимание обратить на отсоединение проводов, кабелей, шин как подходящих, так и отходящих линий.

4.5. Работы по отсоединению автоматических выключателей выполнять со снятием напряжения.

4.6. Допускается выполнять эти работы без снятия напряжения при обязательном использовании изолированного инструмента, перчаток резиновых диэлектрических, ковров резиновых диэлектрических или резиновых диэлектрических галош.

4.7. Отсоединенные провода, кабели, шины, оставшиеся под напряжением, следует надежно изолировать кабельными наконечниками, изолирующими накладками или покрытиями.

6. УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЙ И НАЛАДКИ.

6.1. Характеристики окружающей среды:

• Время года — в течение года.

• Время суток — с 8 до 17 часов.

• Температура — не ниже +5° С.

• Влажность — до 70%.

7. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ И ИЗМЕРЕНИЙ.

 7.1 Внешний осмотр.

Расцепители регулируют и калибруют на заводе-изготовителе, после чего их крышки пломбируют. Открывать крышки и регулировать расцепители не допускается. При наружном осмотре проверяют отсутствие повреждении основания кожуха и крышки автомата, производят несколько включений и отключений вручную, проверяя действие расцепителей.

7.2 Измерение сопротивления изоляции.

7.2.1. Значение испытательного напряжения 1 кВ 50 Гц. продолжительность испытания 1 минута.

7.2.2. Измерение сопротивления изоляции производится между каждым проводом (полюсом) аппарата и землёй, а также между каждыми двумя проводами (полюсами). Сопротивление изоляции должно быть не менее 1 МОм.

7.2.3. При измерении сопротивления изоляции автоматических выключателей совместно с присоединёнными к ним кабелями и проводами, сопротивление изоляции должно быть не менее 0,5Мом.

7.2.4. Измерение сопротивления изоляции производится при полностью собранных аппаратах, а также при закреплении аппарата на основании. Если аппарат имеет катушки включения и отключения, то сопротивление изоляции измеряется между ними и фазами аппарата и между катушками и землёй отдельно.

7.3. Проверка действия максимальных, минимальных или независимых расцепителей автоматических выключателей.

7.3.1. Расцепители регулируют и калибруют на заводе-изготовителе, после чего их крышки пломбируют. Открывать крышки и регулировать расцепители не допускается.

7.3.2. Тепловые расцепители проверяют по схеме, приведенной в руководстве по эксплуатации прибора.

7.3.3. На заводе-изготовителе тепловые расцепители калибруют по начальному току срабатывания. Проверка этого тока требует больших затрат времени. При приемосдаточных и эксплуатационных испытаниях проверку производят в форсированном режиме: при 2- или 3-кратном номинальном токе расцепителя.

7.3.4. Для каждого типа выключателя и расцепителя время срабатывания при 2-3-кратной нагрузке не должно превышать указанного заводом. Заводские данные даются для случая одновременной нагрузки испытательным током всех полюсов выключателя, соединенных последовательно. Однако при одновременной нагрузке всех полюсов проверка не дает гарантии исправности каждого расцепителя. Поэтому, кроме проверки при одновременной нагрузке всех полюсов выключателя, целесообразно проверить каждый тепловой расцепитель в отдельности.

7.3.5. При испытании тепловых расцепителей необходимо помнить что если тепловой элемент не сработает и не произойдет отключения автомата за максимально допустимое для него время, то необходимо отключить испытательный ток во избежание перегрева и порчи расцепителя.

Максимально допустимое время равно примерно двойному времени срабатывания при форсированном режиме испытания.

7.3.6. Электромагнитные расцепители проверяются только при поочередной нагрузке испытательным током каждой фазы автомата. При этом нагрузочный ток повышают до 0,8 значения тока отсечки, указанного в паспортных данных выключателя, или до нижнего предела тока мгновенного расцепления для выключателей типов В, С, D и аналогичных. Электромагнитный расцепитель не должен сработать. После этого нагрузочный ток увеличивается до 1,2 тока отсечки или до верхнего предела тока мгновенного расцепления для выключателей типов В, С, D. Электромагнитный расцепитель должен сработать. Это означает, что ток отсечки находится в допустимых пределах.

7.4. При проверке комбинированных расцепителей (с тепловыми и электромагнитными элементами) нагрузочный ток необходимо повышать быстро, чтобы не успел сработать тепловой расцепитель.

7.4.1. Чтобы убедиться в том, что тепловой расцепитель не сработал, сразу после отключения выключатель включают вручную, при срабатывании теплового расцепителя повторное его включение не произойдет.

7.5. Принципиальная схема проверки тепловых и электромагнитных расцепителей автоматического выключателя предусматривает:

• проверка каждого полюса в отдельности;

• проверка при одновременной нагрузке всех полюсов.

7.6. Проверка тепловых и электромагнитных расцепителей выключателей бытового и аналогичного назначения.

7.6.1. Собрать схему проверки в соответствии с инструкцией изготовителя используемого нагрузочного устройства.

7.6.2. Для проверки тепловых расцепителей пропустить через каждый, находящийся в холодном состоянии, полюс выключателя ток, равный 2,55 In. Время расцепления должно составлять не менее 1 с и не более:

• 60 с — при номинальных токах выключателей до 32 А;

• 120с —при номинальных токах выключателей выше 32 А.

7.6.3. Для проверки электромагнитных расцепителей типа «В»:

Пропустить через каждый полюс ток, равный 3 In. Время расцепления должно быть не менее 0,1с Пропустить через каждый полюс ток, равный 5 In. Время расцепления должно быть менее 0,1 с.

7.6.4. Для проверки электромагнитных расцепителей типа «С»:

Пропустить через каждый полюс ток, равный 5 In. Время расцепления должно быть не менее 0,1с Пропустить через каждый полюс ток, равный 10 In. Время расцепления должно быть менее 0,1 с.

7.6.5. Для проверки электромагнитных расцепителей типа «D»

Пропустить через каждый полюс ток, равный 10 In. Время расцепления должно быть не менее 0,1с Пропустить через каждый полюс ток, равный 20 In. Время расцепления должно быть менее 0,1 с.

7.6.6. Также, как и при проверке тепловых расцепителей, полюса выключателей перед каждым испытанием должны находиться в холодном состоянии. Термин «холодное» означает: «Без предварительного пропускания тока при контрольной температуре калибровки» (ГОСТ Р 50345-99). Контрольная температура калибровки — 30°С. Испытания проводят при любой температуре, а результаты корректируют ктемпературе 30°С на основании поправочных коэффициентов изготовителя. При отсутствии данных изготовителя испытательные токи устанавливают отличными от указанных на 1,2% на каждый градус изменения температуры, при которой проводятся испытания. Пример: при проведении испытаний при температуре 20°С испытательные токи следует увеличивать на 12%.

8. ОБРАБОТКА ДАННЫХ, ПОЛУЧЕННЫХ ПРИ ИСПЫТАНИЯХ.

8.1.Первичные записи рабочей тетради должны содержать следующие данные:

дату измерений.

температуру, влажность и давление

наименование, тип, заводской номер оборудования

номинальные данные объекта испытаний

результаты испытаний

результаты внешнего осмотра

используемую схему

Все данные испытаний сравниваются с требованиями НТД и на основании сравнения выдаётся заключение о пригодности объекта к эксплуатации.

8.2.На основе полученных данных времени страбатывания расцепителей автоматических выключателей и образцовых время-токовых характеристик для данных типов автоматов производится построение индивидуальной время-токовой кривой для конкретного автоматического выключателя (или группы, если автоматические выключатели группы примерно соответствуют друг другу).

Источник: ellabst.ru

Разновидности выключателей

Все автоматы делятся по типу расцепителей. Их подразделяют на 6 видов:

  • тепловой;
  • электронный;
  • электромагнитный;
  • независимый;
  • комбинированный;
  • полупроводниковый.

Они очень быстро распознают аварийные ситуации, такие как:

  • возникновение сверхтоков – повышение в электросети силы тока, превышающего номинальный ток выключателя;
  • перегрузка напряжения – короткое замыкание в цепи;
  • перепады напряжения.

В эти моменты в автоматических расцепителях происходит размычка контактов, которая предотвращает серьезные последствия в виде порчи проводки, электрооборудования, что очень часто приводит к пожарам.

Выключатель тепловой

Состоит из биметаллической пластинки, один из концов которой находится рядом со спусковым устройством автоматического расцепителя. Пластина нагревается током, проходящим через нее, отсюда и название. Когда сила тока начинает увеличиваться, она гнется и касается планки спускового механизма, которая и размыкает контакты в «автомате».

Расцепитель теплового типа

Срабатывание механизма происходит даже при незначительных превышениях номинального тока и увеличенном времени срабатывания. Если повышение нагрузки кратковременное, выключатель не срабатывает, поэтому его удобно устанавливать в сетях с частыми, но короткими перегрузками.

Достоинства теплового расцепителя:

  • отсутствие соприкасающихся и трущихся между собой поверхностей;
  • устойчивость при вибрациях;
  • бюджетная цена;
  • простая конструкция.

К недостаткам можно отнести то, что его работа во многом зависит от температурного режима. Такие автоматы лучше размещать подальше от источников тепла, иначе грозят многочисленные ложные срабатывания.

Выключатель электронный

В детали, его составляющие, входят:

  • измерительные приспособления (датчики тока);
  • блок управления;
  • катушка электромагнитная (трансформатор).

На каждом полюсе электронного автоматического расцепителя находится трансформатор, который измеряет ток, проходящий через него. Электронный модуль, управляющий расцеплением, обрабатывает эту информацию, сравнивая полученный результат с заданным. В случае, когда полученный показатель будет больше запрограммированного, произойдет размычка «автомата».

Электронный расцепитель

Существует три зоны срабатывания:

  1. Продолжительная задержка. Здесь электронный расцепитель служит как тепловой, заграждая цепи от перегрузок.
  2. Короткая задержка. Производит защиту от несущественных коротких замыканий, которые обычно происходят в конце защищаемой цепи.
  3. Рабочая зона «мгновенно» обеспечивает защиту от КЗ высокой интенсивности.

Плюсы – большой выбор настроек, максимальная точность прибора заданному плану, наличие индикаторов. Минусы – чувствительность к электромагнитному полю, высокая цена.

Электромагнитный

Это соленоид (катушка с намотанной проволокой), внутри которого расположен сердечник с пружиной, воздействующий на механизм расцепления. Это устройство моментального действия. Во время течения по обмотке сверхтока образуется магнитное поле. Оно перемещающее сердечник и, превосходя усилие пружины, действует на механизм, выключая «автомат».

Электромагнитный расцепитель

Плюсы – устойчивость к вибрации и ударам, простая конструкция. Минусы – образует магнитное поле, мгновенно срабатывает.

Независимый выключатель

Это добавочное устройство к автоматическим расцепителям. С его помощью можно отключить как однофазный, так и трехфазный автомат, находящийся на определенном расстоянии. Чтобы привести в действие независимый расцепитель, необходимо подать напряжение на катушку. Для возвращения автомата в исходное положение нужно вручную нажать на кнопку «возврат».

Важно! Фазный проводник должен быть подключен от одной фазы из-под нижних клемм выключателя. Если его подключить неправильно, независимый выключатель выйдет из строя.

В основном независимые автоматы применяют в щитах автоматики в сильно разветвленных устройствах электроснабжения многих крупных объектов, где управление выведено на пульт оператора.

Расцепитель независимый

Комбинированный выключатель

Имеет как тепловые, так и электромагнитные элементы и защищает генератор от перегрузок и КЗ. Для работы комбинированного автоматического расцепителя указывают и выбирают ток теплового «автомата»: электромагнит рассчитан на 7 – 10 кратный ток, что соответствует работе тепловых сетей.

Электромагнитные элементы в комбинированном выключателе служат для мгновенной защиты от коротких замыканий, а тепловые защищают от перегрузок с выдержкой времени. Отключается комбинированный автомат при срабатывании любого из элементов. При кратковременных сверхтоках не срабатывает ни один из типов защиты.

Полупроводниковый выключатель

Состоит из трансформаторов переменного тока, магнитных усилителей для постоянного тока, блока управления и электромагнита, выполняющего функции независимого автоматического расцепителя. Устанавливать выбранную программу по расцеплению контактов помогает блок управления.

К его настройкам можно отнести:

  • регулирование номинального тока в приборе;
  • установку времени;
  • срабатывание в момент возникновения короткого замыкания;
  • защитные переключатели от сверхтоков и однофазного КЗ.

Расцепитель на базе микропроцессора

Плюсы – большой выбор регулирования под разные схемы электроснабжения, обеспечение избирательности к последовательно подключенным автоматам с меньшим количеством ампер.

Минусы – высокая стоимость, непрочные компоненты управления.

Установка

Многие доморощенные электрики считают, что установка автомата не составляет особого труда. Это справедливо, но нужно выполнять определенные правила. Расцепители автоматического выключателя, так же, как и пробочные предохранители, необходимо присоединять к сети так, чтобы при вывернутой пробке автомата его винтовая гильза была без напряжения. Соединение питающего проводника при одностороннем питании с автоматом должно производиться к неподвижным контактам.

Установка электрического однофазного двухполюсного автомата в квартире состоит из нескольких этапов:

  • крепления выключенного устройства в электрощите;
  • подсоединения проводов без напряжения к счетчику;
  • подсоединения к автомату сверху проводов напряжения;
  • включения автомата.

Крепление

В электрощите монтируем дин-рейку. Отрезаем нужный размер и крепим ее саморезами к электрощитку. Прищелкиваем автоматический расцепитель сети на дин-рейку при помощи специального замка, который расположен на задней части автомата. Проследите за тем, чтобы устройство стояло в режиме выключения.

Подсоединение к электросчетчику

Берем кусок провода, длина которого соответствует расстоянию от счетчика до автомата. Один конец присоединяем к электросчетчику, другой – к клеммам расцепителя, соблюдая полярность. Питающую фазу подсоединяем на первый контакт, а нулевой питающий провод на третий. Сечение провода – 2,5 мм.

Подсоединение проводов напряжения

С центрального распределительного электрощита питающие провода подходят к щитку квартиры. Их подсоединяем к клеммам автомата, который должен находиться в положении «выключен», соблюдая полярность. Сечение провода рассчитывается в зависимости от потребляемой энергии.

Источник: energomir.biz


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.