Измерение сопротивления


Рекомендации по работе с мультиметром

В составе любого многофункционального тестера – мультиметра есть омметр.

Омметр представляет собой измерительный прибор, с помощью которого можно измерить электрические сопротивление цепи, участка электронной схемы, определить номинальное сопротивление резистора.

Также с помощью омметра можно проверить исправность большинства широко распространённых радиодеталей, таких как резисторы, диоды, катушки индуктивности, трансформаторы, плавкие предохранители.

С помощью омметра можно проверить конденсаторы на наличие электрического пробоя обкладок, обнаружить обрыв или пробой p-n переходов у транзисторов и диодов, оценить целостность электрических соединений и печатных проводников на плате.

Список возможных применений омметра в повседневной практике радиолюбителя огромен.


Обозначение омметра на принципиальной схеме
Обозначение омметра на принципиальной схеме

На принципиальной схеме омметр изображается в виде кружка с двумя выводами, которые на практике являются измерительными щупами. Внутри кружка изображается греческая буква “омега” (Ω), символизирующая то, что в данном случае прибор является измерителем электрического сопротивления.

Рассмотрим основные моменты проведения измерений сопротивления с помощью цифровых мультиметров серий DT-83x, M83x, MAS83x и им подобных.

В мультитестерах при измерении сопротивления следует выбрать секцию с обозначением значка “Омега” (Ω) при помощи ручного переключателя режимов работы.

Для замера сопротивления цепи необходимо ориентировочно оценить её сопротивление и выбрать соответствующий предел измерения.

У мультиметров серий DT83x, M83x, MAS83x обычно пять пределов измерения:

  • 200 (от 0 до 200 Ом);

  • 2k или 2000 (от 0 до 2000 Ом);

  • 20k (от 0 до 20000 Ом);

  • 200k (от 0 до 200000 Ом);

  • либо 2000k (от 0 до 2000000 Ом).


Пределы измерения сопротивления
Секция измерения сопротивлений

Например, у вас есть резистор, сопротивление которого ориентировочно составляет от 1 килоОма (1000 Ом) до 10 килоОм (10000 Ом). В этом случае необходимо выбрать предел измерения, который выше наибольшего предполагаемого значения. Для цифрового мультиметра марки M830BZ таким пределом будет 20k (20 килоОм).

Если же номинальное сопротивление резистора окажется больше, то на цифровом дисплее кратковременно “моргнёт” показание и зафиксируется единичка. При этом необходимо перевести ручной переключатель на предел выше (200k) и провести повторное измерение.

В практике радиолюбителя часто приходиться измерять сопротивление резисторов. При этом щупы прибора необходимо соединить с выводами резистора, сопротивление которого предстоит измерить. Теперь Внимание! Не повторите ошибку многих новичков. При измерении нельзя касаться руками токоведущих частей щупов и выводов радиодетали.

Почему так нельзя делать?

Если удерживать руками металлические выводы щупов и выводы резистора, то в результате будет измерено сопротивление резистора (R1) и сопротивления вашего тела (R2). В таком случае измеренное сопротивление будет составлять общее сопротивление двух параллельно соединённых резисторов. Один резистор – это тот, сопротивление которого замеряется, а второй – это сопротивление вашего тела.


Общее сопротивление резистора (R1) и сопротивления человеческого тела (R2)
Общее сопротивление резистора (R1) и тела человека (R2)

Полученные показания будут неверными или иметь очень большую погрешность. В некоторых случаях сильно отличаться от действительного сопротивления резистора. Всё зависит от того, какое сопротивление имеет в данный момент ваше тело.

Неправильный замер сопротивления резистора
Неправильный замер сопротивления

Это простое правило стоит помнить. Придерживать щуп и вывод детали можно только одной рукой. В таком случае в измеряемой цепи будет только сам мультиметр и резистор. Данное правило необходимо соблюдать и при проверке прочих радиоэлементов.

Правильный замер сопротивления резистора
Правильный замер сопротивления резистора


При ремонте радиоаппаратуры часто возникает необходимость проверить сопротивление радиодетали, например, резистора, впаянного в электронную схему. В таком случае нужно выпаять хотя бы один вывод радиодетали.

Впаянная в электронную схему радиодеталь электрически связана с другими элементами схемы, и общее сопротивление будет равно сопротивлению всех связанных между собой радиодеталей. Необходимо обеспечить условия, при которых измерительная цепь состоит только из измерительного прибора – омметра, и проверяемого элемента. На принципиальной схеме это можно изобразить как цепь из омметра (PR1) и резистора (R1).

Принципиальная схема измерительной цепи
Принципиальная схема измерительной цепи

Источник: go-radio.ru

По своей физической природе все вещества по-разному реагируют на протекание через них электрического тока. Одни тела хорошо его пропускают и их относят к проводникам, а другие очень плохо. Это диэлектрики.

Свойства веществ противодействовать протеканию тока оценивают численным выражением — величиной электрического сопротивления. Принцип его определения предложил Георг Ом. Его именем названа единица измерения этой характеристики.


Взаимосвязь между электрическим сопротивлением вещества, приложенным к нему напряжением и протекающим электрическим током принято называть законом Ома.

Принципы измерения электрического сопротивления

Исходя из приведенной на картинке зависимости трех важнейших характеристик электричества определяют величину сопротивления. Для этого необходимо иметь:

1. источник энергии, например, батарейку или аккумулятор;

2. измерительные приборы силы тока и напряжения.

Источник напряжения через амперметр подключают к измеряемому участку, сопротивление которого необходимо определить, а вольтметром меряют падение напряжения на потребителе.

Сняв отсчет тока I амперметром и величину напряжения U вольтметром, рассчитывают значение сопротивления R по закону Ома. Этот простой принцип позволяет выполнять замеры и производить расчеты вручную. Однако, пользоваться им в таком виде сложно. Для удобства работы созданы омметры.

Конструкция простейшего омметра

Производители измерительных приборов изготавливают устройства измерения сопротивления, работающие по:


1. аналоговым;

2. или цифровым технологиям.

Первый вид приборов называют стрелочными за счет способа отображения информации — перемещения стрелки относительно начального положения в точку отсчета на шкале.

Омметры стрелочного типа, как измерительные приборы сопротивлений, появились первыми и продолжают успешно работать до настоящего времени. Они есть в арсенале инструментов большинства электриков.

В конструкции этих приборов:

1. все компоненты приведенной схемы встроены в корпус;

2. источник выдает стабилизированное напряжение;

3. амперметр измеряет ток, но его шкала сразу проградуирована в единицах сопротивления, что исключает необходимость выполнения постоянных математических расчетов;

4. на внешние вывода клемм корпуса подключаются провода с концами, обеспечивающими быстрое создание электрической связи с испытуемым элементом.

Стрелочные приборы подобного класса измерения работают за счет собственной магнитоэлектрической системы. Внутри измерительной головки помещена обмотка провода, в которую подключена токопроводящая пружинка.


По этой обмотке от источника питания через измеряемое сопротивление Rx проходит ток, ограничиваемый резистором R до уровня миллиампер. Он создает магнитное поле, которое начинает взаимодействовать с полем постоянного магнита, расположенного здесь же, которое показано на схеме полюсами N—S.

Чувствительная стрелка закреплена на оси пружинки и под действием результирующей силы, сформированной от влияния этих двух магнитный полей, отклоняется на угол, пропорциональный силе протекающего тока или величине сопротивления проводника Rx.

Шкала прибора выполнена в делениях сопротивления — Омах. За счет этого положение стрелки на ней сразу указывает искомую величину.

Принцип работы цифрового омметра

В чистом виде цифровые измерители сопротивлений выпускаются для выполнения сложных работ специального назначения. Массовому потребителю сейчас доступен большой ассортимент комбинированных приборов, совмещающих в своей конструкции задачи омметра, вольтметра, амперметра и другие функции.

Для замера сопротивления необходимо перевести соответствующие переключатели в требуемый режим работы прибора и подключить измерительные концы к проверяемой схеме.

При разомкнутых контактах на табло будет индикация «I», как показано на фотографии. Оно соответствует большему значению, чем прибор может определить на заданном участке чувствительности. Ведь в этом положении он уже измеряет сопротивление воздушного участка между контактами зажимов соединительных проводов.


Когда же концы установлены на резистор или проводник, то цифровой омметр отобразит значение его сопротивления реальными цифрами.

Принцип измерения электрического сопротивления цифровым омметром тоже основан на применении закона Ома. Но, в его конструкции уже работают более современные технологии, связанные с использованием:

1. соответствующих датчиков, предназначенных для измерения тока и напряжения, которые передают информацию по цифровым технологиям;

2. микропроцессорных устройств, обрабатывающих полученные сведения от датчиков и выводящих их на табло в наглядном виде.

У каждого типа цифрового омметра могут быть свои отличительные пользовательские настройки, которые следует изучить перед работой. Иначе по незнанию можно допустить грубые ошибки, ибо подача напряжения на его вход встречается довольно часто. Она проявляется выгоранием внутренних элементов схемы.

Обычными омметрами проверяют и измеряют электрические цепи, сформированные проводами и резисторами, обладающие относительно небольшими электрическими сопротивлениями на пределах до нескольких десятков или тысяч Ом.


Измерительные мосты постоянного тока

Электрические приборы измерения сопротивления в виде омметров созданы как переносные, мобильные устройства. Ими удобно пользоваться для оценки типовых, стандартных схем или прозвонки отдельных цепей.

В лабораторных условиях, где часто нужна высокая точность и качественное соблюдение метрологических характеристик при выполнении измерений работают другие устройства — измерительные мосты постоянного тока.

Электрические схемы измерительных мостов на постоянном токе

Принцип работы таких приборов основан на сравнении сопротивлений двух плеч и создании баланса между ними. Контроль сбалансированного режима осуществляется контрольным мили- или микроамперметром по прекращению протекания тока в диагонали моста.

Когда стрелка прибора установится на ноль можно вычислить искомое сопротивление Rx по значениям эталонов R1, R2 и R3.

Схема измерительного моста может иметь возможность плавного регулирования сопротивлений эталонов в плечах или выполняться ступенчато.

Внешний вид измерительных мостов


Конструктивно такие приборы выполняются в едином заводском корпусе с возможностью удобной сборки схемы для электрической проверки. Органы управления переключения эталонов позволяют быстро выполнять измерения сопротивлений.

Омметры и мосты предназначены для измерения сопротивления проводников электрического тока, обладающих резистивным сопротивлением определенной величины.

Приборы измерения сопротивления контура заземления

Необходимость периодического контроля технического состояния контуров заземлений зданий вызвана условиями их нахождения в грунте, который вызывает коррозионные процессы металлов. Они ухудшают электрические контакты электродов с почвой, проводимость и защитные свойства по стеканию аварийных разрядов.

Принцип работы приборов этого типа тоже основан на законе Ома. Зонд контура заземления стационарно размещен в земле (точка С), за счет чего его потенциал равен нулю.

На одинаковых расстояниях от него порядка 20 метров забивают в грунт однотипные заземлители (главный и вспомогательный) так, чтобы стационарный зонд был расположен между ними. Через оба этих электрода пропускают ток от стабилизированного источника напряжения и замеряют его величину амперметром.

На участке электродов между потенциалами точек А и С вольтметром замеряют падение напряжения, вызванное протеканием тока I. Далее проводится расчет сопротивления контура делением U на I с учетом поправки на потери тока в главном заземлителе.

Если вместо амперметра и вольтметра использовать логометр с катушками тока и напряжения, то его чувствительная стрелка будет сразу указывать конечный результат в омах, избавит пользователя от рутинных вычислений.

По этому принципу работает много марок стрелочных приборов, среди которых популярны старые модели МС-0,8, М-416 и Ф-4103.

Их удачно дополняют разнообразные современные измерители сопротивлений, созданные для подобных целей с большим арсеналом дополнительных функций.

Приборы измерения удельного сопротивления грунта

С помощью только что рассмотренного класса приборов также измеряют удельное сопротивление почвы и различных сыпучих сред. Для этого их включают по другой схеме.

Электроды главного и вспомогательного заземлителя разносят на расстояние, большее 10 метров. Учитывая то, что на точность замера могут влиять близкорасположенные токопроводящие объекты, например, металлические трубопроводы, стальные башни, арматура, то к ним допустимо приближаться не меньше, чем на 20 метров.

Остальные правила измерения остаются прежними.

По такому же принципу работают приборы измерения удельного сопротивления бетона и других твердых сред. Для них применяются специальные электроды и незначительно меняется технология замера.

Как устроены мегаомметры

Обычные омметры работают от энергии батарейки или аккумулятора — источника напряжения небольшой мощности. Его энергии достаточно для того, чтобы создать слабый электрический ток, который надежно проходит через металлы, но ее мало для создания токов в диэлектриках.

По этой причине обычным омметр не может выявить большинство дефектов, возникающих в слое изоляции. Для этих целей специально создан другой тип приборов измерения сопротивлений, которые принято называть на техническом языке «Мегаомметр». Название обозначает:

  • мега — миллион, приставка;

  • Ом — единица измерения;

  • метр — общепринятое сокращение слова измерять.

Внешний вид

Приборы этого типа тоже бывают стрелочными и цифровыми. В качестве примера можно продемонстрировать мегаомметр марки М4100/5.

Его шкала состоит из двух поддиапазонов:

1. МΩ — мегаомы;

2. KΩ — килоомы.

Электрическая схема

Сравнивая ее со схемой устройства обычного омметра, легко увидеть, что она работает по тем же самым принципам, основанным на применении закона Ома.

В качестве источника напряжения выступает генератор постоянного тока, ручку которого необходимо равномерно вращать с определенной скоростью порядка 120 оборотов в минуту. От этого зависит уровень высоковольтного напряжения, выдаваемого в схему. Эта величина должна пробить слой дефектов с пониженной изоляцией и создать сквозь нее ток, который отобразится перемешением стрелки по шкале.

Переключатель режима измерения МΩ—KΩ коммутирует положение групп резисторов схемы, обеспечивая работу прибора в одном из рабочих поддиапазонов.

Отличием конструкции мегаомметра от простого омметра является то, что на этом приборе используются не две выходные клеммы, подключаемые к измеряемому участку, а три: З (земля), Л (линия) и Э (экран).

Клеммами земля и линия пользуются для измерения сопротивдения изоляции токоведущих частей относительно земли или между разными фазами. Клемма экрана призвана устранить воздействие создаваемых токов утечек через изоляцию на точность работы прибора.

У большого количества мегаомметров других моделей клеммы обозначают немного по-другому: «rx», «—», «Э». Но суть работы прибора от этого не меняется, а клемма экрана используется для тех же целей.

Подробнее об этом смотрите здесь: Как правильно использовать мегаомметр

Цифровые мегаомметры

Соврменные приборы измерения сопротивления изоляции оборудования работают по тем же принципам, что их стрелочные аналоги. Но они отличаются значительно большим количеством функций, удобством в измерениях, габаритами.

Выбирая цифровые приборы для постоянной эксплуатации следует учитывать их особенность: работу от автономного источника питания. На морозе батарейки быстро теряют работоспоосбность, требуют замены. По этой причине работа стрелочными моделями с ручным генератором остается востребованной.

Правила безопасности при работе с мегаомметрами

Минимальное напряжение, создаваемое прибором на выходных клеммах, составляет 100 вольт. Оно используется для проверки изоляции электронных блоков и чувствительной аппаратуры.

В зависимости от сложности и конструкции оборудования электрической схемы на мегаомметрах применяют другие значения напряжений вплоть дл 2,5 кВ включительно. Самыми мощными приборами можно оценивать изоляцию высоковольтного оборудования линий электропередач.

Все эти работы требуют четкого выполнения правил безопасности, а осуществлять их могут исключительно подготовленные специалисты, имеющие допуск к работам под напряжением.

Характерными опасностями, создаваемыми мегаомметрами при работе являются:

  • опасное высокое напряжение на выходных клеммах, измерительных проводах, подключенном электрическом оборудовании;

  • необходимость предотвращения действия наведенного потенциала;

  • создание остаточного заряда на схеме после выполнения замера.

При измерении сопротивления слоя изоляции высокое напряжение прикладывается между токоведущей частью и контуром земли или оборудованием другой фазы. На протяженных кабелях, линиях электропередачи оно заряжает емкость, образованную между разными потенциалами. Любой неумелый работник своим телом может создать путь для разряда этой емкости и получить электрическую травму.

Чтобы исключить такие несчастные ситуации перед выполнением замера мегаомметром проверяют отсутствие опасного потенциала на схеме и снимают его после работы с прибором по специальной методике.

Омметры, мегаомметры и рассмотренные выше измерители работают на постоянном токе, определяют только резистивное сопротивление.

Приборы измерения сопротивления в цепях переменного тока

Наличие большого количества различных индуктивных и емкостных потребителей как в бытовых домашних электросетях, так и на производстве, включая предприятия энергетики, создает дополнительные потери энергии за счет реактивной составляющей полного электрического сопротивления. Отсюда возникает необходимость ее полного учета и выполнения специфических измерений.

Приборы для измерения сопротивления петли фаза-ноль

Когда в электрической проводке происходит неисправность, приводящая к закорачиванию потенциала фазы на ноль, то образуется цепь, по которой идет ток короткого замыкания. На его величину влияет сопротивление участка электропроводки от места КЗ до источника напряжения. Оно определяет величину аварийного тока, который должен отключаться автоматическими выключателями.

Поэтому сопротивление петли фаза-ноль необходимо выполнять на самой удаленной точке и с его учетом подбирать номиналы защитных автоматов.

Для выполнения подобных замеров разработано несколько методик, основанных на:

  • падении напряжения при: отключенной цепи и на сопротивлении нагрузки;

  • коротком замыкании с пониженными токами от постороннего источника.

Замер на нагрузочном сопротивлении, встроенном в прибор, отличается точностью и удобством. Для его выполнения концы прибора вставляют в самую отдалённую от защит розетку.

Нелишним бывает выполнение измерений во всех розетках. Современные измерители, работающие по этому методу, сразу показывают сопротивление петли фаза-ноль на своем табло.

Все рассмотренные приборы представляют только часть устройств для измерения сопротивления. На предприятиях энергетики работают целые измерительные комплексы, позволяющие постоянно анализировать изменяющиеся величины электрических параметров на сложном высоковольтном оборудовании и принимать экстренные меры для устранения возникающих неисправностей. 

Источник: electrik.info

Как мультиметр измеряет сопротивление

Принцип измерения сопротивления основан на законе Ома, который в упрощенном варианте гласит, что сопротивление проводника равно отношению напряжения на этом проводе к силе тока, которая по нему протекает. Формула выглядит как R (сопротивление) = U (напряжение) / I (сила тока). То есть, 1 Ом сопротивления говорит о том, что по проводу протекает ток номиналом в 1 Ампер и напряжением 1 Вольт.

Соответственно, при пропускании заранее измеренного тока с известным напряжением через проводник, можно вычислить его сопротивление. По сути, омметр (прибор, которым измеряют сопротивление) представляет собой источник тока и амперметр, шкала которого проградуирована в Омах.

Омметры последовательного и параллельного типов

Какой мультиметр использовать

Измерительные приборы делятся на универсальные (мультиметры) и специализированные, которые предназначены для выполнения одной операции, но проводят ее максимально быстро и точно. В мультиметре омметр является только составляющей частью прибора и его еще надо включить в соответствующий режим. Специализированные устройства, в свою очередь, также требуют некоторых навыков использования – надо знать, как их правильно подключить и интерпретировать полученные данные.

Как пользоваться аналоговым и цифровым мультиметрами – на следующем видео:

Специализированные измерительные приборы

Из закона Ома понятно, что стандартным мультиметром не получится замерить большие сопротивления, так как в качестве источника питания там используются стандартные пальчиковые, либо батарейка типа «Крона» – прибору попросту не хватит мощности.

Если часто возникает необходимость выполнить замер большого сопротивления, к примеру, изоляции, то надо приобретать мегаомметр.

В качестве источника тока он использует динамомашину или мощную батарею с повышающим трансформатором – в зависимости от класса устройства он может генерировать напряжение от 300 до 3000 Вольт.

Мегаомметр для измерения больших сопротивлений

Отсюда следует вывод, что у задачи, к примеру, как измерить мультиметром сопротивление заземления, не может быть однозначного ответа – в этом случае надо воспользоваться специализированным прибором, предназначенным именно для этой цели. Измерение проводятся по определенным правилам и применение таких устройств это удел специалистов – без профильных знаний получить правильный результат достаточно проблематично. Теоретически можно проверить у заземления сопротивление тестером, но это потребует сборки дополнительной электроцепи, для которой потребуется как минимум мощный трансформатор, наподобие такого, что используется на сварочных аппаратах.

Цифровой и аналоговый мультиметры

Внешне эти устройства легко отличить друг от друга – у цифрового данные выводятся на дисплей цифрами, а у аналогового циферблат проградуирован и на нужное значение указывает стрелка. Соответственно, цифровое устройство проще в использовании, так как сразу показывает готовое значение, а при работе с аналоговым придется еще дополнительно интерпретировать выдаваемые данные.

Дополнительно, при работе с такими устройствами, надо учитывать, что у цифрового мультиметра есть датчик разрядки источника питания – если силы тока батареи недостаточно, то он просто откажется работать.

Источник питания цифрового мультиметра

Аналоговый же в такой ситуации ничего не скажет, а будет просто выдавать неправильные результаты.

В остальном, для бытовых целей подойдет любой мультиметр, на шкале которого указан достаточный предел измерения сопротивления.

Включение мультиметра в режим омметра и выбор пределов измерений

Управление мультиметром производится с помощью круглой поворотной ручки, вокруг которой расчерчена шкала, поделенная на секторы. Друг от друга они отделены линиями или просто надписи на них отличаются цветом. Чтобы включить мультиметр в режим омметра надо повернуть ручку в зону сектора, обозначенного значком «Ω» (омега). Цифры, которыми будет обозначаться режимы работы могут быть подписаны тремя способами:

  • Ω, kΩ – x1, x10, x100, MΩ. Обычно такие обозначения используются на аналоговых устройствах, у которых то, что показывает стрелка еще надо переводить в привычные значения. Если шкала проградуирована, к примеру, от 1 до 10, то при включении каждого из режимов отображаемый результат надо домножать на указанный коэффициент.

Обозначения на корпусе мультиметра

  • 200, 2000, 20k, 200k, 2000k. Такая запись применяется на электронных мультиметрах и показывает в каком диапазоне можно измерять сопротивление при установке переключателя в определенную позицию. Приставка «k» обозначает префикс «кило», что в единой системе измерений соответствует цифре 1000. Если выставить мультиметр на 200k и он покажет цифру 186 – это значит, что сопротивление равно 186000 Ом.
  • Ω – Если на корпусе омметра есть только такой значок, значит мультиметр способен автоматически определять диапазон. Циферблат такого устройства обычно может отображать не только цифры, но и буквы, к примеру, 15 kОм или 2 MОм.

У первых двух способов подписи шкалы есть прямая зависимость точности отображения результатов и их погрешности. Если сразу включить максимальный диапазон, то сопротивление порядка 100-200 Ом скорее всего будет показано неправильно.

Щупы прибора надо воткнуть в соответствующие гнезда – черный в «COM», а красный в то, возле которого среди других обозначений есть значок «Ω».

Прозвонка проводов – проверка целостности участка электрической цепи

Прозванивать провода мультиметром можно двумя способами, использование которых зависит от наличия в приборе звукового сигнала. Эта функция, если она есть, на разных приборах может включаться разными положениями переключателя – поэтому надо обращать внимание на значки, что нарисованы на корпусе прибора.

Обозначение функции прозвонки

Зуммер показан как точка, справа от которой нарисованы три полукруга, каждый из последующих больший предыдущего. Искать такой значок надо либо отдельно, либо над самой маленькой цифрой из сопротивлений, либо возле значка диода, который отображается как стрелка на линии, острым концом упирающаяся в еще одну, перпендикулярную первой, линию.

Если включить тестер в режим прозвонки, то он будет подавать звуковой сигнал, если сопротивление измеряемого проводника будет меньше 50 Ом. В некоторых приборах это может быть 100 Ом, поэтому если нужна точность, то надо свериться с паспортом устройства.

Наглядно про прозвонку проводов на видео:

Порядок прозвонки прост и интуитивно понятен – установить переключатель напротив значка зуммера и щупами коснуться концов проводника, который надо «прозвонить»:

  • Если провод целый, то мультиметр издаст звуковой сигнал.
  • Если провод целый, но из-за его длины сопротивление больше чем то, при котором срабатывает зуммер, то на дисплее отобразится цифра, показывающая его значение.
  • Если сопротивление значительно больше чем диапазон, на который рассчитан этот режим работы, то на дисплее отобразится единица – значит надо переставить переключатель на другой режим и повторить измерение.
  • Если целостность провода нарушена, то никакой индикации не произойдет.

Прозвонка проводов

Если для «прозвонки» проводников используется аналоговый мультиметр без звукового сигнала, то он выставляется на минимальный диапазон измерений – если при прикосновении щупов к проводу стрелка показывает значение стремящееся к нолю, значит провод целый. То же самое касается цифровых приборов без зуммера.

Перед тем, как проверить сопротивление проводников, сначала всегда надо выполнить тест самого устройства – прикоснуться щупами друг к другу. Также надо проверить как прибор реагирует на человеческое тело – у некоторых людей достаточно низкое сопротивление и если прижимать концы провода к щупам руками, то прибор может показать что проводник целый, даже если это не так.

Проведение измерений сопротивления и какие могут возникнуть нюансы

Щупы мультиметра подключаются в те же гнезда и в целом, измерение сопротивления выполняется практически так же, как и прозвонка проводов, но так как проверить при этом надо не просто целостность проводника, то у этого процесса есть некоторые особенности.

  • Выбор границ измерений. Когда измеряемое сопротивление хотя бы примерно известно, то регулятором выставляется ближайшее большее значение (если мультиметр не определяет его автоматически). Если сопротивление точно неизвестно, то стоит начать измерения с самого большого значения, постепенно переключая мультиметр на меньшее.

Выставление границ измерений от большего к меньшему

  • Когда нужна точность, то обязательно надо учитывать погрешности. К примеру, если есть на резисторе указано сопротивлением 1 кОм (1000 Ом), то во-первых надо учитывать допуски для его изготовления, которые составляют 10%. Как итог – реальные цифры могут быть в диапазоне от 900 до 1100 Ом. Во-вторых – если взять тот же резистор и выставить мультиметр на максимальное значение, к примеру 2000 kОм, то прибор может показать единицу, т.е. 1000 Ом. Если после этого перевести переключатель в положение 2 kОм, то вероятнее всего прибор покажет другую – более точную цифру, к примеру, 0,97 или 1,04.
  • Если надо проверить сопротивление детали, которая впаяна в плату, то как минимум один из ее выводов надо выпаивать. В противном случае прибор покажет неправильный результат, так как с высокой долей вероятности параллельно проверяемой детали на схеме есть другие проводники.

Если проверяется элемент с несколькими выводами, то эту деталь надо полностью выпаивать из схемы.

  • Человеческое тело проводит ток и обладает определенным электрическим сопротивлением. Поэтому, как и в случае с впаянными в плату деталями, надо исключить возможность их контакта с посторонними предметами – в данном случае это руки замеряющего. В крайнем случае можно прижимать пальцами одной руки контакт к щупу, но прикасаться другой рукой ко второму категорически недопустимо – результат измерений в таком случае будет заведомо неверным.

Рукой можно удерживать только один конец провода

  • В ряде случаев надо учитывать переходное сопротивление контактов – даже чистый припой или ножки неиспользованных радиодеталей со временем может покрываться оксидной пленкой, поэтому место контакта желательно хотя бы минимально зачистить или процарапать концом щупа.

Как проверить сопротивление провода наглядно показано на видео:

Как измерять сопротивление мультиметром – итоги

Управление современных цифровых мультиметров, да и большинство аналоговых, сделано максимально удобным для оператора и не требует глубоких познаний. Оно интуитивно понятно даже непрофессионалу без профильного образования – зачастую для освоения и правильного использования прибора достаточно вспомнить школьные уроки физики по построению и проверке электроцепей. Желательно при проведении измерений помнить про перечисленные выше нюансы, ведь они в любом случае «вылезут» в процессе использования мультиметра.

Источник: YaElectrik.ru

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

испытание электрической прочности изоляции

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения:

Внешние загрязнения изоляции

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При измерении значений сопротивления изоляции на точность измерений могут повлиять токи утечки

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

Результат моих измерений – x МОм. Это нормально?

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

Как выбрать измеритель сопротивления изоляции (мегомметр)

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на электроинструменте

Источник: skomplekt.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.