Измеритель заземления


От состояния общего контура заземления здания, сооружения или других объектов с действующими электроустановками зависит не только безопасность обслуживающего персонала и проживающих людей в жилых помещениях. Исправное состояние отдельных элементов системы заземления: общего контура, соединительных шин, проводов заземляющих корпуса электрооборудования и других составляющих, обеспечивает стабильную безаварийную работу электроустановок.

Металлические элементы контура заземления, особенно находящиеся под грунтом, подвергаются коррозии, конструкция постепенно разрушается и перестает выполнять свои функции по защите, оборудования и обслуживающего персонала. Поэтому требуется периодический контроль состояния системы заземления. Методика проверки последовательно описана в требованиях ПУЭ (Правила устройства электроустановок) Одним из важнейших параметров системы является сопротивление контура, для его измерения существует отработанная методика и специальные измерительные приборы. Читайте также статью ⇒ Заземление и зануление: назначение, отличие, особенности

Принцип действия заземления


Металлические корпуса оборудования на производственных предприятиях и бытовые приборы в жилых помещениях, по требованиям ПУЭ и других нормативных актов, руководящих документов подлежат заземлению. Эта мера обеспечивает безопасность потребителей электроэнергии, пользователей бытовыми приборами и обслуживающий персонал электрооборудования.

Работает это следующим образом, при возникновении замыкания токопроводящей части фазного провода с элементами корпуса происходит выравнивание потенциалов всех замкнутых элементов. Напряжение между корпусом, фазой и заземляющим контуром становится одинаковым. Следовательно, нет разницы потенциалов между землей и полом в помещении. При прикосновении к корпусу оборудования ток не будет переткать с корпуса через человеческое тело в пол или другое оборудование, таким образом, исключается поражение электрическим током.

Основные требования к сопротивлению контура заземления на различных объектах

Одним из важнейших параметров системы заземления является сопротивление контура, контрольные измерения которого производится не реже чем один раз в год, после окончания монтажных работ. В сетях на промышленных объектах, где нейтрали понижающих трансформаторов, генераторов заземляются на общий контур заземления, в однофазных сетях жилого фонда с любыми источниками питания контуры заземления в любое время года с любым составом грунта должны иметь установленную ПУЭ величину сопротивление.


Для электрических сетей с линейным напряжением 220 – 380В, это сопротивление в пределах 2-8 Ом, для однофазных сетей жилых домов, офисов, административных зданий допускается до 30 Ом. Точные значения для объектов различного назначения определены в ПУЭ и – (Правила технической эксплуатации электроустановок потребителей) ПУЭ в пункте 1.8.39, представлена таблица 1.8.38 и в ПТЭЭМ таблица №36 приложение №3.

Зависимость сопротивления заземления от материалов и грунта

Удельное сопротивление системы заземления в большой степени зависит от состава грунта, наиболее удачными с точки зрения проводимости считаются:

  • Глина – 80 Ом/м;
  • Чернозем – 80 Ом/м;
  • Суглинок – 100 Ом/м.

Песчаные почвы в плане сопротивления не стабильны, влажность сильно расширяет интервал возможных величин 10 – 4000 Ом. Каменистые породы считаются наихудшим вариантом для закладки контура заземления, щебень имеет сопротивление в пределах от 3-5 тысяч Ом/м, цельные гранитные породы до 20000Ом/м.

Состав грунта Ом/м
Известняк поверхностный 5 050
Гранит 2 000
Базальт 2 000
Песчаник 1 000
Гравий с однородными элементами 800
Влажный песок 800
Гравий с глиной 300
Чернозёмные грунты 200

Смеси глины песком 150
Глина средней твердости 60
Сланцы с глиной 55
Суглинок пластичный 30
Эластичная глина 20
Водоносные слои под грунтом 5

В чистом виде грунт редко встречается, в большинстве случаев это смешанные виды, поэтому для разных вариантов сделаны расчеты и сведены в справочную таблицу.

Необходимые условия для измерения сопротивления заземления

Независимо от того, какие приборы используются в процессе измерения сопротивления, работающий персонал обязан соблюдать меры безопасности. Используются диэлектрические боты, перчатки и инструменты с изолированными ручками. При сборке элементов схемы измерения провода подключаются, в первую очередь к заземленному вспомогательному электроду, потом к измерительному прибору.

Замеры сопротивления проводятся в период их наибольшего значения это летний и зимний сезоны.


и грозе, дожде и большой влажности измерения проводить запрещено. На точность измерений влияет расположение измерительных дополнительных заземлителей к элементам конструкции контура и расстояния между ними. Дополнительные электроды должны располагаться не ближе 10м от вертикальных заземлителей контура, металлических труб водопровода, канализации и других коммуникаций. Забиваются электроды в улежавшийся плотный грунт на глубину более 0,5м. В качестве электродов могут быть использованы естественные заземлители не связанные с контуром, на котором производится измерение.

Совет№1 для точности рекомендуется проводить 2-3 измерения, меняя место расположения измерительных штырей, разница в этих измерениях не должна составлять 5%.

Виды приборов для измерения сопротивления заземления

Производители производят большое количество различных моделей приборов для измерения сопротивления заземляющих конструкций. Все приборы можно разделить на несколько видов:

  • Стрелочные модели с автономными источниками питания в виде малогабаритного генератора, который вращается вручную;
  • Стрелочные с автономными источниками питания на гальванических батареях;
  • Цифровые приборы с жидкокристаллическим дисплеем, питанием от батареек и бесконтактными измерительными клещами.

В каждом виде существует большое количество модификаций, которые имеют свои преимущества и недостатки при определенных условиях эксплуатации. Рассмотрим наиболее популярные модели, которые востребованы у потребителей.

Прибор для измерения сопротивления М-416


Эта модель стрелочного прибора одна из самых старых, которая зарекомендовала себя, простотой в использовании, высокой надежностью и достаточной точностью измерений. Конструкция прибора выполнена по методике исполнения стрелочного омметра с несколькими пределами измерений.

Классический вариант подключения прибора для измерения сопротивления заземления, эта схема отображается с внутренней стороны крышки прибора

Прибор позволяет измерить не только активное сопротивление конструкции контура, но и сопротивление грунта, в котором он установлен.

Внешний вид панели управления М-416

Технические характеристики

Пределы измерения Ом Величины сопротивлений дополнительных измерительных штырей Ом
R1 R2 R3
0,10 – 10,0 0,10 – 10,0 500,0 500,0
0,50 — 50,0 0,50 – 50,0 1000,0 1000,0
2,0 – 200,0 2,0 – 200,0 2500,0 2500,0
10,0 -1000,0 10,0 – 1000,0 5000,0 5000,0

Погрешность при измерении рассчитывается с учетом пределов измерения и сопротивлений измерительных штырей, по формуле:

  • 5 + (N/Rx-1) – плюс минус от измеренного значения;
  • N – наибольшее значение выбранного предела измерений;
  • Rx – измеренное сопротивление контура;
  • Питается прибор от батарей 4,5 В;
  • Общее напряжение на зажимах прибора в разомкнутом состоянии измерительной цепи 13В;
  • Комплекта батарей хватает на 1000 замеров;
  • Весит прибор около 3кг, габариты 24,5x14x17см.

Измеритель сопротивления заземления ИС-10

Это современный цифровой прибор на микропроцессоре с жидкокристаллическим дисплеем, куда в цифровом виде выводятся результаты измерений.

Внешний вид измерителя сопротивления ИС -10

Встроенное запоминающее устройство способно фиксировать 40 измеряемых параметров. Корпус выполнен с обрезиненной оболочкой со степенью защиты IP42. Устройство имеет возможность проводить измерения по двух проводной, трех и четырехпроводной схеме.


Приборы для измерения сопротивления заземления

Бесконтактные клещи позволяют, производить замеры не разрывая цепи на отдельных участках.

Элементы комплектации, измерителей сопротивления заземления серии ИС

Измеритель сопротивления заземления СА 6412

Модель позволяет производить измерения сопротивления заземления бесконтактными клещами, не отключая электроустановку. Общий предел измерения 0.1 – 1200 Ом, по току от 1 мА – 30А. Корпус прибора имеет высокую прочность благодаря композитному материалу «Lexan®», составные элементы клещей выполнены двойным слоем стенок. Внутренний диаметр клещей позволяет обхватывать заземляющие проводники Ø-32мм.

Пример как производятся замеры

Основные особенности конструкции:


  • Не требуется вспомогательных электродов и соединительных проводов;
  • При коротком замыкании, когда сопротивление меньше 0.1 Ом срабатывает индикатор;
  • Имеются индикаторы помех в измеряемой цепи и при открытии клещей во время замеров;
  • Индикатор заряда батарей своевременно укажет на низкий уровень зарядки;
  • Прибор обладает функцией самотестирования и удержания измеренных показаний;
  • Опция установки пороговых значений обеспечивает удобные условия измерений при темноте.
Технические Параметры Величин Значений
Частота генератора, на которой измеряется сопротивление 2,400 кГц
Частота измеряемого тока от 45 до 800 Гц
Ток перегрузки 100 А — постоянно 200 А — < 5 секунд 50 / 60 Гц
Диэлектрическая прочность 2500 В
Батарея питания 9 В (типа «Крона») или Ni/Cd аккумуляторы
Ресурс батареи До 1500 измерений, приблизительно 8 часов непрерывной работы
Интервал рабочих температур от -11° до + 54° С
Ø захвата бесконтактных клещей 32 мм
Ширина открытого захвата 35 мм
Степень защиты корпуса IP 30

Читайте также статью: → «Чем отличается заземление от зануления?».

Измеритель сопротивления заземления–1820 ER

Одна из моделей цифровых приборов с жк дисплеем, пределы измерения 0.01 – 2000Ом, с функцией удержания показаний, питается от батарей.

Комплект измерителя сопротивления заземления 1820 ER

Особенности технических характеристик

  • Тестовый ток в режиме измерения сопротивления составляет 2мА, что позволяет производить работы без отключения электроустановки от источника питания.
  • В составе комплектации предусматривается наличие штатных проводов для сборки схемы и измерительных штырей, что значительно повышает точность измерений;
  • Прибор позволяет измерять пошаговое напряжение.
  • 1820 ER пользуется у потребителей хорошим спросом по причине простоты в использовании, малых габаритах и весе примерно 1кг, относительно не большая цена, доступная для частных лиц и организаций 14500Р.

Измеритель сопротивления заземления SEW 2705 ER

Большим спросом пользуется у профессиональных электриков, и имеет малые габариты и удобен в применении, напоминает обычный мультиметр со стрелочной шкалой.

Внешний вид прибора

Основные особенности и технические характеристики


  • По двухпроводной схеме измеряет сопротивление заземления до 1000Ом;
  • Более точные измерения делаются по трехпроводной схеме;
  • Шаговое напряжение измеряется до 30В;
  • Тестовый ток в пределах 2мА, что позволяет производить измерения, на работающей электроустановке, без отключения электропитания;
  • Шкала стрелочная разработчики сознательно отказались от цифрового варианта с целью повышения точности в данном интервале измерений.
  • Индикатор уровня зарядки батарей питания.

Приборы для измерения сопротивления заземления

Пример различных схем для измерения:

А – измерение пошагового напряжения;

В – Точные измерения в трехпроводном режиме;

С – Грубые измерения в двухпроводном режиме.

Существует много методик и схем для измерения сопротивления заземления:

  • Двухпроводная схема;
  • Трехпроводная;
  • Четырехпроводная;
  • Метод пробного электрода;
  • Компенсационный способ и другие.

Все эти методы имеют свои преимущества и недостатки в конкретных случаях с соответствующими приборами, эта тема требует детального рассмотрения в отдельной статье.

Комплектация прибора

Совет №2 Измерения рекомендуется делать по той схеме, которые указаны в инструкции по эксплуатации на прибор, эта методика однозначно проверена и протестирована, поэтому измерения будут точнее. На корпусах и крышках некоторых приборов указаны схемы подключения.
Измерения всеми этими приборами осуществляется по классическому принципу, цифровой процессор высчитывает сопротивление по закону Ома R = UI.

Общая схема для измерения сопротивления контура заземления

  • Не учитываются требования к расстоянию между измерительными штырями и контуром заземления, обычно это 10 м;
  • Измеряя сопротивление контура, забывают измерить сопротивление линии с заземленной нейтралью. Это очень важно, особенно когда присутствуют элементы с повышенной коррозией;
  • Для точности и надежности. Проведите 2-3 измерения с разными местами установки измерительных штырей, особенно сделайте измерения, где большая вероятность разрушения элементов контура от коррозии.

Читайте также статью: → «Методики проверки заземления в розетке, подробное описание способов».

Часто задаваемые вопросы

1. Вы пишите, что надо делать несколько замеров меняя место положения штырей, а какое измерение принимать за правильное?

Да, разница между ними не должна превышать 5%, можно принять среднеарифметическую величину, но для надежности у электриков принято за истинное значения принимать самую малую величину сопротивления.

2. А почему нельзя провести измерения обычным мультиместром?

Для себя можно, но эти измерения будут с очень большими погрешностями и ни одна контролирующая организация их учитывать не будет. Сопротивление заземления должна проводить Электролаборатория один раз в год с составлением протокола.

Источник: electric-tolk.ru

Заземление – это уравнивание потенциалов цепи заземления с потенциалом земли, путем объединения с землей. При заземлении объединяется проводом корпус микроволновой печи или корпус электрического щитка с землей. Заземление необходимо для защиты человека от удара электрическим током из-за неисправной стиральной машины или неисправной микроволновой печи, когда человек коснется их корпуса. Заземление нужно если рядом электричество и вода, например неисправный электрический бойлер без заземления может ударить током через кран. Заземление может спасти вам жизнь. Если у вас в розетке в ванной есть заземления и установлено УЗО, то при попадании воды на удлинитель ток не убьет вас, всего лишь выключится свет.

Сопротивления заземления — это сопротивление между цепью заземления и землей. Данная величина измеряется в Ом и должна стремиться к нулю. Идеальное значение возможно только теоретически, поскольку любой проводник создает определенное сопротивление.

 

Измерение сопротивления заземления дает возможность узнать технические состояние, контура заземления и позволяет определить уровень безопасность электрической сети. Измерять сопротивление заземление нужно после ввода здания или объекта. Далее проверка заземления проводится на основании п. 2.7.9. ПТЭЭП согласно плану проверок на объект. Измерять сопротивление заземления необходимо не менее одного раза в 12 лет. Осмотр заземляющего контура должен проводиться не менее двух раз в год.

 

Измерители заземления

Измерение сопротивление металлосвязи, защитных проводников заземления проводится согласно ГОСТ Р 50571.16 по двухпроводному и четырех проводному методу. При измерении по двухпроводному методу не учитывается сопротивление самих проводов и переходных сопротивлений крокодилов. В измерителе сопротивления заземления ИС-20 имеется возможность исключить влияния сопротивления измерительных проводов, при измерении двухпроводным способом.

 Измерение металлосвязи

 

Как измерять сопротивление заземления/ Рассмотрим процесс измерения сопротивления заземления с помощью прибора ИС-20. Измерение проводится согласно ГОСТ Р 50571.16-2007 Электроустановки низковольтные Часть 6 Испытания. Измерение сопротивление заземлителя с помощью штырей по четырех проводному методу

Измерение сопротивление заземлителя 

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивление заземлителя с помощью штырей по трехпроводному методу

  • Необходимо отключить заземлитель от шины заземления.
  • К заземлителю подсоединить измерительный провод к разъему П1.
  •  Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с разъемом П2.
  • Ттоковый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по четырехпроводному  методу

Измерение сопротивление заземлителя 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему «клещи».
  • К заземлителю выше измерительных клещей подсоединить измерительные провода к разъемам Т1 и П1. Измерительный провод Т1 компенсирует сопротивление измерительного кабеля П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземлителя с применением измерительных клещей по трехпроводному  методу

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить клещами и подключить  к разъему «клещи».
  • К заземлителю подсоединить измерительный провод к разъему П1.
  • Потенциальный штырь необходимо воткнуть в землю на расстоянии не менее 20 м от заземлителя и соединить с раземом П2.
  • Токовый штырь необходимо воткнуть в землю на расстоянии не менее 40 м от заземлителя и соединить с разъемом Т2.
  • Штырь втыкать в землю на максимальную глубину не менее 0,5 м. Если напряжение помехи превышает 24 В, необходимо сменить местоположение штырей.
  • Начать измерение, нажав кнопку Rx.

 

Измерение сопротивления заземления с измерительными клещами и передающими клещами

 

Измерение сопротивление заземлителя

 

  • С измерительными клещами нет необходимости отключать заземлитель от шины заземления. Прибор компенсирует протекающий по шине ток с помощью измерительных клещей.
  • Заземлитель обхватить измерительными клещами и подключить  к разъему П1.
  • Клещами передающими обхватить шину заземления не менее чем через 30 см от измерительных клещей. Передающие клещи позволяют проводить измерение сопротивления заземления без штырей, где уложен асфальт. Если схема заземления многоэлементная, показания будут завышенные, т.к. измерение включают все элементы заземления.
  • Переключить прибор в режим измерения двумя клещами, убедиться величина тока в шине заземления не более 2 А.
  • Начать измерение, нажав кнопку Rx.

 

Измерение удельного сопротивления грунта

 

Измерение сопротивление заземлителя

Удельное сопротивление грунта определяется по методике Вернера. Согласно этой методике штыри втыкают на одинаковом расстоянии d по прямой линии. Расстояние между штырями d должно быть более 5 раз больше глубины штырей. Удельное сопротивление грунта измеряется в Ом*м. Штыри 4 штуки соединить с прибором измерительными проводами к разъемам Т1, П1, П2, Т2.

 

Нормы сопротивления заземления электроустановок регламентируются ПЭЭП. Правила эксплуатации электроустановок потребителей для приборов напряжением питания до 1000 В таблица 42. Для приборов с напряжением питания 220 В и 380 В с заземленной нейтралью сопротивление заземления на вводе должно быть не более 30 Ом.  При удельном сопротивлении грунта более 100 Ом*м сопротивление заземления вычисляется по формуле 0,3 от удельного сопротивления грунта. Для грунта с удельным сопротивлением 300 Ом*м допустимое сопротивление заземления до 90 Ом.

 

Измерение сопротивления заземления рекомендуется проводить в летнее время года с сухим грунтом и в зимнее время года когда грунт промерз, в этом случае удельное сопротивление грунта максимально. При изменении температуры грунта с 0 до -5 градусов,  удельное сопротивление грунта возрастает в 8 раз. При влажном грунте удельное сопротивление уменьшается в разы, что положительно влияет на сопротивление заземления. Сопротивление заземления не должно превышать нормативов в любую погоду.

Источник: deomera.ru

Пример клещей для измерения сопротивления заземления

Преимущества безэлектродного способа измерения сопротивления заземления особенно явно проявляются, если использовать легкие и компактные приборы. Например, Fluke 1630, размеры которого составляют всего 276 x 100 x 47 мм, а вес — 750 г. Питается прибор от автономного источника (щелочной батареи), время работы без замены батареи составляет 8 ч. В приборе используются только одни клещи, достаточно обхватить ими провод или шину, ведущие к заземлению, и через 0,5 с на дисплее появится значение сопротивления.

Безэлектродный способ измерения сопротивления заземления
Измеритель сопротивления заземления Fluke 1630

Прибор способен измерять сопротивление заземления в диапазоне от 0,025 до 1500 Ом. Этот диапазон разбит на 7 поддиапазонов, выбор которых осуществляется автоматически. Столь широкий диапазон позволяет использовать прибор не только для измерения сопротивления заземления, но и сопротивления утечки.

Кстати, Fluke-1630 может использоваться и как обычные токовые клещи, измеряя ток силой до 4 А.

Интерпретация результатов измерений

Точность измерения сопротивления, не превышающего 100 Ом прибором Fluke 1630 составляет не более +/- 1,5%. Но здесь важно понимать, какое именно сопротивление мы измеряем.

Безэлектродный способ измерения сопротивления заземления
Эквивалентная схема цепи

 

Рассмотрим эквивалентную схему цепи. Из нее видно, что измеряется сопротивление электрической цепи Rs, в которую входят другие заземления и собственно земля.

Измерительные клещи выдают значение, рассчитанное по формуле:

Rs = E/I,

где E — напряжение, индуцированное в проводнике, а I — измеренный ток.

При этом,

Rs = Rg + Rz + 1/(1/R1 + 1/R2 + … 1/Rn),

где Rg – сопротивление исследуемого заземления, Rz – сопротивление почвы, n – количество заземлений, подключенных параллельно к исследуемому.

Сумма Rz и общего сопротивления включенных параллельно заземлений много меньше максимально допустимого значения сопротивления заземления (4 — 8 Ом). Поэтому принимают, что

Rg ≈ Rs,

причем в реальности Rg < Rs.

Для измерений используется частота около 3 кГц. Это также может стать источником погрешности, так как на этой частоте уже начинает сказываться индуктивность проводов. Но, опять-таки, наличие у проводов индуктивности вносит погрешность в сторону увеличения сопротивления.

Можно сделать вывод, что метод безэлектродного измерения сопротивления заземления дает оценку параметра сверху. Если вы получили определенный результат, то можете быть уверены, что в реальности сопротивление заземления будет немного ниже. Это очень важно с точки зрения безопасности, так как погрешность метода принципиально не может привести к заниженной оценка сопротивления, когда неисправное заземление будет оцениваться как исправное.

См. также:

Источник: zandz.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.