Методы измерения сопротивления заземления


Измерение сопротивления заземления — метод падения потенциала с помощью клещей

Измерение сопротивления заземления — трудоемкий процесс. Выполнение измерений требует от специалистов ответственного подхода. Так как результаты зависят от структуры заземления, рельефа и других объективных факторов, необходимо приложить физические и умственные усилия для получения верного измерения. При измерении сопротивления заземления не должен быть упущен ни один элемент измерительной процедуры. Использование упрощенных методов измерений приводит к ошибкам и утрате метрологической ценности измерений.

В этой ситуации, полезным становится устройство, которое упростит или ускорит проведение измерений. Если измеряемая система заземления состоит из большого количества элементов, то для измерения сопротивления отдельного элемента понадобится отключение его от общей системы. Метод падения потенциала с использованием токоизмерительных клещей устраняет этот недостаток. В этом случае время, необходимое для измерения, сокращается. Но важно учесть два фактора, которые определяют возможность измерения с использованием клещей: вид заземляемой электрической цепи и конструкцию заземления. Рассмотрим основные правила измерения методом падения потенциала.

Правила измерения сопротивления заземления методом падения потенциала


Изображение иллюстрирует измерение с помощью метода падения потенциалов

Рис. 1 Принцип метода падения потенциала

Для измерения сопротивления заземления «E», необходимо заставить ток протекать через него. Для этого дополнительный испытательный зонд H должен быть помещен в землю на определенном расстоянии от проверяемого заземления. Таким образом создается электрическая цепь нашего устройства. Ток, наводимый измерителем, создает электрические потенциалы и течение переменного тока от заземления к вспомогательному тестовому зонду H. Это течение происходит по контуру Н через землю и испытываемому заземлению. Падение напряжения произойдет из-за некоторого сопротивления испытываемого заземления. Достаточно построить электрическую цепь и измерить величину падения напряжения, чтобы определить сопротивление заземления. Для этого используется второй вспомогательный тестовый зонд S. Он помещается в землю между испытуемым заземлением Е и токовым зондом Н. Данный метод тестирования проиллюстрирован на рисунке 1.Эта схема выглядит простой. Однако нужно помнить о важных условиях:


  • Исследуемое заземление должно быть достаточно далеко, чтобы потенциал, окружающий его, не перекрывал потенциал вспомогательного зонда H.
  • Вспомогательный зонд S должен быть помещен в область с нулевым потенциалом. На этом этапе это первое условие, связанное с точностью и временем проведения измерений. Но один тест не гарантирует правильности полученных результатов. Для проверки точности измерения требуется, по меньшей мере, еще два теста. Эти тесты следует проводить, поместив испытательный зонд напряжения S на несколько метров ближе к тестируемому заземлению Е, а затем передвинуть его ближе к зонду вспомогательного тока H. Измерение считается правильным только в том случае, когда три полученных результата одинаковы или очень близки.

Этот метод популярен и используется на практике, но принципы и условия его использования часто забываются. В случае одиночного заземления практических проблем при применении этого метода нет. Примером одиночного заземляющего электрода может служить опора линии среднего напряжения как показано на рисунке 2.

Изображение иллюстрирует опору линии среднего напряэения

Рис. 2 Опора линии среднего напряжения

Это типичное одиночное заземление, поскольку заземления линии опор не связаны друг с другом. Использование метода, отличного от описанного выше, может привести к ошибкам измерения. Использование клещей в таких случаях запрещено. Рассмотрим случаи применения метода падения потенциала с использованием клещей.


Применение метода падения потенциала с использованием клещей

Для измерения сопротивления единичного заземлителя, который является частью многокомпонентной системы заземления, необходимо отключить измеряемую часть заземления от всей системы. С помощью клещей возможно определить, какой ток протекает через элемент заземления и насколько велико падение напряжения без разъединения испытуемого соединения. Это будет тот же вариант измерения сопротивления заземления методом падения потенциала, что показан на рисунке 1. Единственное различие заключается в том, что мы измеряем ток, который протекает через один заземлитель, с помощью клещей.

Изображение иллюстрирует как измерять сопротивление заземления клещами

Рис. 3 Принцип измерения сопротивления заземления с использованием клещей


Молниеотвод здания показан на рисунке 3, где четыре отдельных заземлителя соединяются друг с другом на крыше. Ток, который производит прибор, протекает по всей цепи, но клещи измеряют значение в отдельном элементе системы заземления. Это очень удобный метод, но он не может использоваться для всех случаев. Причина этого — форма клещей. Клещи имеют определенные размеры, толщину и угол подключения. Из-за этого не удается подключить их в необходимом месте. Часто строительные компании покрывают систему заземления пенополистиролом и устанавливают небольшие смотровые зазоры на испытательных стыках. Из-за этого подключение громоздких клещей невозможно. Главные два ограничения при подключении клещей: размер испытательного зазора и электрическая цепь заземления.

Изображение иллюстрирует как измерять клещами заземление низковольтной опоры

Рис. 4 Заземление низковольтной опоры

Низковольтная линия показана на рисунке 4. Заземления отдельных опор произведены кабелем PEN. Если посмотреть на рисунок 3, то можно предположить, что достаточно наложить клещи на испытательное заземление и провести измерение. К сожалению, это невозможно сделать. Заземляющий проводник опоры соединен с ее фундаментом. Сам бетон содержит влагу. Содержание воды в бетоне в сочетании с присутствием минеральных солей создает электролит, проводящий электрический ток.


гда прибором запускается течение тока, ток появится во всей линии. Клещи должны измерять значение тока, протекающего через заземление опоры. Но присутствует также ток, который течет через арматуру опоры и бетон, из которого сделан фундамент опоры. Последний — незначительный, но его учитывать тоже необходимо. Прибор измеряет величину падения напряжения для суммы токов, протекающих через арматуру, бетон и измеренное заземление. Но в то же время прибор будет измерять сопротивление по току только для той части, что измерена с помощью клещей. Но реальная сумма токов, вызывающих измеренное падение напряжения, больше, чем ток, протекающий через клещи. В результате полученное значение сопротивления заземления будет выше, чем реальные значения. Это не критическая ситуация, так как защита человека от поражения электрическим током все равно будет выполнять свои функции. Однако результаты измерений приводят к ненужной модернизации основания опоры, которая повлечет за собой дополнительные расходы. Разумеется, заземление возможно разобрать и модернизировать, но такие работы запрещены в действующих линиях электропередач правилами безопасности. Выключение линии — дорогостоящий и хлопотный процесс.

Также большие проблемы связаны с высоковольтными линиями. Потому как опоры — это большие проводящие элементы. На них нельзя использовать такие клещи. Кроме размера высоковольтных опор, сама конструкция и реализация заземления не позволяет проводить эти измерения с помощью клещей. Все эти факторы делают невозможным анализ результатов измерения, которые сделаны только на соединительном проводнике.

Источник: www.pribortorg.by

Испытания заземления


Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

Измерение сопротивления2

Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

Чем измеряют заземление


Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

Измерение сопротивления3

Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

Измерение сопротивления4


Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

Измерение сопротивления5

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Измерение сопротивления6

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:

  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Измерение сопротивления7

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

Формула

где:
ρ — сопротивление грунта на единицу длины (Ом×м)
L — протяженность заземлителя (в метрах)
d — ширина заземлителя (в метрах)
T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

Формула2

где:

ρ — сопротивление грунта на единицу длины (Ом×м);
L — протяженность заземлителя (в метрах);
d — ширина заземлителя (в метрах);
T — расстояние от поверхности земли до середины заземлителя (в метрах);
С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Измерение сопротивления9

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Измерение сопротивления10

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

Источник: ProFazu.ru

О компании » Электролаборатория » Методики измерений » Методика измерения сопротивления заземляющих устройств

1. Общие положения

Данная методика предназначена для производства измерений сопротивлений заземляющих устройств с целью оценки качества заземляющих устройств сравнением измеренных величин сопротивлений с нормами по пункту 1.7.101 ПУЭ (7 изд.) и пункту 26.4 ПТЭЭП. По данной методике выполняются также измерения сопротивлений заземляющих устройств молниезащиты. Методика распространяется и на измерения удельного сопротивления грунта, которое по пункту 1.7.56. ПУЭ следует определять в качестве расчетного значения, соответствующего сезону года, когда сопротивление контура заземления принимает наибольшие значения.
Для получения как можно более реальных результатов пунктом 26.4 ПТЭЭП рекомендуется измерения производить в период наибольшего удельного сопротивления грунта. При завышенных результатах сопротивлений заземляющих устройств, приведенных в таблице № 36 приложения 3.1 ПТЭЭП, они сопоставляются с данными измерений удельного сопротивления грунта.

2. Методы измерений

2.1. Метод измерения прибором MRU-101.

2.1.1 Условия проведения измерений и получения правильных результатов

Для правильного выполнения измерений необходимо выполнить несколько условий. Измеритель автоматически останавливает процедуру измерения в случае обнаружения следующих внештатных ситуаций:

Ситуация Символы дисплея Пояснения
Напряжение шума превышает 24В LIMIT и UN
Напряжение шума превышает 40В LIMIT и OFL издается издается продолжительный звуковой сигнал
Нет измерения текущего тока -r- вместе с символом измерительного гнезда Отсутствие подключения измерительных щупов требуемого сопротивления или измерительные провода не подключены к щупам
Сопротивление измерительных щупов превышает 50кОм LIMIT вместе со значением сопротивления измерительного щупа в дополнительном поле дисплея Уменьшить величину сопротивления измерительного щупа или увеличить влажность грунта вблизи щупа
Измерители вышли за диапазон OFL

Дополнительно измеритель сообщает о ситуациях, в которых результат измерения не может быть признан правильным:

Ситуация Символы дисплея Пояснения
Ошибка измерений из-за отклонения сопротивления щупов более 30% LIMIT
Элементы батареи разрядились BAT
После включения измерителя клавишей R, а также после выбора функции поворотным переключателем на дисплее отображается величина напряжения шума.
Если напряжение шума превышает 24 В, то нет возможности выполнить измерение; в этой ситуации необходимо проверить подключены ли измерительные провода к прибору, подсоединен ли кабель питания к сети, нет ли короткого замыкания или нарушения электрической изоляции измерительных проводов, что может мешать измерениям.
ВНИМАНИЕ! Измеритель предназначен для работы при напряжении шумов меньше чем 40 В. Подача на любые измерительные гнезда напряжения больше чем 40 В может повредить измеритель.

Измерение начинается после нажатия клавиши START.
Прибор выполняет цикл измерений, и если нет ни одной из причин для блокировки, описанной ранее. При измерении основное поле дисплея отображает символы Д-Д — передача сигналов версии данной стадии измерения, а в поле текущие значения параметров, измеряемых в данном режиме измерителя. После окончания измерения отображаются значения величины сопротивления и сопротивления измерительного щупа или удельного сопротивления грунта. Остальные параметры измерителя могут отображаться, при нажатии клавиши SEL.
Измеритель автоматически выбирает диапазон измерения для каждой функции.

Трехполюсная схема — основная схема измерения сопротивления устройств заземления. Процедура такова:
1. Соединить заземлитель с измерительным гнездом измерителя, обозначенным как „Е» (Рис.8);
2. Вбить токовый измерительный щуп в грунт на расстоянии, превышающем 40 м. от исследуемого заземлителя, и соединить измерительным проводом с измерительным гнездом «Н» измерителя;
3. Вбить потенциальный измерительный щуп в фунт на расстоянии, превышающем 20 м от исследуемого заземлителя и соединить с измерительным гнездом „S». Исследуемый заземлитель, токовый щуп и потенциальный щуп необходимо выстроить в одну линию;
4. Поворотный переключатель функций установить в положение RE Зр;
5. Нажать клавишу START;
6. Снять показание сопротивления устройства заземления RE, а также сопротивления измерительных щупов Rs и Rh. Специфические величины могут быть считаны с основного поля дисплея после нажатия клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м к измеряемому заземлителю. Если результаты измерения отличаются больше чем 3 %, расстояние от токового щупа до исследуемого заземлителя должно быть увеличено значительно, а измерения следует повторять. Оптимальное положение потенциального щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Трехполюсная схема для измерения сопротивления заземления

Рис. 8. Трехполюсная схема для измерения сопротивления заземления

Особое внимание должно быть уделено качеству соединения исследуемого заземлителя с измерительными проводами. Место контакта должно быть очищено от краски, ржавчины, и т. п.
Если сопротивление щупов измерителя слишком высоко, измеренное сопротивление заземления будет иметь дополнительную ошибку.
Особенно большая ошибка измерения наблюдается, когда измеряется малая величина заземляющего устройства, которое имеет свободный контакт с грунтом (такая ситуация наблюдается тогда, когда заземлитель сделан как хороший электрод, в то время как верхний уровень фунта сухой и имеет плохую проводимость).
При этом условии отношение сопротивления измерительных щупов к сопротивлению исследуемого заземлителя очень большое, и, как следствие, ошибка находится в зависимости от этого отношения.
Затем, согласно формуле, данной в приложении „Технические данные » могут быть выполнены вычисления для оценки влияния сопротивления измерительных щупов, что обеспечивается использованием диаграммы, данной в том же приложении.
Контакт измерительных щупов с грунтом может быть улучшен, например, увлажнением водой места, где установлен щуп в грунт или перестановкой щупа в другое место поверхности грунта.
Измерительный провод должен быть также проверен: нет ли повреждений изоляции или не нарушен ли контакт с клеммой щупа, подключен ли зажим к измерительному щупу, не разрушен ли коррозией контакт.
В большинстве случаев точность измерений достаточна. Однако, нужно сознавать величину ошибки, возникающей в результате измерения.

В случае, если, когда необходимо выполнить измерение, без дополнительной ошибки из-за сопротивления измерительных проводов, используют четырехполюсную схему.
ВНИМАНИЕ:
для измерения удельного сопротивления грунта рекомендуется четырехполюсная схема.
Для измерения сопротивления заземления необходимо:
1. Соединить заземлитель с измерительными гнездами измерителя, обозначенными как „Е» и „ES» соответственно (Рис.9).
2. Установить токовый щуп в грунт на расстоянии больше 40 м от заземлителя и соединить с гнездом „Н».
3. Установить потенциальный щуп в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S». Заземлитель (токовый и потенциальный) и измерительные щупы должны быть выстроены в одну линию.
4. Поворотный переключатель функций должен быть установлен в положение RE 4р.
5. Нажать клавишу START.
6. Снять показание значения сопротивления заземления, а также сопротивлений измерительных щупов Rs и RH. Специфические величины можно считать с основного поля дисплея нажатием клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю. Если результаты измерений отличаются больше чем 3 %, то расстояние токового измерительного щупа до исследуемого значительно увеличивают и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Четырехполюсная схема измерения сопротивления заземления

Рис.9. Четырехполюсная схема измерения сопротивления заземления

2.1.4 Измерение суммарного сопротивления заземлителя по трёхполюсной схеме (с использованием измерительных клещей)

Измерители серии MRU-100 могут быть использованы для измерений параметров многоэлементных заземлителей (совокупность заземляющих электродов соединена в систему устройства заземления) без необходимо­сти их рассоединения.
Измерительные клещи используются для инструментального определения токов, текущих через отдельные электроды устройства заземления, при этом используется следующая процедура:

Использование измерителя для измерения сопротивления многоэлементногоустройства заземления по трёхполюсной схемеРис.10. Использование измерителя для измерения сопротивления многоэлементного устройства заземления по трёхполюсной схеме

1. Соединяют исследуемый заземлитель с измерительным гнездом измерителя, обозначенным символом „Е» (Рис.10).
2. Токовый измерительный щуп вбивают в грунт на расстоянии, превышающем 40 м от исследуемого заземлителя, и соединяют измерительным проводом с измерительным гнездом „Н».
3. Потенциальный щуп устанавливают в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S». Заземлитель (токовый и потенциальный), измерительные щупы должны быть выстроены в одну линию.
4. Подключить измерительные клещи через кабель к разъему и охватить захватом измерительных кле­щей измерительный провод, подключенный к измерительному гнезду „Е»
5. Поворотный переключатель функций [У] установить в положение RE Зр Я.
6. Нажать клавишу START.
7. Снять показания значения сопротивления заземления RE, а также значения сопротивлений измерительных щупов Rs и RH . Значения специфических параметров могут быть сняты с основного поля дисплея после на­жатия на клавишу SEL.
8. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю.
Если результаты измерений отличаются больше чем на 3 %, то значительно увеличивают расстояние токового измерительного щупа до исследуемого и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.
При измерениях сопротивления заземлителей, состоящих из системы электродов, соединенных с мачтой линии электропередачи, иногда возникает потребность в определении не только сопротивления отдельных элементов заземлителя, но и общего сопротивления всей его системы электродов. Измерив значения сопротивлений отдельных элементов заземлителя RE1, RE2, RE3, RE4, определяют общую величину сопротивления системы по формуле:

Использование измерителя для измерения сопротивления многоэлементногоустройства заземления по трёхполюсной схеме

Для измерений удельного сопротивления грунта — измерители используют сопротивления отдельных электродов системы заземлителя, для чего в геологии были разработаны специальные приборы.
В данных приборах аналогичная функция измерения задается простым выбором положения поворотного переключателя функций.
Эта функция с метрологической точки зрения идентична четырехполюсной схеме измерений сопротивления заземления, но содержит дополнительную процедуру ввода в прибор взаимного расстояния между измерительными щупами и электродами заземлителя.
Результат измерения — величина удельного сопротивления фунта определяется автоматически согласно формуле r= 2pd RE, которая применяется в Методике измерения Вернера.

Вышеупомянутая методика предполагает равные расстояния между электродами.

Схема для измерения удельного сопротивления грунта

Рисунок 11. Схема для измерения удельного сопротивления грунта

Процедура, применяемая для измерения удельного сопротивления грунта, следующая:
1. Измерительные щупы устанавливают в грунт по прямой линии через равные взаимные расстояния и
соединяют с измерительными гнездами обозначенными символами „Н», „S», „ES» и „Е»
2. Поворотный переключатель устанавливают в положение „р».
3. Нажимают клавишу START.
4. Используя клавиши управления стрелками и изменяют величину расстояния между электродами, индицируемую на дисплее так, чтобы она лучше всего с согласовывалась с фактическим расстоянием.
5. Нажимают клавишу START.
6. Снимают показания значения сопротивления заземления RE, а также значения сопротивлений измери­тельных щупов Rs и RH. Значения специфических параметров могут быть сняты с основного поля дисплея после нажатия на клавишу SEL.
ВНИМАНИЕ: в вычислениях принято, что расстояния между отдельными измерительными щупами равны (методика Вернера). Если это не так, то измерения сопротивлений отдельных электродов и последующие вычисления должны выполняться независимо.

2.1.6 Безопасные приемы работы

Работы по измерению выполняется по наряду-допуску или по распоряжению. Вид оформле­ния работ определяет работник, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, ПЭЭБ и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.
Состав бригады должен быть не менее двух человек:
— производитель работ с группой по электробезопас­ности не ниже III;
— член бригады с группой по электробезопасности не ниже III.
Металлические стержни не должны иметь заусениц. Молоток должен быть плотно насажен на рукоять и не иметь люфта.
При подаче напряжения от постороннего источника питания должны быть оформлены и выполнены организационные и технические мероприятия, как в месте подключения, так и на рабочем месте.
Соединительные провода, питающий кабель, понижающий трансформатор должны иметь двойную изоляцию.
Приборы в схемах измерений должны быть установлены на изолированном основании.
Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях.
По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

Источник: www.MegaOmm.ru

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Для чего нужно заземление

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

Устройство заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Источник: electry.ru

Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Метод амперметра-вольтметра

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Схема подключения М-416

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Источник: samelectrik.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.