Проверка устройств молниезащиты


Системы защиты объекта при попадании молнии на настоящий момент являются практически обязательным элементом зданий и сооружений, связанных с массовым пребыванием людей. Особо ответственной ролью и ее конструктивной спецификой обусловлено такое требование, как регулярная проверка системы молниезащиты, методика которой будет рассмотрена в этой статье.

Более подробно о причинах, приводящих к необходимости испытаний, их видах и требованиях к регулярности проверок, руководящей нормативной документации можно ознакомиться в соответствующих статьях — «Зачем проверять работоспособность системы молниезащиты» и «Как часто необходимо проверять систему молниезащиты».

Этапы проведения испытаний

Основная цель как вводных и внеочередных испытаний, так и плановых проверок молниезащиты, это установка соответствия параметров системы проектно-технической документации и действующим нормативам. Индивидуальные конструктивные особенности защитной системы конкретного объекта влияют на конечное содержание и объем проводимых тестов. Однако для всех объектов можно выделить следующие обязательные этапы проверки:


  1. Проверка соответствия зон защиты и выбранных конструктивно-технических решений требованиям действующих нормативов.
  2. Сравнение данных проектно-эксплуатационной документации с реальными показателями системы.
  3. Визуальный осмотр внешних устройств и элементов молниезащиты (молниеприемников, токоотводов, контактных соединений и пр.) для проверки на отсутствие механических и коррозийных повреждений и оценки качества выполненного монтажа.
  4. Проверка сварных швов и соединений на целостность и механическую прочность при помощи заданных внешних воздействий (методом простукивания молотком).
  5. Измерение значения переходного сопротивления болтовых соединений.

Условия для проведения обследования

Проведение плановых испытаний производится до начала грозового сезона. Визуальный осмотр внешних элементов молниезащиты объекта должен проводиться в ясную сухую погоду при относительной влажности атмосферного воздуха уровня низкой или нормальной.

Приборы и инструменты

В каждом конкретном случае перечень требуемых для испытаний средств и приборов определяется совместно допускающим и производителем работ.

Наиболее распространенный комплект оборудования, инструментов и средств защиты обычно включает:

  • пояс монтерский предохранительный,
  • канат страховочный,
  • каски защитные,
  • лестницы приставные,
  • молоток массой 400 гр.,
  • штангенциркуль,
  • рулетка 3 м,
  • измеритель сопротивления заземляющих устройств МRU-101.

Методы измерений

Чтобы обеспечить надежность и исправность работы системы молниезащиты, проверяют все ее показатели. Такая диагностика бывает запланированной либо внеплановой. Внеплановые проверки происходят после стихийных бедствий или при реконструкции сооружений. В процессе проверки надлежит выяснить, не подверглись ли элементы системы коррозии и целостна ли ее структура. В обязательном порядке проверяется значение сопротивления заземляющего устройства молниеотвода. Чтобы проверить соответствуют ли параметры установленным нормам, используют специальные приборы и методики.

Метод измерения прибором MRU-101

Проверка устройств молниезащитыMRU-101 – оборудование, предназначенное для измерения сопротивления заземляющих устройств. Прибор обладает высокой точностью, помехоустойчивостью и большим объемом памяти. В комплект входят токоизмерительные клещи, позволяющие проверить заземляющие устройства, не разъединяя заземлители. Диагностика выполняется по четкому алгоритму:

  1. Действительные показатели сравнивают с проектными данными.
  2. Проверяют защитные зоны и конструкцию молниеотвода на соответствие нормам.
  3. Проводят осмотр всей конструкции, соединительных контактов и сварочных швов на целостность и отсутствие ржавчины.
  4. Делают замеры сопротивления скрепленных болтами соединений.

Как сказано выше, плановые работы проводят в сухое время для получения наиболее точных данных.

Преимуществом измерителя MRU-101 является то, что при возникновении внештатных ситуаций прибор автоматически прекращает диагностику и отражает неполадки на дисплее:

  • Показатель напряжения шума выше 24В появляется надпись LIMIT и UN.
  • Показатель напряжения шума выше 40В — LIMIT и OFL, изображению сопутствует длительный сигнальный звук.
  • Отсутствует показатель текущего тока — -r- и значок, обозначающий измерительное гнездо. Такой сигнал может означать, что отсутствует подключение между измерительными проводами и щупом или щуп не имеет соответствующего сопротивления.
  • Сопротивление измерительных щупов превысило 50 кОм – LIMIT и значение сопротивления щупа. Для продолжения диагностики уменьшают показатель сопротивления щупа или повышают влажность почвы в районе щупа.
  • Измерители вышли за рамки нормативных значений – OFL.

Кроме внештатных ситуаций MRU-101 отображает моменты, при которых показатели нельзя считать верными:

  • Замеры выполнены некорректно из-за того, что сопротивление щупов отклонилось больше, чем на 30% – LIMIT.
  • Батарея измерителя разряжена – BAT.

Для отображения на экране значения напряжения шума нажимают клавишу R или поворачивают переключатель для измерения выбранного значения. Если значение напряжения шума превышает 24В, сделать измерение невозможно. Проверяют подключение измерительных проводов к оборудованию, присоединение питающего кабеля к сети, наличие короткого замыкания, состояние электроизоляции проводов. Подобные факторы не позволяют получить точные результаты.

Процесс измерения и сбора данных запускают нажатием кнопки START. При отсутствии вышеперечисленных причин блокировки MRU-101 измеряет показатели, и на дисплее отображены буквы Д-Д, обозначающие передачу сигнала, и данные показателей на момент исследования. Когда диагностика завершена, появляются значения сопротивления на выбранном участке, сопротивления щупов и сопротивления грунта. Значения других показателей появляется после выбора клавиши SEL. Диапазон для измерения каждой функции выбирается аппаратом MRU-101 автоматически.

Измерение по трёхполюсной схеме

Метод измерения по трехполюсной схеме считается основным при измерении сопротивления молниезащитных конструкций. Алгоритм действий следующий:

  1. Заземлитель соединяют с гнездом измерительного прибора «Е».
  2. Токовый щуп вбивают в землю на расстоянии не меньше 40 м от системы молниеотвода и соединяют с гнездом «Н» измерительным проводом.

  3. Потенциальный измерительный щуп вбивают в землю на расстоянии не менее 20 м от системы молниеотвода и соединяют с гнездом «S». Заземлитель и оба щупа должны быть выстроены в одну линию.
  4. Поворотный переключатель выставляют в положение RE Зр.
  5. Нажимают кнопку START, и измеритель начинает собирать данные.
  6. После окончания диагностики снимают показания сопротивления устройства заземления RE и обоих щупов Rs и Rh. При необходимости снятия дополнительных показателей выбирают SEL.
  7. Потенциальный щуп перемещают на 1 м ближе к молниезащитной системе и повторяют измерительный процесс. Величины, полученные в ходе двух проверок, не должны отличаться более, чем на 3%. Если процент выше, увеличивают расстояние между системой и токовым щупом и продолжают диагностику до получения максимально приемлемого значения.

При использовании трехполюсной схемы обеспечивают соответствующее соединение измерительных проводов и диагностируемой системы. Места сцепки зачищают, избавляются от ржавчины и краски. При повышенном сопротивлении щупов измерительного аппарата сопротивление имеет погрешность. Наибольшая погрешность при диагностике системы образуется при измерении величины сопротивления заземляющего устройства, непосредственно касающегося земли. Если почва сухая с плохой проводимостью, то такая ситуация — не редкость. Причина погрешности заключается в высоком сопротивлении измерительных щупов к сопротивлению заземлителя. Для получения максимально точных показателей добиваются качественного контакта между землей и щупами. Для этого увлажняют почву в области щупа или меняют его местоположение. Измерительные провода также нуждаются в тщательной проверке на наличие повреждений изоляционного слоя, некачественное подключение зажима к измерительному щупу, нарушения сцепки с клеммой щупа и следов коррозии.


По большей части, все величины собранные по трехполюсной схеме, являются достаточно точными при учете допустимых погрешностей. Чтобы правильно оценить воздействие сопротивления щупов, потребуется провести отдельные вычисления.

Измерение по четырехполюсной схеме

Для получения измерений повышенной точности и максимального исключения погрешностей применяют четырехполюсную схему. Сбор данных осуществляют по соответствующему алгоритму:

  1. Организуют соединение между молниезащитой и измерительными гнездами оборудования «Е» и «Еs».
  2. Токовый щуп забивают в землю на расстоянии не менее 40 м с системой молниеотвода и соединяют с гнездом «Н».
  3. Потенциальный щуп забивают в землю на расстоянии не меньше 20 м с системой молниеотвода и соединяют с гнездом «S». Заземлитель и щупы выстраивают по одной линии.
  4. Выставляют переключатель функций в положение RE 4р.
  5. Нажимают кнопку START.
  6. Документируют полученные данные (сопротивление заземления и обоих щупов). Если есть необходимость выяснить величины дополнительных показателей, выбирают SEL.
  7. Потенциальный щуп перемещают на 1 м ближе к молниезащитной системе и повторяют измерительный процесс. Величины, полученные в ходе двух проверок, не должны отличаться более, чем на 3%. Если процент выше, увеличивают расстояние между системой и токовым щупом и продолжают диагностику до получения максимально приемлемого значения.

Подведем итоги

Все значения, собранные в ходе проверки, положено заносить в протокол испытаний. Этот документ официально подтверждает проведенную процедуру. Условия проведения исследования также записывают в обязательном порядке. Все измерительные мероприятия нацелены на проверку способности системы защиты от молний выполнять свое предназначение. Базовые значения всех показателей, на которые ориентируются в ходе проверки, содержатся в ГОСТах и стандартах.

Поэтому создание и обслуживание таких систем лучше доверить профессионалам — лицензированной электролаборатории с квалифицированным персоналом, использующим сертифицированные электроизмерительные приборы.

Одним из таких профессионалов является электротехническая лаборатория (ЭТЛ) «Мега.ру», предоставляющая широкий спектр услуг организациям и частным лицам Москвы, Московской области, а также прилегающих областей. Заказать работу, получить консультацию или уточнить детали сотрудничества можно по телефонам и e-mail, опубликованным на странице «Контакты», или просто воспользоваться формой обратной связи в боковой колонке сайта.

 

Источник: m-e-g-a.ru

2. Технические мероприятия


Перечень необходимых технических мероприятий определяет допускающий совместно с производителем работ в соответствии с требованиями СНиП 12-03-99.

При осмотре и проверке состояния молниеприемников и токоотводов на крышах зданий и сооружений необходимо использовать пояса монтерские предохранительные. При недостаточной длине стропа пояса необходимо пользоваться страховочным канатом, предварительно закрепленным за конструкцию здания. При этом одно из лиц, проводящих испытания медленно опускает или натягивает страховочный канат. При проверке сварных соединений наружных токопроводов, конструкции молниеприемников инструмент (мо­лоток) необходимо привязывать во избежание падения. При приближении грозы все работы должны быть прекращены, бригада удалена с рабочего места.

3. Нормируемые величины

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты к I категории должна выполняться отдельно стоящими стержневыми или тросовыми молниеотводам

Защита от прямых ударов молний зданий и сооружений, относимых по устройству молниезащиты ко II и III категориям, с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами.


При уклоне кровли не более 1:8 в качестве молниеотвода можно использовать молниеприемную сетку, выполненную из стальной проволоки диаметром не менее 6 мм с шагом ячеек для II категории защиты не более 6х6 м и 12х12 м для II I проложены к заземлителям не реже, чем через 25 м по пе­риметру здания, располагать их следует не ближе 3 м от входов в здания и в местах недоступных прикосновению людей и животных. категории защиты. Токоотводы от метал­лической кровли или молниеприемной сетки должны быть

Во всех вышеизложенных случаях дополнительно в ка­честве естественных заземлителей систем молниезащиты следует использовать железобетонные фундаменты зданий.

Размеры молниеприемников, токоотводов и элементов заземлителей приведены в таблице 1.

ТАБЛИЦА 1.


Форма молниеприемников, токоотводов

Снаружи

В земле

Стержневые молниеприемники (сталь)

— сечение не менее

— длина не менее

100 мм2

200 мм

Тросовые молниеприемники (стальной многопроволочный канат)

— сечение не менее

— длина

35 мм2

в зависимости от зоны защиты

Круглые токоотводы и пере­мычки (сталь)

— диаметр не менее

6 мм

Круглые вертикальные элект­роды (сталь)

— диаметр не менее

10 мм

Круглые горизонтальные элек­троды (сталь)

* — диаметр не менее

10 мм

Прямоугольные токоотводы и заземлители (сталь)

— сечение не менее

— толщина не менее

48 мм2

4 мм

160 мм2

4 мм

*Только для уравнивания потенциалов внутри зданий и для про­кладки наружных контуров на дне котлована по периметру здания Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться сваркой, а при недопустимости огневых работ — болтовыми соединениями с переходным сопротивлением не более 0,05 Ом. Сварные швы не должны иметь трещин, прожогов, непроваров величиной более 10% длины шва, незаправленных кратеров и подрезов. Поверхность шва должна быть равномерно-чешуйчатой, без наплывов. Длина сварного шва должна быть: для конструкции круглых сечений не менее 6d (d—диаметр молниеприемника, токоотвода, заземли-теля), прямоугольных — 2 В, где В — ширина полосовой стали конструкций систем молниезащиты (п. 3.2 ВСН 164-82, ГОСТ 10434-82, СНиП Ш-33-76 раздел II).

Испытания систем молниезащиты производятся:

Методика проверки систем молниезащиты

  • перед приемкой их в эксплуатацию
  • для зданий и сооружений I и II категории защиты не реже одного раза в год
  • для зданий и сооружений III категории защиты не реже одного раза в 3 года

При этом контроль переходного сопротивления болтовых соединений систем молниезащиты должен проводит­ся ежегодно с началом грозового сезона.

Устройства молниезащиты зданий и сооружений дол­жны быть испытаны, приняты и введены в эксплуатацию до начала отделочных работ.

4. Проведение испытаний.

Проведение испытаний систем молниезащиты включает следующие этапы:

  • проверка соответствия системы молниезащиты проектной документации, обоснованности зоны защиты и соответствия конструкции системы молниезащиты требованиям РД 34.21.122-87
  • проверка визуальным осмотром целостности и защищенности от коррозии доступных обзору частей молниеприемников, токоотводов и контактов между ними
  • испытания целостности и механической прочности сварных соединений систем молниезащиты (проводится простукиванием сварных соединений молотком)
  • измерение переходных сопротивлений болтовых соединений (по методике измерения сопротивления заземлителей и заземляющих устройств)
  • измерение сопротивления заземлителей отдельно стоящих молниеотводов (по методике измерения сопротивления заземлителей и заземляющих устройств). Величина этого сопротивления не должна превышать более чем в пять раз результаты замеров во время приемосдаточных испытаний. Если заземлитель одновременно выполняет функции защитного (рабочего) заземления электроустановок здания (сооружения) и заземления системы молниезащиты дополнительного измерения его сопротивления не требуется

5. Методы измерений

5.1. Метод измерения прибором MRU-101.

5.1.1 Условия проведения измерений и получения правильных результатов

Для правильного выполнения измерений необходимо выполнить несколько условий. Измеритель автоматически останавливает процедуру измерения в случае обнаружения следующих внештатных ситуаций:

Ситуация

Символы дисплея

Пояснения

Напряжение шума превышает 24В

LIMIT и UN

 

Напряжение шума превышает 40В

LIMIT и OFL издается издается продолжительный звуковой сигнал

 

Нет измерения текущего тока

-r- вместе с символом измерительного гнезда

Отсутствие подключения измерительных щупов требуемого сопротивления или измерительные провода не подключены к щупам

Сопротивление измерительных щупов превышает 50кОм

LIMIT вместе со значением сопротивления измерительного щупа в дополнительном поле дисплея

Уменьшить величину сопротивления измерительного щупа или увеличить влажность грунта вблизи щупа

Измерители вышли за диапазон

OFL

 

Дополнительно измеритель сообщает о ситуациях, в которых результат измерения не может быть признан правильным:

Ситуация

Символы дисплея

Пояснения

Ошибка измерений из-за отклонения сопротивления щупов более 30%

LIMIT

 

Элементы батареи разрядились

BAT

 

После включения измерителя клавишей R, а также после выбора функции поворотным переключателем на дисплее отображается величина напряжения шума.

Если напряжение шума превышает 24 В, то нет возможности выполнить измерение; в этой ситуации необходимо проверить подключены ли измерительные провода к прибору, подсоединен ли кабель питания к сети, нет ли короткого замыкания или нарушения электрической изоляции измерительных проводов, что может мешать измерениям.

ВНИМАНИЕ! Измеритель предназначен для работы при напряжении шумов меньше чем 40 В. Подача на любые измерительные гнезда напряжения больше чем 40 В может повредить измеритель.

Измерение начинается после нажатия клавиши START.

Прибор выполняет цикл измерений, и если нет ни одной из причин для блокировки, описанной ранее. При измерении основное поле дисплея отображает символы Д-Д — передача сигналов версии данной стадии измерения, а в поле текущие значения параметров, измеряемых в данном режиме измерителя. После окончания измерения отображаются значения величины сопротивления и сопротивления измерительного щупа или удельного сопротивления грунта. Остальные параметры измерителя могут отображаться, при нажатии клавиши SEL.

Измеритель автоматически выбирает диапазон измерения для каждой функции.

5.1.2 Измерение сопротивления системы молниезащиты по трёхполюсной схеме.

Трехполюсная схема — основная схема измерения сопротивления устройств молниезащиты. Процедура такова:

Методика проверки систем молниезащиты

  • Соединить заземлитель с измерительным гнездом измерителя, обозначенным как „Е» (Рис.1)
  • Вбить токовый измерительный щуп в грунт на расстоянии, превышающем 40 м. от исследуемой системы, и соединить измерительным проводом с измерительным гнездом «Н» измерителя
  • Вбить потенциальный измерительный щуп в фунт на расстоянии, превышающем 20 м от исследуемой системы и соединить с измерительным гнездом „S». Исследуемый заземлитель, токовый щуп и потенциальный щуп необходимо выстроить в одну линию
  • Поворотный переключатель функций установить в положение RE Зр
  • Нажать клавишу START
  • Снять показание сопротивления устройства заземления RE, а также сопротивления измерительных щупов Rs и Rh. Специфические величины могут быть считаны с основного поля дисплея после нажатия клавиши SEL
  • Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м к измеряемой системе. Если результаты измерения отличаются больше чем 3 %, расстояние от токового щупа до исследуемой системы должно быть увеличено значительно, а измерения следует повторять. Оптимальное положение потенциального щупа — 62 % от расстояния между токовым щупом и исследуемой системы

Рисунок 1. Трёхполюсная схема для измерения сопротивления

Особое внимание должно быть уделено качеству соединения исследуемой системы с измерительными проводами. Место контакта должно быть очищено от краски, ржавчины, и т. п.

Если сопротивление щупов измерителя слишком высоко, измеренное сопротивление заземления будет иметь дополнительную ошибку.

Особенно большая ошибка измерения наблюдается, когда измеряется малая величина заземляющего устройства, которое имеет свободный контакт с грунтом (такая ситуация наблюдается тогда, когда молниеотвод сделан как хороший электрод, в то время как верхний уровень фунта сухой и имеет плохую проводимость).

При этом условии отношение сопротивления измерительных щупов к сопротивлению исследуемого заземлителя очень большое, и, как следствие, ошибка находится в зависимости от этого отношения.

Затем, согласно формуле, данной в приложении „Технические данные » могут быть выполнены вычисления для оценки влияния сопротивления измерительных щупов, что обеспечивается использованием диаграммы, данной в том же приложении.

Контакт измерительных щупов с грунтом может быть улучшен, например, увлажнением водой места, где установлен щуп в грунт или перестановкой щупа в другое место поверхности грунта.

Измерительный провод должен быть также проверен: нет ли повреждений изоляции или не нарушен ли контакт с клеммой щупа, подключен ли зажим к измерительному щупу, не разрушен ли коррозией контакт.

В большинстве случаев точность измерений достаточна. Однако, нужно сознавать величину ошибки, возникающей в результате измерения.

5.1.3 Измерение сопротивления системы молниезащиты по четырехполюсной схеме

В случае, если, когда необходимо выполнить измерение, без дополнительной ошибки из-за сопротивления измерительных проводов, используют четырехполюсную схему.

Для измерения сопротивления системы необходимо:

  • Соединить молниеотвод с измерительными гнездами измерителя, обозначенными как „Е» и „ES» соответственно (Рис.2)
  • Установить токовый щуп в грунт на расстоянии больше 40 м от места присоединения к системе молниезащиты и соединить с гнездом „Н»
  • Установить потенциальный щуп в грунт на расстоянии 20 м от измеряемой системы, соединенного с гнездом „S». Заземлитель (токовый и потенциальный) и измерительные щупы должны быть выстроены в одну линию
  • Поворотный переключатель функций должен быть установлен в положение RE 4р
  • Нажать клавишу START
  • Снять показание значения сопротивления заземления, а также сопротивлений измерительных щупов Rs и RH. Специфические величины можно считать с основного поля дисплея нажатием клавиши SEL
  • Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемой системе. Если результаты измерений отличаются больше чем 3 %, то расстояние токового измерительного щупа до исследуемого значительно увеличивают и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемой системой молниезащиты

Рисунок 2. Четырехполюсная схема измерения сопротивления системы молниезащиты

6. Средства испытаний и оборудование

Перечень необходимых средств испытаний и оборудования определяет допускающий совместно с производите­лем работ. В общем случае комплект приборов, инструментов, защитных средств должен включать следующее:

  • пояса монтерские предохранительные, страховочные канаты, защитные каски, приставные лестницы;
  • прибор МRU-101
  • молоток (вес 400 гр.)
  • штангенциркуль
  • рулетка 3 м

7. Безопасные приёмы работы

Работы по проверке систем молниезащиты зданий выполняется по наряду-допуску или по распоряжению. Вид оформления работ определяет работник, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, ПТЭЭП и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.

Состав бригады должен быть не менее двух человек:

  • производитель работ с группой по электробезопасности­ не ниже III
  • член бригады с группой по электробезопасности не ниже III

Указанные лица должны пройти медицинское освидетельствование­ для допуска к верхолазным работам и про­верку знаний СНиП 12-03-99 в объеме требований безопасности верхолазных работ. О разрешении на выполнение верхолазных работ делается специальная запись в жур­нале проверки знаний и в удостоверении о проверке значений на странице «Свидетельство на право проведения спе­циальных работ».

По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

Источник: www.MegaOmm.ru

Виды молниезащитных систем

Внешние молниезащитные системы

Подвергаются первичному воздействию атмосферного электричества. Их задача – принять грозовой заряд, направить по безопасному пути и обеспечить его растекание в земле. Внешние системы составляется из молниеприемников, тоководов (молниеотводов, спусков) и заземляющего устройства (ЗУ).

В проектах грозозащиты функция молниеприемника в основном возлагается на стержневые, тросовые или сетчатые элементы.

Для улавливания атмосферного заряда могут также использоваться крупные металлоконструкции – прожекторные мачты или крыши зданий из профнастила. Последний вариант характерен для молниезащитных устройств в частных домов.

Конструкции внешних МЗС отличаются одновременно относительной простотой и высокой эффективностью. Поэтому преобладающее количество проверок состояния подобной молниезащиты сводится к внимательному осмотру квалифицированным специалистом или измерению сопротивления её цепи.

Например, при обследовании молниеприемника в виде металлической крыши особое внимание уделяется

  • количеству мест заземления – их должно быть не менее двух, соединённых в единый замкнутый контур;
  • обустройству токоотводящих спусков, которые должны подключаться к кровельному настилу по его периметру через каждые 20 м.

Внутренние молниезащитные системы

Препятствует искрению в электроустановке, а также способствует гашению краткосрочных сетевых импульсов высокого напряжения (набегающих волн), вызванных электромагнитным воздействием грозовых разрядов. Сглаживание опасных импульсов достигается использованием систем экранирования, уравнивания потенциалов, устройств защиты от импульсных перенапряжений (УЗИП), в том числе разрядников и нелинейных ограничителей перенапряжений.

Работоспособность приборов, применяемых во внутренних МЗС, не всегда удается определить визуально.

Поэтому для испытаний устройств молниезащиты инженеры «ЭНЕРГО-КОМАНД» используют специальные тестеры и генераторы импульсного тока, например EUROTEST и TESTER H1.

Трехполюсная система измерений

Для замеров сопротивления системы защиты от ударов молнии метод считается базовым. Работы проводятся следующим образом:

  1. Заземлитель присоединяют к измерительному гнезду оборудования.
  2. Токовый щуп направляют в грунт. Измерение проводят на расстоянии свыше 40 метров от защитной системы. Щуп специальным проводником присоединяют к гнезду прибора под названием «H».
  3. Потенциальный щуп устанавливают в грунт на расстоянии более 20 метров от исследуемой защитной системы. Далее щуп соединяют с измерительным гнездом, обозначенным буквой S.
  4. Щупы и заземлитель выстраивают в единую линию.

Поворотный переключатель ставят в позицию RE 3p. Далее начинают замеры после нажатия на клавишу START.

После окончания процедуры на мониторе появляется показатель сопротивления заземлителя (RE) и данные, полученные со щупов. Дистанцию между потенциальным щупом и защитной системой сокращают до одного метра. После делают еще один замер. Если результаты разнятся более чем на 3 %, токовый щуп отдаляют на большее расстояние. Измерение осуществляют повторно — вплоть до получения приемлемого соотношения полученных данных.

Измерения по трехполюсной схеме предполагают учет нескольких нюансов. Например, при повышенном сопротивлении щупов данный показатель для заземления устанавливается с определенной погрешностью. То же следует сказать и о замерах сопротивления заземлительного контура, находящегося в свободном контакте с грунтом. Причина имеющихся погрешностей заключается в чрезмерно высоком соотношении сопротивлений щупов и заземлителя.

Чтобы улучшить точность полученных данных, необходимо добиться более качественного контакта щупов с землей. С этой целью щупы переставляют в другое, более влажное место. Альтернатива такому решению — искусственное увлажнение почвы перед выполнением проверки. Кроме того, нужно осмотреть измерительные проводники, чтобы убедиться в целостности изоляционного материала, отсутствии следов ржавчины, проверить контакты с клеммами щупов.

Обратите внимание! Результаты всех дополнительных процедур записываются в итоговый протокол.

Соблюдение всех рекомендованных условий позволяет получить достаточно точные результаты (с учетом общей погрешности измерений). Следует иметь в виду, что корректная оценка влияния сопротивления щупов требует дополнительных вычислений.

Порядок проведения проверок осмотров устройств молниезащиты

Объём и содержание проверочных мероприятий могут изменяться, так как они зависят от исполнения текущего перечня профилактических работ либо от предписаний, выдаваемых в связи с внеплановыми освидетельствованиями. Если же диагностика системы грозозащиты соответствует наиболее полной рабочей программе, то выполняются:

  1. Проверка техдокументации устройств на соответствие их проектным параметрам и защищаемым объектам. Для сверки параметров МЗС рассматриваются:
      проект с рабочими чертежами конструкций и электросхемами молниезащиты, схемы защитных зон молниеприемников;
  2. пояснительная записка к проекту;
  3. комплект приемосдаточной документации.
  4. Визуальный осмотр молниезащиты для выявления элементов, требующих профилактики, ремонта либо замены. Обследуются:
      молниеприемники;
  5. мачты;
  6. растяжки;
  7. УЗИП и прочие защитные аппараты;
  8. молниеотводы;
  9. видимые участки заземляющих устройств. Для осмотров высотных частей могут использоваться оптические приборы (бинокль).
  10. Контроль надёжности механических креплений, целостность контактов, а также степень коррозионных разрушений проводников. При необходимости осуществляются противокоррозионные профилактические мероприятия;
  11. Вскрытие грунта для ревизии подземных частей молниеотводов и их заземлителей. При обнаружении электродов с 25% степенью разрушений выписывается предписание об их замене;
  12. Снятие электрических характеристик, включая замер проводимости цепей молниезащиты и вольтамперных показателей аппаратов УЗИП полупроводникового типа. Нормы сопротивлений для ЗУ и МЗС должны соответствовать величинам, указанным в ПУЭ с учетом разновидности систем и защищаемого оборудования. Они контролируются на участках от молниеприемника до заземляющего устройства, а также локально на контактных соединениях. Измеряются сопротивление растеканию импульсного тока (требуется для расчета эквивалентного удельного сопротивления земли), потенциалы импульсных перенапряжений и прочие электрические характеристики. Вольт-амперные показатели аппаратов сравниваются с их паспортными значениями. Подробней о методиках проверки молниезащиты с использования лабораторного оборудования можно прочитать здесь.

Необходимое измерительное оборудование и приборы

Качество установки молниеотвода проверяют соответствующей измерительной техникой. Доступны как автоматизированные измерители, так и приборы с ручной настройкой. Ручное оборудование считают устаревшим и постепенно выводят из эксплуатации.

Наибольшее распространение среди автоматизированных устройств проверки молниезащиты получил MRU-101 польского производства. Измеритель MRU-101:

  • выполняет измерения сопротивления заземления;
  • определяет удельное сопротивление геоподосновы;
  • измеряет ток растекания;
  • осуществляет выбор диапазона с необходимыми настройками после нажатия клавиши START;
  • хранит несколько сотен результатов тестирования.

Сильная сторона MRU-101, интерфейс которого показан на рисунке 2, – постоянный контроль уровня шумов и условий измерений с полной остановкой процесса при обнаружении грубых ошибок. Кроме того, при определении прибором возможности получения недостоверных показаний он генерирует предупреждающее сообщение.

Проверка устройств молниезащиты
Рисунок 2. Органы управления, разъемы для подключения щупов и индикатор измерителя MRU-101

Для проведения испытаний молниезащиты чаще всего используют трехполюсную схему, структура которой показана на рисунке 3 с подключением рабочих входов H, S, E измерителя к трем разным вбитым в землю в районе электродов заземляющего контура измерительным щупам. Расстояние между щупами выбирают равным не менее 20 м.

Проверка устройств молниезащиты
Рисунок 3. Трех- и четырехполюсные схемы подключения прибора MRU-101 к измерительным щупам

Реже применяют четырехполюсную схему. Ее отличие от трехполюсной — соединение дополнительным проводом входа ES с тем же электродом, который подключен к входу E (см. рисунок 3).

MRU-101 позволяет измерить также величину тока растекания бесконтактным методом. Для этого к пятому входу так, как показано на рисунке 4, подключают измерительные клещи, которые входят в комплект поставки. Измерения требуют предварительной калибровки клещей, выполняемой в автоматическом режиме.

Проверка устройств молниезащиты
Рисунок 4. Схема подключения измерительных клещей к прибору MRU-101

Когда проводится проверка и осмотр устройств молниезащиты

Внеочередная диагностика внешних или внутренних систем защиты от воздействий атмосферного электричества, назначаться специальным приказом по предприятию или предусматриваться в технико-эксплуатационных инструкциях. Визуальные осмотры и испытания молниезащиты выполняются для молниезащитной системы, либо только для отдельных частей, если:

  • завершены ремонтные работы или реконструкция системы;
  • на объекте проводились иные работы, которые оказали влияние на характеристики грозозащиты;
  • произошла внештатная ситуация, связанная с работой устройств молниезащиты;
  • получено соответствующее распоряжение федеральных контролирующих служб.

Внеочередные проверки молниезащиты, в том числе устройств защиты от импульсных перенапряжений, рекомендуются выполнять после каждого прохождения погодного фронта с высокой грозовой активностью.

Организация плановых освидетельствования регулируется графиком планово-предупредительных работ.

В нем устанавливается периодичность проверки молниезащиты на основании ПТЭЭП и СО 153-34.21.122-2003

  • ежегодно перед грозовым сезоном
    – обследование всей МЗС сооружений I и II категорий (кроме подземных частей ЗУ);
  • раз в 3 года
    – сооружений III категории;
  • раз в 6 лет
    – вскрытие грунта для осмотра всех заземлителей, тоководов и мест их присоединений. Аналогичные мероприятия проводятся ежегодно, но только для 20% всех заземляющих устройств.

Методика выполнения работ

Прежде чем приступить к измерениям специалисты изучают проектную документацию и указанные в ней характеристики и параметры. Следующий этап – визуальный осмотр состояния системы. На этом же этапе проверяют механические соединения путем простукивания сварных швов, их же осматривают на предмет образования коррозии. После того как проверили внешнее состояние, переходят к измерению сопротивление контура заземления.

Интересно! У крупных объектов, например, складов, цеховых помещений или открытых распределительных устройств может устанавливаться несколько молниеотводов. Тогда процедуру проводят для каждого из них отдельно.

Итак, подведем итоги, в проверку молниезащиты зданий и сооружений входит:

  1. Внешний осмотр устройств и элементов конструкции.
  2. Поиск неисправностей.
  3. Осмотр и поиск коррозии на элементах системы.
  4. Проверка исправности и надежности электрических контактов.
  5. Измерение сопротивление контура заземления.

Значение сопротивления контура заземления молниеотводов не должно превышать более чем в 5 раз значения, полученные при введении объекта в эксплуатацию. Если превышают – проводят ревизию заземлителя.

Измерения по четырехполюсной системе

При необходимости особо высокой точности результатов нужно исключить погрешности. В этом деле поможет использование четырехполюсной схемы.

Измерения осуществляют следующим образом:

  1. Приемник соединяют с гнездами оборудования под литерами E и ES.
  2. Оба щупа устанавливают так же, как в трехполюсной методике.
  3. Поворотный переключатель направляют в положение RE 4p.
  4. Нажимают кнопку START.
  5. Фиксируют полученные данные по сопротивлению заземления и щупов (Rs и RH). Данные выводятся на монитор.

Измерительный щуп переставляют на один метр от защитной системы. После этого измерения производятся снова. Полученные результаты интерпретируют в том же ключе, как и в случае применения трехполюсной системы. По окончании исследования данные заносят в итоговый протокол.

Обратите внимание! Вне зависимости от применяемой схемы нормой считается удаленность потенциального щупа на значение, равное 62 % расстояния между исследуемой системой и токовым щупом.

Источник: paes250.ru

Кто проводит проверку?

Выдача заключение на соответствие системы молниезащиты промышленных зданий требованиям норм — технически сложная процедура, которую могут выполнять только специализированные организации.

Необходимые условия выдачи протокола проверки молниезащиты включают следующие положения:

  • наличие у проверяющей организации тестирующей лаборатории, что дополнительно подтверждено свидетельством о регистрации;
  • профильное образование сотрудников лаборатории;
  • применение при тестировании измерительных приборов с действующей поверкой.

Лаборатория — это самостоятельная структурная единица организации с утвержденным штатным расписанием.

Монтажные компании обычно привлекают сертифицирующую лабораторию по субподряду.

Разновидности проверок

Проверки элементов молниезащиты вне зависимости от их исполнения делят на контрольные, внеочередные, разовые.

  1. Главные отличительные признаки контрольных проверок молниезащиты — их выполнение по полному циклу с измерением характеристик и по заранее согласованному плану.
  2. Внеочередные проверки обычно проводят визуальным осмотром после стихийных бедствий, а также особо сильных гроз. Измерения сопротивления при этом не выполняют.
  3. Разовые проверки молниезащиты различной глубины выполняют после:
  • завершения монтажа системы;
  • внесения в систему любых изменений, в т.ч. ремонта;
  • повреждения защищаемого объекта.

Методика выполнения проверки

Система молниезащиты архитектурных сооружений, особенно промышленных объектов, часто имеет высокую сложность. Эта требует разделения процесса контроля ее текущего состояния на ряд этапов, которые выполняют по разнообразным методикам визуального и инструментального тестирования.

Этапы

Обычно в процессе сертификации системы молниезащиты выделяют такие этапы как:

  • получение необходимых исходных данных из имеющейся проектной документации;
  • контроль фактического соответствия системы проектной документации;
  • визуальный осмотр устройств системы. Цель осмотра — контроль целостности сварных соединений (с простукиванием), отсутствия коррозии, состояния контактов;
  • измерение сопротивления заземлителя.

В тех ситуациях, когда для защиты объекта применяют несколько молниеотводов, проверку производят отдельно для каждого из них.

Нормируемые параметры

Проверку молниезащиты объектов промышленного назначения (архитектурные сооружения плюс коммуникации) осуществляют на соответствие требованиям ведомственных инструкций РД 34.21.122-87 и СО 153-34.21.122-2003 Министерства энергетики. Положениями ПТЭЭП (гл. 2.8) нормируются принципы защиты электротехнических устройств от воздействия скачков напряжений.

Нормы фиксируют максимальное переходное сопротивление контактов молниезащиты на уровне 0,03 Ом. Максимальное сопротивление заземляющего устройства установлено равным 10 Ом.

При устройстве электроустановок дополнительно контролируют соответствие нормативным требованиям расстояния до объекта, величины углубления, а также конструктивного исполнения элементов заземляющего устройства в местах с различным сопротивлением грунта. Отдельно проверяют минимальное расстояние заземлителя от металлических коммуникаций.

Методы измерений

При инструментальном контроле молниезащиты выполняют такие разновидности измерения сопротивлений как:

  • проверку переходного сопротивления контуров в местах стыка отдельных компонентов;
  • определение сопротивления заземлителей защиты.

Достоверность результатов увеличивают тестированием заземляющих устройств на пике сухого сезона или при максимально глубоком промерзании грунта.

При визуальном контроле молниезащиты, который выполняют днем при ясной погоде, проверяют степень коррозии и иных повреждений поверхности и структуры компонентов системы. Если, например, при осмотре молниеприемников обнаружены те из них, у которых повреждено более четверти площади поверхности, они подлежат обязательной замене.

Документирование (акты, протоколы)

По результатам проверки какого-либо конкретного параметра или их комплекса оформляют протокол. Применительно к системе молниезащиты различают протоколы:

  • визуального осмотра технического состояния системы и/или отдельных ее узлов;
  • измерения переходного сопротивления;
  • измерения сопротивления при испытаниях контура заземляющих устройств.

Протокол может составляться в отношении части системы, а также содержать результаты полного цикла обследований без разбиения на отдельные составляющие. В протоколах измерения, которые оформляют по ГОСТ Р 50571.16-99 (гармонизирован с МЭК 60364-6-61-86):

  • отмечают условия измерений;
  • приводят характеристику объекта;
  • описывают тип тестирующего оборудования;
  • фиксируют выявленные нарушения;
  • отмечают данные лиц, производивших испытания.

Документ должен содержать всю информацию, необходимую для обоснования вывода по результатам испытаний по форме «годен — негоден» применительно к штатной технической эксплуатации.

Протоколы дополняют схемой организации молниезащиты, копиями свидетельств о поверке, актами аттестации сотрудников лаборатории и иными необходимыми документами. Образец формы протокола приведена на рисунке 1.

Примерная форма протокола измерения параметров системы молниезащиты

Примерная форма протокола измерения параметров системы молниезащиты
Рисунок 1. Примерная форма протокола измерения параметров системы молниезащиты

Акт отличается от протокола тем, что всегда составляется коллегиально. Комиссия по сложившейся традиции включает нечетное число (минимум трое) членов. Акт дополнительно утверждает руководитель заказчика или один из его заместителей.

Применительно к молниезащите оформляют акт проверки и акт приемки.

Акты проверки де-факто выполняют по форме протокола.

Акты приемки включают в себя протоколы измерений. Часто такой акт представляет собой обобщающий документ, содержательная часть которого полностью вынесена в приложения.

Необходимое измерительное оборудование и приборы

Качество установки молниеотвода проверяют соответствующей измерительной техникой. Доступны как автоматизированные измерители, так и приборы с ручной настройкой. Ручное оборудование считают устаревшим и постепенно выводят из эксплуатации.

Наибольшее распространение среди автоматизированных устройств проверки молниезащиты получил MRU-101 польского производства. Измеритель MRU-101:

  • выполняет измерения сопротивления заземления;
  • определяет удельное сопротивление геоподосновы;
  • измеряет ток растекания;
  • осуществляет выбор диапазона с необходимыми настройками после нажатия клавиши START;
  • хранит несколько сотен результатов тестирования.

Сильная сторона MRU-101, интерфейс которого показан на рисунке 2, – постоянный контроль уровня шумов и условий измерений с полной остановкой процесса при обнаружении грубых ошибок. Кроме того, при определении прибором возможности получения недостоверных показаний он генерирует предупреждающее сообщение.

Органы управления, разъемы для подключения щупов и индикатор измерителя MRU-101
Рисунок 2. Органы управления, разъемы для подключения щупов и индикатор измерителя MRU-101

Для проведения испытаний молниезащиты чаще всего используют трехполюсную схему, структура которой показана на рисунке 3 с подключением рабочих входов H, S, E измерителя к трем разным вбитым в землю в районе электродов заземляющего контура измерительным щупам. Расстояние между щупами выбирают равным не менее 20 м.

Трех- и четырехполюсные схемы подключения прибора MRU-101 к измерительным щупам
Рисунок 3. Трех- и четырехполюсные схемы подключения прибора MRU-101 к измерительным щупам

Реже применяют четырехполюсную схему. Ее отличие от трехполюсной — соединение дополнительным проводом входа ES с тем же электродом, который подключен к входу E (см. рисунок 3).

MRU-101 позволяет измерить также величину тока растекания бесконтактным методом. Для этого к пятому входу так, как показано на рисунке 4, подключают измерительные клещи, которые входят в комплект поставки. Измерения требуют предварительной калибровки клещей, выполняемой в автоматическом режиме.

Схема подключения измерительных клещей к прибору MRU-101
Рисунок 4. Схема подключения измерительных клещей к прибору MRU-101

Категории помещений и периодичность проверки

Правила эксплуатации электротехнического оборудования ПТЭЭП (гл. 2.8) по уровню защиты от ударов молний делят все архитектурные объекты на три категории.

Категория I включает в себя те объекты промышленного назначения, которые склонны к образованию скоплений пожаро- и взрывоопасных материалов в газообразной, парообразной или пылевидной форме. При том допустимо, что при нештатной ситуации может пострадать не только персонал предприятия, но и расположенные рядом сооружения.

Категория II отличается от предыдущей тем, что действия положений предназначенной для нее методики проверки распространяют на:

  • архитектурные объекты, в которых скопление потенциально опасных сред возникает только при нарушениях технологии или неисправностях технологического оборудования;
  • разнообразные внешние установки, использующие жидкие или газообразные взрывоопасные и/или пожароопасные материалы.

Прочее оборудование, безопасность которого обеспечивает система молниезащиты, отнесено к категории III. Его поражение молнией не так опасно или наносит меньший ущерб.

Периодичность проверки параметров системы молниезащиты с выдачей протоколов испытаний, которая установлена нормативными актами и относится к группе контрольных измерений, зависит от категории. Для категорий I, II это 1 год, для категории III – интервал периодической проверки составляет один раз в три года. Дополнительно замеры сопротивления годовых проверок следует осуществлять перед началом грозового сезона.

Внеочередные и разовые проверки выполняют по мере возникновения такой необходимости.

Раз в шесть лет оценивают степень коррозии заземлителей.

Источник: www.asutpp.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.