Схема молниезащиты


Молния – это непредсказуемое природное явление, обладающее разрушительной силой и мощью. Последствия от ее удара, особенно прямого попадания, могут быть катастрофические, и это не только полностью уничтоженная электроника, разрушенное и сгоревшее здание (пожар это самый частый спутник попадания молнии) но и самое страшное, вред причиненный здоровью людей и животных. Природа молнии тесно связана с электричеством, но человечество до сих пор не смогло досконально изучить его и подчинить своей воле, поэтому грозы и молнии остаются опасным, неконтролируемым и потенциально разрушительным явлением, застраховаться от которого невозможно. Конечно, есть объекты с большей или меньшей степенью подверженные риску попадания молнии, есть факторы усугубляющие риски, но сказать точно “В этот объект молния не попадет ни когда”, не сможет ни кто (разве что сам Господь Бог, но это уже выходит за рамки человеческого понимания и тем более зоны контроля), а тем более ни кто не сможет это предотвратить. Однако, известные факты о природе и свойствах электричества, законы физики и достижения науки, предоставляют возможность свести к минимуму риски от попадания молнии при помощи системы молниезащиты.


Молниезащита (так же часто употребляется термин грозозащита) — это инженерная система, включающая в себя комплекс специализированного оборудования и материалов, и предназначенная для для обеспечения безопасности объекта (здания, сооружения), жизни и здоровья находящихся там людей и животных, материальных и иных ценностей, от непосредственного воздействия и последствий попадания в объект разряда молнии. Структура и состав системы молниезащиты определяется на основании индивидуальных параметров объекта и специализированных расчетных формул.

На земном шаре ежегодно происходит до 16 миллионов гроз, то есть около 44 тысяч за день. Опасность для зданий (сооружений) в результате прямого удара молнии может привести к:

  • повреждению здания (сооружения) и его частей,
  • отказу находящихся внутри электрических и электронных частей,
  • гибели и травмированию живых существ, находящихся непосредственно в здании (сооружении) или вблизи него.

Существует статистика, согласно которой, молния может попасть в дом один раз в 50 лет, то есть конкретное здание может стать объектом попадания разряда молнии один раз в течении 50 лет.


кто не знает в какой конкретно интервал времени это может произойти и каким будет ущерб, многое зависит от конкретного объекта. Обычно минимальными последствиями бывает перегоревшая электроника (телевизор, холодильник, компьютер и др.), при чем по гарантии это не ремонтируют, так как считается форс-мажором, но это материальный ущерб, намного хуже, когда вред причиняется животным или человеку, находящимся на территории объекта,к сожалению, такие случаи встречаются. В своей практике мы сталкивались с последствиями попадания молнии, выгоревшая электроника, ущерб на многие сотни тысяч рублей (это в среднем для частного дома), и на миллионы рублей на промышленном объекте, при чем многое оборудование приходится менять полностью и востановлению оно не подлежит, а если и ремонтируется, то за полностью за счет Заказчика, поэтому бывает выгоднее поставить новое. Дело в том, что статистика с вероятностью в 50 лет предоставляет иллюзию безопасности и отсрочки, “мое имущество в безопасности, у меня есть еще много времени в запасе, сделаю позже”, но это стихия и от ее воздействия ни кто не застрахован, а стоимость системы молниезащиты во много раз меньше потенциального ущерба.

По принципу действия и составу оборудования система молниезащиты зданий и сооружений разделяется на внешнюю и внутреннюю: 

Внешняя система молниезащиты, обеспечивает перехват и нейтрализацию молнии, путем ее отвода и разрядки в землю, таким образом объект (здание, сооружение) защищается от повреждения и пожара.


авильно рассчитанная, спроектированная и установленная система молниезащиты, в момент прямого удара молнии в объект, принимает на себя ток молнии и отводит его по токоотводам в систему заземления, где энергия разряда должна безопасно рассеяться. Прохождение тока молнии должно произойти без ущерба для защищаемого объекта и быть безопасным для людей, находящихся как внутри, так и снаружи этого объекта.

Во время грозы на Земле появляются большие индуцированные заряды, а у поверхности Земли возникает сильное электрическое поле. Напряжённость поля особенно велика возле острых проводников, и поэтому на конце молниеотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния всё же возникает (такие случаи очень редки), она ударяет в молниеотвод и заряды уходят в Землю, не причиняя разрушений. Иначе говоря, электрический ток всегда уходит по цепи наименьшего сопротивления, а грозовая молния представляет собой колоссальный разряд электроэнергии, поэтому подчиняется данному правилу. На подлёте молнии к зданию (сооружению), правильно сделанный молниеотвод будет представлять собой цепь с наименьшим сопротивлением, по которой разрушительный разряд уйдёт в землю без контакта непосредственно с объектом.

Принципиально внешняя система грозозащиты состоит из трех взаимосвязанных частей:

Молниеотвод (молниеприёмник, громоотвод) — металлическое (нержавеющая либо оцинкованная сталь, алюминий, медь) устройство, перехватывающее разряд молнии, устанавливается на зданиях и сооружениях, в декоративные элементы (флюгеры, колонны, шпили и др.), может иметь различную молниеприемную конструкцию:


  • стержень – металлический штырь, длиной 0,2-1,5 м, с площадью сечения от 100 мм2 (если он имеет круглую форму,  то достаточно Ø 12 мм), устанавливается вертикально на самом высоком месте объекта (конек крыши, труба вентиляции, мачта телевизионной антенны и др.), при использовании полой трубы, обращённый вверх конец должен быть прочно заварен. Данный способ хорошо подходит для всех видов металлической кровли;
  • натянутый трос – металлический трос, натянутый вдоль конька крыши на двух опорах, в случае, если опоры металлические, они должны быть отделяются от троса при помощи специальных изоляторов. Подобный способ лучше использовать для шиферных и деревянных крыш;
  • сеть – металлический проводник, закреплённый по коньку крыши, с отходящими от него, заземлёнными токоотводами, предпочтителен для черепичных крыш.
molniezashita4

Заземляющий проводник или токоотвод (спуски) — часть системы, являющаяся проводником и служащая для отвода заряда от молниеприёмника к заземлителю, прокладывается по стене здания (сооружения). Часто используется металлическая проволока Ø 6 мм (диаметр и материал могут изменяться в зависимости от индивидуальных параметров объекта), привариваемая сваркой к молниеприёмнику и контуру заземления;

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей (грунтом) непосредственно или через проводящую среду.

molniezashita3

Элементы молниезащиты соединяются между собой и закрепляются на несущей конструкции. Вероятность поражения наземного объекта молнией растёт по мере увеличения его высоты, поэтому молниеприёмник располагается как можно выше на защищаемом объекте, либо как отдельное сооружение рядом с объектом. Радиус защитного действия молниеотвода определяется его высотой и приближенно рассчитывается по формуле: R=1,732 x h, где h — высота от самой высокой точки дома до пика молниеотвода.

Внутренняя система молниезащиты представляет собой совокупность устройств защиты от импульсных перенапряжений (УЗИП), предназначенных для защиты электрического и электронного оборудования от перенапряжений в сети, вызванных резистивными и индуктивными связями, возникающих под воздействием тока молнии. Выделяют перенапряжения, вызванные ударами молнии:


  • прямые – при попадания молнии в здание (сооружение) или в подведенные к зданию (сооружению) линии коммуникаций (линии электропередачи, коммуникационные линии);
  • непрямые  — при ударах молнии вблизи здания (сооружения) или линий коммуникаций.

В зависимости от типа попадания молнии, различаются параметры перенапряжений и устройств защиты (УЗИП):

  • uzip2

    Тип 1 (искровые разрядники или варисторы, со способностью отвода в земли тока около 100 кА) – пропускает через себя всю энергию типичного удара молнии, не разрушаясь, но сохраняется достаточно большой бросок напряжения (единицы киловольт), устанавливаются на входе источника питания в здание, с целью исключения импульсов сильных токов.

  • Тип 2 (ограничивают амплитуды напряжений до величины ниже 1,5 кВ) – варисторные ограничители, ограничивающие электрические импульсы до уровня, не разрушающего электрические устройства. Не способны самостоятельно, без предшествующего типа 1, выдержать без разрушения удар молнии, однако же его устойчивость гарантируется в случае совместного применения с типом 1. Бросок напряжения за типом 2 обычно около 1.4-1.7 кВ.

  • Тип 3 – ограничители специального исполнения, совместимые с линиями передачи данных. Предназначены для предохранения телефонных аппаратов, управляющих автоматов, телевизоров, камер. Для обеспечения устойчивости к разрушению требует применения типов 1 и 2 перед собой, и устанавливается непосредственно рядом с потребителем.

 Длительные перенапряжения (например, от повышения до 380В при «отгорании нуля»), могут привести к выходу УЗИП из строя. В случае сквозного прогорания УЗИП от фазы до PE возможно выделение на нем огромного количества тепла и пожар в щитке, поэтому он 

должен обязательно устанавливаться с защитой — плавкими вставками или же автоматическими выключателями. В случае, когда вводной «автомат» имеет номинал <= 25A, возможно подключение УЗИП за ним, в этом случае вводной автомат выполняет дополнительные функции защиты УЗИП. Схемы молниезащиты выполняются либо с приоритетом безопасности, либо с приоритетом бесперебойности.

В первом случае недопустимо разрушение УЗИП и иных устройств, а также ситуация, когда временно отключается молниезащита, но допустимо срабатывание автоматики с полным отключением потребителей.


втором случае допустимо временное отключение молниезащиты, но недопустим перебой в снабжении потребителей. При одновременной установке типа 1 и типа 2 расстояние между ними по кабелю должно быть не менее 10 м, расстояние от типа 2 до типа 3 и потребителей — также не менее 10 м. Это создает индуктивность, нужную для того, чтобы автомат более высокой ступени срабатывал раньше. Возможно также и использование УЗИП типов 1+2, совмещающих в одном корпусе оба устройства (защищается от прогорания так же, как тип 1).

Таким образом:

  • Внешняя система молниезащиты предотвращает попадание молнии непосредственно в объект, перехватывая и нейтрализуя ее заранее, тем самым обеспечивает безопасность и целостность объекта, всех его систем и находящихся внутри людей, животных и ценностей.
  • Внутренняя система обеспечивает точечную защиту определенных компонентов систем дома (электрического и электронного оборудования).

Выбор системы молниезащиты:

К выбору системы молниезащиты нужно подойти очень ответственно и комплексно, так как это система, обеспечивающая не только сохранность имущества, но и жизнь и здоровье людей и животных, находящихся на объекте и прилегающей территории:

  • 33301943

    Необходимо оценить общее состояние объекта, его территориальное месторасположение (город, поле, лес и др.), рельеф местности, прилегающую инфраструктуру (высотные здания, линии электропередач, путепроводы, строящиеся объекты, железнодорожные пути и др.), наличие рядом высоких деревьев, водоемов и др. Все эти факторы имеют немаловажное значение, так как  молния обычно бьёт в самую высокую точку здания, выполненную из материалов с максимальной электропроводимостью, или растущее рядом с дерево (которое зачастую бывает выше самой верхней точки строения). Деревья, антенны, столбы, приняв на себя удар молнии, создают экранирующий эффект, в результате чего поражению электричеством могут подвергнуться рядом стоящие дома, автомобили, оказавшиеся в зоне поражения люди и т. д.

  • Еще одним ключевым аспектом при устройстве контура молниезащиты является тип грунта под объектом. Разные виды грунтов имеют разную токопроводимость и, соответственно, различное сопротивление, которое должно учитываться при выборе сечения металлической полосы молниезащиты и величины заглубления контура.
  • Особенно внимательно к вопросу молниезащиты объекта необходимо отнестись владельцам строений, находящихся в непосредственной близости от водоёмов и мест, где на поверхность земли выходят ключевые источники. Риск поражения разрядом молнии в таких местах максимален, особенно если по климатическим данным число грозовых периодов превышает 40 часов в год.

Кроме физических факторов, приведенных выше, при выборе системы молниезащиты следует исходить из ее целесообразности:

  • Стоимость внешней системы молниезащиты будет меняться в зависимости от площади объекта (преимущественно кровли) и используемых материалов, при этом количество проводки,  электронных систем и оборудования, а так же его мощность на стоимости системы не отражается. Стоимость внутренней системы будет напрямую зависеть от количества электронных систем, оборудования и его мощности.
  • Внутренняя система рассчитана на защиту именно электронного оборудования, в то время как внешняя система защищает весь объект в комплексе. Конечно, для дачного дома с минимальным количеством электронных систем, расположенного в безопасном (с точки зрения риска попадания молнии ) месте, целесообразность установки внешней системы грозозащиты минимальна. Совсем другое дело, когда на объекте присутствует большое количество электронных систем (системы контроля доступа, компьютеры, телевизоры, системы умного дома, охранной и пожарной сигнализации, отопительной и вентиляционной систем, мобильные телефоны, планшеты, музыкальная, кухонная и иная техника), в том числе обеспечивающих функционирование жизненно важных систем самого объекта и иных объектов (например, электроподстанции, очистные сооружения, котельные, больницы, магазины, транспортные объекты и др.). В таких случаях внутренняя система молниезащиты должна играть страховочную (запасную) роль, а основным рубежом защиты служит внешняя система защиты.
  • Оборудование внутренней системы молниезащиты стоит достаточно дорого, и при обеспечении безопасности объекта с большим количеством электронных систем, его стоимость будет сопоставима или даже превысит (возможно и в разы), стоимость внешней системы.
  • И самое главное – внутренняя система не предотвращает попадание молнии в объект, а только защищает от гибели электронное оборудование, кроме того, при недостаточном уровне защиты или ошибках в расчетах и при монтаже, может сама послужить причиной пожара, в то время как удар молнии может повредить объект, травмировать (с разной степенью тяжести) находящихся в нем людей и животных. Комплексную систему защиты объекта может обеспечить только внешняя система молниезащиты (грозозащиты).

Исходя из свое практики мы рекомендуем применять комплексные системы молниезащиты, сочетающие в себе и внешнюю и внутреннюю. Обе системы дополняют друг друга, страхуют и минимизируют риски, особенно на сложных объектах, обеспечивающих безопасность и жизнедеятельность людей (объекты инфраструктуры, как больницы, аэропорты, железнодорожные вокзалы, котельные, тепловые станции, образовательные учреждения,магазины и др.), при этом необходимо соблюсти правильный баланс, чтобы система была максимально функциональной, экономичной и обеспечивала наилучший уровень защиты.

Нормативные документы:

Система молниезащиты

Система молниезащиты относится к системам обеспечивающим безопасность объекта и требует точного расчета, подбора оборудования и монтажа, для качественного выполнения своих функций. Ошибки в расчетах и некачественный монтаж могут пагубно сказаться на действии системы в целом. Требования к системе на территории Российской Федерации регламентируются нормативными документами, которые необходимо соблюдать:

  • «Инструкция по молниезащите зданий и сооружений» РД 34.21.122-87 от 30 июля 1987 года
  • «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO 153—343.21.122-2003 от 30 июня 2003 года.

В соответствии с положением Федерального закона от 27 декабря 2002 года № 184-ФЗ «О техническом регулировании» ст. 4, органы исполнительной власти вправе утверждать документы и акты только рекомендательного характера. К такому документу и относится «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO 153—343.21.122-2003. Приказ Минэнерго России от 30.06.03№ 280 не отменяет действие предыдущего издания «Инструкция по молниезащите зданий и сооружений» от 30 июля 1987 года. Таким образом, проектные организации вправе использовать при определении исходных данных и при разработке защитных мероприятий положение любой из упомянутых инструкций или их комбинацию.

В декабре 2011 Федеральное агентство по техническому регулированию и метрологии выпустило ГОСТ Р МЭК 62305-1-2010 «Менеджмент риска. Защита от молнии. Часть 1. Общие принципы» и ГОСТ Р МЭК 62305-2-2010 «Менеджмент риска. Защита от молнии. Часть 2. Оценка риска». Данные документы представляют собой аутентичный текст стандарта МЭК 62305, состоящего из четырёх частей, и призваны прояснить ситуацию с системами молниезащиты на территории Российской Федерации.

Типовая структура и состав оборудования системы молниезащиты:

Молниезащита

Со времени изобретения первого молниеотвода Бенджамином Франклином в 1752 году (хотя есть свидетельства, что подобные системы существовали и ранее) многое изменилось. Появились новые инженерные конструкции, материалы, архитектурные решения, изменилась инфраструктура, появилось большое количество электронных систем, нуждающихся в защите, продвинулись научные знания человечества о природе электричества. Основные принципы остались неизменными, но произошедшие изменения потребовали усовершенствования структуры, материалов, конструкции системы. В настоящее время существует большое разнообразие материалов и компонентов, применяемых в системах молниезащиты, их количество, состав и характеристики зависят от индивидуальных параметров объекта. Зачастую, особенно на крупных и сложных объектах, правильно произвести все замеры, расчеты и подобрать оборудование могут только профессионалы. Конечно, если Заказчик обладает знаниями и возможностями он может сделать все работы или определенные этапы сам, но такие случаи стали редкими, так как данные работы стали требовать высокого профессионализма Исполнителя, так как значительно возросли риски и стоимость имущества (не говоря уже о здоровье людей), нуждающегося в защите.

Оборудование и материалы для каждого объекта подбирается индивидуально исходя из действующих факторов. Ниже представлена ориентировочная смета на оборудование и монтаж пассивной системы молниезащиты для частного дома (Типовое решение проекта “Котедж” – дом 2 этажа + цокольный этаж, площадь кровли 100 м.кв., количество оборудования и материалов минимально).

№п/п Наименование оборудования, материалов, работ Ед. из-я Кол-во Цена за ед. Сумма, руб.
I. ОБОРУДОВАНИЕ СИСТЕМЫ ГРОЗОЗАЩИТЫ, в том числе:  74 175
1.1. Молниеприемник пассивный медный шт. 5 1 825 9 125
1.2. Токоотвод медный м.п. 100 230 23 000
1.3. Крепление для токоотвода к водостоку Cu шт. 10 430 4 300
1.4. Держатель медный для токоотвода 8-10 мм. шт. 60 350 21 000
1.5. Зажим клемный для токоотвода Cu шт. 30 175 5 250
1.6. Контрольный соединитель Cu шт. 5 310 1 550
1.7. Комплект оцинкованного заземления №3 (на 1 дом) ед. 1 9 950 9 950
II. КАБЕЛЬНЫЕ ТРАССЫ И МАТЕРИАЛЫ СИСТЕМЫ, в том числе:  7 500
2.1. Прочие расходные материалы (разъемы, саморезы, дюбеля, изоляционная лента, крепления и т.п.) ед.  1 7 500  7 500
III. ИТОГО СТОИМОСТЬ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (п.I+п.II)     81 675
IV. ТРАНСПОРТНО-ЗАГОТОВИТЕЛЬНЫЕ РАСХОДЫ – 5%*п.III     4 084
V. РАБОТЫ ПО МОНТАЖУ ОБОРУДОВАНИЯ СИСТЕМЫ, в том числе монтаж:      37 250
5.1. Молниеприемника пассивного медного ед.  5 950  4 750
5.2. Токоотвода медного ед. 100 120 12 000
5.3. Крепления для токоотвода к водостоку Cu ед. 10 250 2 500
5.4. Держателя медного для токоотвода 8-10 мм. ед. 60 150 9 000
5.5. Зажима клемного для токоотвода Cu ед. 30 100 3 000
5.6. Контрольного соединителя Cu ед. 5 200 1 000
5.7. Комплекта оцинкованного заземления №3 (на 1 дом) ед. 1 5 000 5 000
 VI. ВСЕГО ПО СМЕТЕ (п.III+п.IV+п.V)  123 009

Степень надежности, функциональности и долговечности системы внешней молниезащиты напрямую зависит от точности расчета, качества, структуры и количества подобранных материалов и оборудования, а так же правильного монтажа системы. Специалисты нашей компании обладают необходимыми специализированными знаниями и опытом работы, поэтому они быстро и максимально качественно решат поставленные задачи, выполнят все необходимые замеры и расчеты, подберут оборудование и материалы, произведут монтаж системы. Наши работы всегда отличаются высоким качеством и надежностью, так как мы в обязательном порядке предоставляем Заказчику гарантию на все выполненные работы, ответственно относимся к собственной репутации и предъявляем высокие требования к своим специалистам. Качественная, функциональная система и отсутствие сбоев в ее работе, это спокойствие Заказчика и, как следствие, залог нашей репутации, развития и  минимальное количество выездов для устранения неполадок. 

Источник: vashtvmir.ru

Откуда берется молния?

Всему причиной веселые облачка, которые при приближении грозы постепенно нарастают и превращаются в темные громады кучевого типа. Верхние слои влаги в воздухе превращаются в мелкие кристаллики льда, а нижние остаются в виде капель воды. Так и получились две пластины гигантского конденсатора.

Громадные структуры движутся в воздухе и заряжаются в результате трения: верхние слои накапливают положительные ионы, нижние – отрицательные электроны. Всему есть предел, и накопленный потенциал превращается в электрический разряд. В итоге, «пробивает» там, где наименьшее сопротивление: высокие деревья, крыши домов и … громоотводы!

Как устроена защита от молнии

Из вышеизложенного следует стратегия устройства молниезащиты: направить вероятный электрический разряд по безопасному для нас пути и застраховаться, таким образом, от неприятностей. С этой целью на достаточной высоте устанавливается молниеприемник, который предназначен для захвата грозового разряда.

Устройство молниезащиты
Схема устройства молниеотвода

Далее электрический ток величиной порядка 100000А проходит по токоотводу к заземлителю. Последний обеспечивает связь защитной системы с грунтом. Таким образом, удар молнии минует защищаемые объекты и поглощается землей.

Данная система защиты повсеместно распространена и носит название пассивной. Существует активные молниеотводы, которые имеют ионизатор, провоцирующий удар молнии. Это увеличивает вероятность защиты объекта от поражения. Стоит такого вида молниеотвод немало, и его монтаж сложно сделать своими руками.

Варианты молниеприемника для частного дома

Можно назвать три основных вида молниеприемника по типу конструкции:

  • стержневой молниеприемник;
  • в виде сетки;
  • тросовой молниеприемник;
  • покрытие крыши в качестве молниемника.
Штыревой молниеприемник
Штыревой молниеприемник можно приобрести или сделать самому

Молниеприемник в виде стержня наиболее известен и распространен. Существуют промышленные изделия с готовым крепежом. Любителям творить своими руками реально изготовить изящную конструкцию, украшающую здание. В любом случае штырь из стали должен иметь сечение не менее 70мм2, а для изделия из меди достаточно 35мм2. Таким образом, его диаметр может составлять 7-10мм.

Длина стержня может варьироваться в пределах 0,5-2м, при этом он должен выступать хотя бы на полметра над всеми объектами в окружении здания. Стержневой молниеприемник принимает заряд в одной точке и особенно эффективен при защите небольших строений.

Молниеприемник в виде сетки
Молниеприемник в виде сетки удобен для большой крыши

Молниеприемник в виде сетки изготавливается из проволоки диаметром порядка 6мм. На фото можно оценить, как выглядит на практике конструкция подобного рода. Существуют уже готовые конструкции с размером ячейки 3-12м. Защита от молнии такого рода удобна в применении на крыше большой площади. Для предотвращения возгорания обрешетки молниеприемник монтируют на расстоянии 0,15м от поверхности кровли.

Молниеприемник в виде троса
Тросовый молниеприемник удобно разместить на коньке

В условиях частного дома более удобен в применении молниеприемник в виде троса. Его монтируют на коньке кровли, закрепив за две опоры на противоположных фронтонах. Возможен и комбинированный вариант, когда на упомянутых опорах дополнительно к тросу установлены штыревые молниеприемники.

Трос должен иметь диаметр более 5мм и монтироваться на безопасной высоте от кровли. Конструкция такого типа обычно применяется на крыше с неметаллическим покрытием.

Кровля как молниеприемник
Фальцевая кровля в качестве молниеприемника

Металлическая кровля крыши, при определенных условиях, может также выступать в качестве молниеприемника. При этом толщина металлочерепицы, профнастила или оцинкованного листа должны быть не менее 0,4мм. Заманчиво выполнить защиту от грозы, не применяя дополнительных материалов.

Более того, придется обеспечить соединение токоотвода с каждым отдельным листом покрытия, что трудоемко. Такой вариант подходит для фальцевой кровли, где листы металла уже надежно соединены. Воспламенение обрешетки при этом невозможно, если покрытие уложено на обрешетку из металла.

Как работает токоотвод

В идеале, для конструкции, изготовленной своими руками, материал молниеприемника, токоотвода и заземлителя должен быть один и соединен с помощью сварки, то есть — сталь. Такое решение обеспечивает надежность и долговечность защиты. На практике возможно использование оцинкованных и омедненных элементов, а также различных материалов. Их соединение обеспечивают применением зажимов с болтами и гайками.

Токоотвод
Токоотвод на крыше, на стене и цоколе дома

Токоотвод из стали в виде прута или полосы должен иметь сечение не менее 50мм2, проводник из алюминии допускает размер 25мм2, а медный провод можно применять с площадью сечения 16мм2, что примерно соответствует диаметру 8,6 и 5мм соответственно.

При этом не допускается выполнение острых изгибов, что может привести к искровому разряду и воспламенению на данном участке. С этой же целью проводник размещают на расстоянии не менее 100мм от поверхностей горючих материалов стен и других элементов постройки.

Требования к заземлителю

Заземлитель представляет из себя несколько металлических стержней, забитых в грунт и соединенных между собой горизонтальной полосой при помощи сварки. Полоса выводится на поверхность земли и приваривается к токоотводу. Как правильно обустроить заземляющий контур, подробно рассказано в статье «Как сделать заземление 220в и 380в в частном доме своими руками — устройство и все размеры».

Контур заземления
Так выглядит готовый к проверке контур заземления

Заметим, что не рекомендуется использовать защитный контур заземления для подключения молниеотвода. В случае применения общего заземлителя при грозовом разряде на поверхностях бытовых приборов может возникнуть опасное напряжение. Для защиты электропроводки и бытовой техники в частном доме от удара молнии на вводном щите устанавливаются устройства защиты от импульсных помех (УЗИП).

Заземление для молниеотвода размещают не ближе 5м от крыльца и дорожек и заглубляют горизонтальный соединитель не менее 0,8м. Это необходимо для уменьшения вероятности поражения людей в случае грозового разряда.

Защитная зона громоотвода

Не следует питать иллюзии, что громоотвод на соседнем доме или расположенная недалеко металлическая вышка полностью обезопасят Ваше жилище от удара молнии. Защитная зона громоотвода имеет вполне конкретные границы. В любом случае на даче придется устроить собственную молниезащиту.

Зона безопасности
Размер защищаемой зоны определяется высотой размещения молниеприемника

Конус безопасности, создаваемый стержневым молниеприемником, имеет угол 45-50°. Указанное правило действует при высоте размещения молниезащиты до 15м. Вышеприведенный эскиз демонстрирует, что при угле 45° радиус защитной зоны равен высоте верхней точки стержня над уровнем земли. При значении 50° зона защиты будет чуть больше.

В любом случае, частный дом должен попадать полностью в зону конуса защиты. Очень желательно, чтобы все постройки во дворе были защищены по тому же правилу. Таким образом, удобно разместить молниеприемник на крыше дома. Закрепить штырь бывает проще на одной из сторон здания чем по центру, при этом вероятность попадания молнии в кровлю снижается.

В случае большого участка может возникнуть необходимость установки еще одного громоотвода. Его можно смонтировать на специальной мачте.

Монтируем молниезащиту своими руками

В первую очередь, необходимо выбрать молниеприемник в соответствии с вышеизложенными рекомендациями и имеющимися под рукой материалами. На крыше дачного дома проще всего монтировать обыкновенный стальной штырь. Оцинкованная труба или алюминиевый стержень будут работать еще лучше. При использовании патрубка его верхний конец следует заглушить.

При наличии куска троса нужной длины и диаметра не составит труда протянуть его вдоль конька. На крыше большой площади эффективнее использовать вариант в виде сетки. Молниеприемник любой конструкции следует закрепить так, чтобы его не нарушило ветром.

Если не иметь в виду сварку, токоотвод проще выполнить из толстого медного провода в соответствии с рекомендациями выше. Надежное соединение с молниеприемником можно обеспечить с помощью оцинкованных зажимов с болтами и гайками. Практично закрепить проводник к опорам водосточных труб.

Эскиз заземлителя
Размеры контура заземления в виде треугольника

Заземляющий контур лучше всего обустроить там, где вероятность нахождения людей наименьшая. Также выгодно разместить его в месте, где всегда присутствует влага. Это улучшит контакт заземлителя с землей. Не будет лишним, если рядом с ним установить предупреждающий знак. Болтовое соединение с заземлителем лучше выполнить над землей на цоколе здания, а контакт в земле обеспечить сваркой.

После монтажа всей системы электрическое соединение от молниеприемника до заземления можно проконтролировать мультиметром. Сопротивление заземляющего контура можно проверить только специальным прибором. Его величина должна быть не более 10Ом в том случае, если неподалеку возможно присутствие людей. Для отдельного молниеприемника, установленного вдалеке от дома, сопротивление заземления не должно превышать 50Ом.

Прибор проверки заземления
Стандартный прибор для измерения сопротивления заземления

Хотя бы раз в год имеет смысл проверить целостность всей системы визуально. Раз в несколько лет следует откопать заземление и оценить степень коррозии металла. Если стержни в земле стали заметно тоньше, их необходимо заменить.

Источник: SamoDelino.ru

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода, которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод – это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Молниеотвод в схеме комплексной молниезащиты

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

Стержневой, тросовый и сетчатый молниеотвод

По количеству одинаковых молниеприемных частей – одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Молниеприемный стержень на крыше дома Молниеприемная мачта молниеотвода Мачта молниеотвода с телескопической конструкцией

Тросовый – это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние  примерно 30 мм и загибают немного вверх.

Тросовый молниеприемник по коньку кровли Проводник молниеотвода на коньке крыши

Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Молниеприемная сетка на плоской кровле 

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы – стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h0 и радиусом его основания r0.

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Расчет зон защиты одиночного стержневого молниеотвода

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения rx на высоте hx и откладываем его от оси молниеприемника до крайней точки объекта.

Конусообразная зона защиты одиночного стержневого молниеотвода

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Значения угла защиты, радиуса фиктивной сферы и шаг ячейки сетки в зависимости от уровня молниезащиты

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зависимость значения защитного угла от класса молниезащиты

Зона защиты, как уже было сказано выше, – это круговой конус с вершиной в верхней точке стержня молниепремника.

Высота молниеприемника и угол защиты

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Граница защитной зоны по методу фиктивной сферы

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле».

Молниеприемная сетка на кровле здания (чертеж)

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Шаг ячейки по нормативам РД 34.21.122-87 и СО 153-343.21.122-2003

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Материал, профиль и площадь сечения молниеприемников, проводников и стержней заземления

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Пример конструкции молниеотвода для частного дома

Пример конструкции молниеотвода для промышленного здания

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Комплектующие для системы внешней молниезащиты здания и сооружения

Круглые и плоские проводники, тросы

 

 

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

 

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

 

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

 

Токоотводы, держатели токоотводов

 

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

 

Клеммы для водосточных желобов, клеммы, соединительные компоненты

 

Молниеприемники, компоненты

 

 

Изолированная молниезащита

 

 

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Источник: www.mzke.ru

Внешняя система молниезащиты[править | править код]

Внешняя молниезащита представляет собой систему, обеспечивающую перехват молнии и отвод её в землю, тем самым, защищая здание (сооружение) от повреждения и пожара. В момент прямого удара молнии в строительный объект правильно спроектированное и сооружённое молниезащитное устройство должно принять на себя ток молнии и отвести его по токоотводам в систему заземления, где энергия разряда должна безопасно рассеяться. Прохождение тока молнии должно произойти без ущерба для защищаемого объекта и быть безопасным для людей, находящихся как внутри, так и снаружи этого объекта.

Существуют следующие виды внешней молниезащиты:

  • молниеприемная сеть;
  • натянутый молниеприемный трос;
  • молниеприемный стержень.

Помимо вышеупомянутых традиционных решений (приведенных как в международном стандарте МЭК 62305.4, так и в российских нормативных документах РД 34.21.122-87 и CO 153—343.21.122-2003) с середины 2000-х годов получает распространение молниезащита с системой ранней стримерной эмиссии, также именуемая активной молниезащитой. Однако нет никаких надёжных доказательств того, что активная молниезащита работает эффективнее, чем традиционная молниезащита тех же размеров[2].

В общем случае внешняя молниезащита состоит из следующих элементов:

  • Молниеотво́д (молниеприёмник, громоотвод) — устройство, перехватывающее разряд молнии. Выполняется из металла (нержавеющая либо оцинкованная сталь, алюминий, медь)
  • Токоотво́ды (спуски) — часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.
  • Заземли́тель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.

Внутренняя система молниезащиты[править | править код]

Внутренняя молниезащита представляет собой совокупность устройств защиты от импульсных перенапряжений (УЗИП). Назначение УЗИП — защитить электрическое и электронное оборудование от перенапряжений в сети, вызванных резистивными и индуктивными связями, возникающих под воздействием тока молнии. Общепринято выделяют перенапряжения, вызванные прямыми и непрямыми ударами молнии. Первые происходят в случае попадания молнии в здание (сооружение) или в подведенные к зданию (сооружению) линии коммуникаций (линии электропередачи, коммуникационные линии). Вторые — вследствие ударов вблизи здания (сооружения) или удара молнии вблизи линий коммуникаций. В зависимости от типа попадания различаются и параметры перенапряжений.

Перенапряжения, вызванные прямым ударом, именуются Тип 1 и характеризуются формой волны 10/350 мкс. Они наиболее опасны, так как несут большую запасенную энергию.

Перенапряжения, вызванные непрямым ударом, именуются Тип 2 и характеризуются формой волны 8/20 мкс. Они менее опасны: запасенная энергия примерно в семнадцать раз меньше, чем у Тип 1.

Соответствующим образом классифицируются и УЗИП.

Нормативные документы[править | править код]

В России сложилась непростая ситуация с нормативными документами, регламентирующими требования к молниезащите зданий. В настоящий момент существуют два документа, на основе которых можно спроектировать систему молниезащиты.

Это «Инструкция по молниезащите зданий и сооружений» РД 34.21.122-87[3] от 30 июля 1987 года и «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO 153—34.21.122-2003 от 30 июня 2003 года.

В соответствии с положением Федерального закона от 27 декабря 2002 года № 184-ФЗ «О техническом регулировании» ст. 4, органы исполнительной власти вправе утверждать документы и акты только рекомендательного характера. К такому документу и относится «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO 153—34.21.122-2003.

Приказ Минэнерго России от 30.06.03№ 280 не отменяет действие предыдущего издания «Инструкция по молниезащите зданий и сооружений» от 30 июля 1987 года. Таким образом, проектные организации вправе использовать при определении исходных данных и при разработке защитных мероприятий положение любой из упомянутых инструкций или их комбинацию.

Процесс проектирования осложняется и тем фактом, что ни одна из указанных инструкций не освещает вопроса применения устройств защиты от грозовых и коммутационных перенапряжений. Старая редакция инструкции вообще не предусматривала такого раздела, а новое CO 153—34.21.122-2003 освещает этот вопрос только на уровне теории, никаких указаний по практическому применению устройств защиты не предусмотрено. Все вопросы, которые не освещены в самой инструкции, предписывается рассматривать в других нормативных документах соответствующей тематики, в частности стандартов организации МЭК (Международной Электротехнической Комиссии).

В декабре 2011 Федеральное агентство по техническому регулированию и метрологии выпустило ГОСТ Р МЭК 62305-1-2010 «Менеджмент риска. Защита от молнии. Часть 1. Общие принципы» и ГОСТ Р МЭК 62305-2-2010 «Менеджмент риска. Защита от молнии. Часть 2. Оценка риска». Данные документы представляют собой аутентичный текст стандарта МЭК 62305, состоящий из четырёх частей, и призваны прояснить ситуацию с системами молниезащиты на территории Российской Федерации.

Типы УЗИП и типичные схемы применения внутренней молниезащиты[править | править код]

Устройства защиты от импульсных перенапряжений (УЗИП) делятся на тип 1, тип 2 и тип 3.

Тип 1 способен пропустить через себя всю энергию типичного удара молнии, не разрушившись. Но, за устройством типа 1 сохраняется достаточно большой бросок напряжения (единицы киловольт).

Обычно тип 1 устанавливается только в сельской местности с воздушными линиями. Рекомендации требуют типа 1 в зданиях с молниеотводами, а также в зданиях, подключенных воздушными линиями, и в зданиях, отдельно стоящих или находящихся рядом с высокими объектами (деревьями).

По этим же рекомендациям городская квартирная и офисная проводка не требует типа 1 (считается, что тип 1 уже есть на КТП).

Тип 2 не способен самостоятельно, без предшествующего типа 1, выдержать без разрушения удар молнии. Однако же его живучесть гарантируется в случае совместного применения с типом 1. Бросок напряжения за типом 2 обычно около 1.4-1.7 кВ.

Тип 3 для своей живучести требует применения типов 1 и 2 перед собой, и устанавливается непосредственно рядом с потребителем. Им может являться, например, сетевой фильтр или же варисторная защита в блоках питания некоторых бытовых устройств (автоматика отопительных котлов). УЗИП не защищает от длительных перенапряжений, например, от повышения до 380В при «отгорании нуля». Более того, длительные перенапряжения могут привести к выходу УЗИП из строя. В случае сквозного прогорания УЗИП от фазы до защитного заземления возможно выделение на нём огромного количества тепла и пожар в щитке. Для защиты от этого УЗИП обязательно должен устанавливаться с защитой — плавкими вставками или же автоматическими выключателями.

В случае, когда вводной «автомат» имеет номинал <= 25A, возможно подключение УЗИП за ним, в этом случае вводной автомат также выполняет функции защиты УЗИП.

Схемы молниезащиты выполняются либо с приоритетом безопасности, либо с приоритетом бесперебойности. В первом случае недопустимо разрушение УЗИП и иных устройств, а также ситуация, когда временно отключается молниезащита, но допустимо срабатывание автоматики с полным отключением потребителей. Во втором случае допустимо временное отключение молниезащиты, но недопустим перебой в снабжении потребителей.

При одновременной установке типа 1 и типа 2 расстояние между ними по кабелю должно быть не менее 10 м, расстояние от типа 2 до типа 3 и потребителей — также не менее 10 м. Это создает индуктивность, нужную для того, чтобы автомат более высокой ступени срабатывал раньше. Возможно также и использование УЗИП типов 1+2, совмещающих в одном корпусе оба устройства (защищается от прогорания так же, как тип 1).

Устройства УЗИП имеют разные исполнение для различных систем TN-C, TN-S и ТТ. Необходимо выбирать устройство под свою систему заземления.

См. также[править | править код]

  • Молниеотвод
  • Разрядник
  • Заземление
  • Правила устройства электроустановок
  • Активная молниезащита

Источник: ru.wikipedia.org


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.