Сопротивление заземления


Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Метод амперметра-вольтметра

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.


Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Схема подключения М-416

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:


Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

samelectrik.ru


Совмещённый PEN нулевой и защитный проводник согласно ПУЭ 1.7.79 должен иметь проводимость не меньшую половины проводимости фазного проводника. Сопротивление заземления источника питания согласно ПУЭ 1.7.62 не должно превышать 4 Ом с учётом сопротивления естественных заземлителей и повторных заземлений у потребителей.
Общее сопротивление току растекания всех повторных заземлений нулевого проводника в любое время года не должно превышать 10 Ом, а каждого из них 30 Ом. Во вводных устройствах электроустановок с занулённым оборудованием устраивается совмещённая шина PEN для присоединения нулевых проводников питающих кабелей и заземляющего устройства. Объединение нулевых и заземляющих проводников допускается только в том месте сети, где установлены коммутационные аппараты аварийного отключения т.е. на ВУ. Вдоль всего здания устраивается стальная магистраль заземления для индивидуального присоединения заземляемого оборудования.
В этой электрической сети происходит фактическое использование земли в качестве параллельного проводника для тока нулевого провода, что запрещено ПУЭ в сетях менее 1000 В. В результате асимметрии сети в аварийных режимах ( при коротком замыкании и неполнофазном режиме ), по земле протекают значительные величины блуждающего тока, не попадающие в зону действия токовых защит в фазных проводниках.
потребителей с малым сопротивлением заземляющего устройства на нулевой жиле питающего кабеля наблюдается блуждающий ток других электроустановок. В сети TN-C чем меньше сопротивление заземлений, тем больше блуждающие токи, которые создают дополнительную опасность пожара и электротравматизма.
В случае, если сопротивление заземляющего устройства у потребителя меньше, чем на питающей подстанции, в аварийном режиме создаются неблагоприятные условия для всех прочих потребителей. При КЗ на корпус у потребителя ток через землю создаёт на последовательно включённых заземляющих устройствах большее напряжения смещение нейтрали у источника питания, чем у потребителя. Высокое напряжение прикосновения появляется на корпусах всех других гальванически связанных потребителей подстанции.
При КЗ на вводном устройстве ( на постах ЭЦ это ЩВП или ЩВПУ) часто отгорает нулевой проводник и весь аварийный сверхток проходит по земле. При этом у других потребителей подстанции напряжение прикосновения на корпусах зануленного оборудования превышает все допустимые значения.
Необходимо отметить, что допустимое сопротивление заземления источника питания 4 Ом было установлено исходя из того, что при падении фазного провода даже на мокрую землю или в грязь его сопротивление току растекания будет не менее 15-20 Ом. Меньшие сопротивления растеканию создают неблагоприятные условия по электробезопасности для всех электроустановок подстанции.
этой ситуации при низких сопротивлениях повторного заземления у потребителей фактическое происходит расширение зоны аварии по всем прочим потребителям. Для исключения этой ситуации возникает необходимость сопоставления допустимых пределов разницы сопротивления заземляющих устройств источника питания и потребителя. Однако в существующей технической практике и в расчётах это не принято.
Нарушении целостности нулевого или защитного проводника может быть долго не замечено. При обрыве или нарушении контакта в N-проводнике рабочий ток проходит через РЕ-проводники. При КЗ неожиданно наступает тяжёлая аварийная ситуация с отказом защит. При обрыве РЕ-проводника оборудование может работать при параметрах рабочего режима близким к номинальным, но без заземления. В сети TN-C это недопустимо по условиям электробезопасности.

www.forumhouse.ru

О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?


Норма сопротивления контура заземленияНачну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?


Норма сопротивления контура заземления1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.


2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

Норма сопротивления контура заземленияПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.


Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

www.megaomm.ru

Чем измерить величину сопротивления

Выполнять замеры сопротивления заземления надо в следующих случаях:


  • по окончании монтажа электропроводки при новом строительстве;
  • после выполнения ремонта или реконструкции электрической сети и контура заземления;
  • периодически; на предприятиях составляются графики, владельцы частных домов периодичность проверки назначают самостоятельно, но не реже, чем один раз в полтора года.

Такие меры помогут предотвратить возможные поражения электрическим током, обезопасить проживание в доме, а также продлить срок службы бытового электрооборудования. Замеры сопротивления доверяют специалистам, или выполняют самостоятельно. Пользоваться следует специально предназначенными для этой цели приборами, так как измерить заземление с высокой точностью подручными средствами сложно.

Сопротивление заземления легко рассчитывается по формулам из учебника физики, если знать напряжение в сети и воспользоваться результатами замера силы тока специальными клещами. Причем измерения выполняются, не отключая заземляющую цепь. Исходные данные получают также от использования амперметра и вольтметра. Некоторые применяют тестер или контрольную лампу с наконечниками.

Кроме того, производители предлагают разнообразную измерительную технику. Например, классическую:

  • Прибор Ф 4103-М1 Ф 4103-М1для измерения сопротивления в диапазоне от 1 мкОма до 200 Ом. Подходит для контроля заземляющих контуров любой конфигурации и размеров.
  • Аппарат М416 М416проявил себя на протяжении длительного периода времени, как надежное устройство. Прибор работает точно и стабильно. Основное предназначение — измерение сопротивления заземлений величиной от 0,1 Ома до 1000 Ом.

Или современную:

  • Устройство ИС-10ИС-10. Представляет собой компактный прибор в защищенном ударопрочном корпусе. Оснащен встроенной памятью последних 40 измерений, автоматическим регулятором диапазона замеров, жидкокристаллическим дисплеем. Выполняет широкий спектр задач: измерения и тестирование многопроводным способом, а также контроль качества стыков проводов, кабелей, шин.
  • Прибор MRU 101MRU 101 относится к разряду профессионального оборудования. Для домашнего пользования его мощность слишком велика. Аппарату под силу измерить сопротивление до 20000 Ом. После подключения к исследуемому объекту устройство самостоятельно собирает данные, анализирует их и выдает результат на экран.

Все приборы, с которыми мы познакомились, стоят немалых денег и приобретать их для домашней мастерской вряд ли есть резон. Однако существует способ измерения сопротивления при помощи мультиметра. Это не очень сложно и сравнительно недорого.

Методика замера сопротивления заземления мультиметром

Проверке на величину сопротивления подвергается электрическая арматура внутри дома, а также металлосвязи и грунт снаружи. Внешнюю работу лучше выполнять в теплое сухое время года, поскольку мокрая почва способна сильно исказить данные. Состояние металлических конструкций для начала определяется визуальным осмотром. Стыки и контакты необходимо простучать небольшим молотком с заизолированной рукояткой. Проводник должен издавать дребезжащий звук. Затем к металлу подключается мультиметр, показания которого не могут превышать 0,05 Ом, если контур в порядке. Чтобы получить более точные значения, заземлитель в точках подключения прибора необходимо зачистить.

Удельное сопротивление почвы самостоятельно проверить нереально, нужна специальная аппаратура. Если такая оценка необходима, то следует обратиться к специалистам электросети.

Как измерять мультиметром сопротивление заземления в розетке?

Выполняем такие действия:

  1. Сначала удостоверимся, что напряжение в розетке есть. Для этого подключим любой прибор – лампу, телевизор.
  2. Отключаем подачу электроэнергии в дом – выворачиваем пробку или переключаем тумблер автомата.
  3. Освобождаем розетку от крышки и выясняем по какому принципу устроено заземление. Если заземляющий провод уходит в стену, то контур есть. Вариант подключения провода в клемме означает, что имеем дело с принципом «зануления» или отсутствием контура.розетка с заземлением
  4. Включаем обратно подачу электроэнергии в дом. Переключаем мультиметр в режим контроля напряжения и делаем замеры между фазой и нулем, затем – фазу с землей. Замечательно, когда вторая величина получается больше первой. А вот когда проверка фаза-земля показывает нулевое значение – это повод для тревоги. Это означает, что заземление в доме или повреждено, или отсутствует совсем.

Мультиметр не является специализированным прибором для получения точных параметров сопротивления. Поэтому перед выполнением проверки необходимо откалибровать сам аппарат, полностью зарядить аккумулятор. Эти меры помогут значительно снизить погрешность замеров.

Резюме

Грамотно и вовремя выполненные проверки технического состояния заземляющих устройств, в частности величины сопротивления контура, позволят избежать многих неприятностей с эксплуатацией электрических сетей и приборов. Для этого не надо приобретать дорогостоящие приборы или заказывать недешевые услуги. Вполне возможно обойтись простейшими приспособлениями и мультиметром.

mytooling.ru

Как осуществляется расчет сопротивления

Для точного расчета величины сопротивления заземления необходимо использовать специальные формулы, в которых наибольшее значения имеют два основных параметра – удельное сопротивление земли, а также качество и конфигурация заземлителя или заземлителей (длина, глубина залегания и другие характеристики). В деле организации сопротивления точность столь же важна, как и при составлении плана проводки в квартире и других строениях.

Удельное сопротивление грунта – важнейший параметр для расчетов сопротивления заземления. Он представляет собой электропроводность земли, если рассматривать грунт в качестве проводника электрического тока. Другими словами, сопротивление грунта показывает, насколько хорошо будет растекаться электрический ток по земле.

Величина удельного сопротивления определяется путем проведения необходимых исследований и измерений. Она зависит от состава грунта, его плотности, размеров его частиц, температуре и влажности окружающей среды, наличие в земле химических веществ, грунтовых вод и других элементов. Удельное сопротивление может несколько изменяться на основе погодных условий, то есть факторов, влияющих на температуру и влажность. Для электропроекта частного дома или другого объекта, при организации заземления следует использовать только точные величины удельного сопротивления.

Чтобы приблизительно определить удельное сопротивление грунта, можно использовать специальную таблицу, приведенную ниже. На таблице отображены значения сопротивления для самых распространенных грунтов в наших широтах. Это стандартные значения, которые приводятся только в качестве примера. Они актуальны только для полностью однородных грунтов без добавок, что сложно встретить на практике.

Сопротивление заземления

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

energy-systems.ru

Виды заземления

  1. Рабочее – заземление определённых мест, например, нейтральных точек трансформаторов. Служит для правильной эксплуатации электроустановок.
  2. Защита от молний – заземление приёмников молний для стока возникающих токов на металлоконструкции, в жилом доме или другом строении.
  3. Защитное – заземление корпусов бытовых приборов или не токопроводящих частей электроустановок. Защищает от поражения электрическим током при случайном прикосновении к деталям, не предназначенным для пропускания электрического тока.

Заземляющие устройства (ЗУ) должны снимать заряды с частей электроустановок, на которых не должно быть напряжения, образующегося в следующих случаях:

  • статическое электричество;
  • наведение напряжения;
  • вынос потенциала;
  • электрический разряд.

В качестве устройства (очага) заземления, выступает закопанный в грунт контур из металлических стержней, вместе с подключёнными к нему проводниками. Место соединения с ЗУ провода от защищаемого оборудования называется точкой заземления.

В большей степени напряжение появляется, когда нарушается изоляция или повреждаются проводники. В обычных условиях контур защитного заземления контактирует с корпусами бытовых приборов и не работает, пока на нём по какой-либо причине не появится потенциал.

Когда цепи исправны, через него не проходят никакие токи, кроме фоновых. Как только на металлическом корпусе бытового электроприбора появляется потенциал, начинается его стекание на землю, через заземляющий контур.

При этом на нетоковедущих частях из металла, напряжение должно снижаться до более низкого уровня. Если нарушается целостность контура заземления или соединённых с ним проводов, напряжение на них остаётся высоким со стороны источника тока, что представляет значительную опасность для человека.

Периодичность замеров сопротивления защитного заземления регламентируется ПТЭЭП (1 раз в 6 лет). Кроме того, делается регулярная проверка его исправности.

Для проверки соответствия ЗУ, нормативным требованиям, производится замер его сопротивления растеканию тока Rз. В идеале оно должно быть равно нулю, но на практике это невозможно.

Факторы учета сопротивления

Величина (Rз) складывается из нескольких составляющих:

  1. Сопротивление металла, закопанного в грунт электрода и на его контакте с проводником. В связи с хорошей проводимостью применяемых материалов (сталь с медным покрытием или медь), а также при надёжном соединении с проводом, величинами сопротивлений обычно пренебрегают.
  2. Сопротивление между грунтом и штырём, которым можно пренебречь, если электрод сидит плотно, а его место контакта свободно от краски и других диэлектрических покрытий. Со временем сталь корродирует, и электропроводность электрода снижается. Поэтому целесообразно использовать омедненные стержни и периодически измерять сопротивление растеканию. Места сварки покрываются лаком, чтобы уменьшить коррозию.
  3. Сопротивление грунта – это основной фактор, который следует учитывать. Особенно это относится к близлежащим слоям. По мере удаления их, сопротивление снижается, и на определённом расстоянии принимается за нулевое.
  4. Неоднородность электрических характеристик грунта трудно учесть. Поэтому важным является замер фактического Rз. На одиночную простую конструкцию заземлителя, преимущественно влияют поверхностные слои грунта, а на контурную – глубинные.

Объект испытания

Проверке подвергаются искусственные ЗУ, которые выполняются в виде одиночных электродов или контуров. К ним не относятся PEN,-и PE-проводники, входящие в виде отдельной жилы в состав кабеля.

Искусственные ЗУ выполняются в виде:

  1. Углублённого заземлителя из горизонтальных стальных полос или круга, уложенных на дно котлована.
  2. Вертикального заземлителя из угловой стали – вбиваемых стержней или труб. Они размещаются в грунте на дистанции не меньше их длины и объединяются в контур горизонтальными полосами или круглым стержнем на глубине около 0,5 м. Распространённой конструкцией в частном доме, и не только в нём, является треугольная. Обвязка для заземляющих электродов учитывается в расчётах.

Элементы меняются, если их коррозия превышает 50%. На электроустановках проверка производится выборочно, где действие коррозии максимально. Там обязательно проверяются заземления нейтралей. На ВЛ контролируется не менее 2% опор. При этом выбираются участки с наиболее агрессивным грунтом.

Значения Rз для каждого вида заземлителя приводятся в ПУЭ и таблице.

Максимально допустимое значение Rз

Характеристика электроустановки Удельное сопротивление грунта, Ом*м Сопротивление заземляющего устройства, Ом
Искусственный заземлитель, к которому присоединяются нейтрали генератора и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 | свыше 100 15 | 0,5*p
380/220 до 100 | свыше 100 30 | 0,3*p
220/127 до 100 | свыше 100 60 | 0,6*p
Примечание: p — удельное сопротивление грунта.

Измерение сопротивления заземлителя

Методика основана на законе Ома для определённого места электроцепи. Величина сопротивления вычисляется, если к ЗУ от источника напряжения подать ток и замерить его с высокой точностью. В принципе это можно сделать мультиметром, но погрешность здесь будет высокая. Поэтому применяются только приборы высокой точности.

Методы измерения сопротивления заземлителя:

  1. Метод пробного электрода. Замеры производят до монтажа заземляющего устройства.

Перед тем как проверить заземление, на испытуемом участке в грунт забивают одиночный пробный заземлитель, равный по длине будущему устройству и выступающий над землёй.

Затем тестером измеряют Rз, после чего по его величине и геометрическим размерам стержня рассчитывают удельное сопротивление земли (ρ), в Ом:

ρ = 2πRзl/[ln(4l/d)], где

  • l – длина стержня, м;
  • d – диаметр стержня, м.
  1. Метод вертикального электрического зондирования (ВЭЗ). На рисунке ниже изображена четырёхэлектродная схема измерения.

К наружным стержням (1) и (2) подключают ЭДС, а разность потенциалов замеряют на расположенных внутри стержнях (3) и (4).

  1. Метод вольтметра и амперметра. При измерениях собирается цепь из заземляющих устройств, основного (потенциального, П) и дополнительного (токового, Т) электродов, забиваемых в грунт.

Затем к ЗУ и Т прикладывается стабилизированное напряжение с последующим измерением амперметром (А) проходящего тока. К зачищенной поверхности контура защитного заземления и потенциальному электроду подключается вольтметр (V), которым измеряется падение напряжения между ними.

Электрод П располагается в зоне нулевого потенциала грунта и должен находиться на достаточно большом расстоянии от ЗУ и электрода Т.

Сопротивление заземления находится как частное, от деления измеренного значения напряжения на величину тока. Полученный результат можно принять как окончательный, в первом приближении. Уточнённый расчёт получится, если учитывать сопротивление соединительных проводов.

На рисунке выше изображена принципиальная электрическая схема и как собираются схемы измерения Rз с прибором МС-08. Первая из них отличается большей точностью, а во второй следует из показаний прибора вычесть сопротивления проводников, соединяющих заземлитель с клеммами (I1) и (E1).

Как видно из схем на рисунке выше, расстояния между заземлителями требуются большие и не всегда в городских условиях метод можно применить. Кроме того, показания прибора искажают металлические коммуникации.

  1. Компенсационный метод. Для измерений применяют высокоточные промышленные приборы.

Общим с предыдущим методом является аналогичное заглубление двух электродов. Их размещают на одной линии, захватывая исследуемый контур заземления.

В качестве прибора используется измерительный зонд, который подключают к дополнительным электродам 1 и 3, а также как можно ближе к шине 2 контура заземления.

Переменная ЭДС подаётся через заглублённые в грунт, дополнительные стержни, землю, соединительные проводники и первичную обмотку трансформатора тока (ТТ). На его вторичной обмотке появляется ток (I1). Реохордом «б» выставляется равенство напряжений U2 = U1. Оно достигается путём установки на ноль показаний прибора V, подключённого к реохорду через трансформатор ИТ.

Искомая величина Rз находится из системы уравнений:

U1=I1∙ Rз;

U2=I2∙ Rаб;

U1= U2;

I1=I2.

После решения системы устанавливается, что Rз=Rаб. Остаётся определить величину Rаб. Для этого на подвижной части ручки устанавливается стрелка, служащая указателем значения Rаб, на неподвижной шкале.

Таким образом, путём вращения ручки реостата и установки показаний прибора V на ноль, по положению стрелки реохорда можно найти Rз.

  1. Замеры Rз с использованием калиброванного резистора. Электричество подаётся на ЗУ напрямую с фазы питания через охлаждаемый калиброванный резистор Rкр.

Ток через ЗУ определяется по измеренному напряжению Uкр на резисторе и известной величине сопротивления.

Падение напряжения на ЗУ находится по разности напряжений (рабочего и на резисторе): Uз = Uф — Uкр.

Сопротивление заземляющего устройства находится из формулы: Rз = Rкр (Uф — Uкр)/Uкр. Здесь не учитываются сопротивления проводников, а также сопротивление заземления нейтрали трансформатора на подстанции, поскольку их значениями можно пренебречь. Погрешность метода составляет около 10%.

Измерения производят путём отключения провода PE сети от заземлителя, на который затем подаётся фазное напряжение через калиброванное сопротивление типа НР-64/220 (46 Ом). Выделяемая мощность составляет сотни ватт, что требует его водяного охлаждения.

Преимуществом метода является его простота: не требуются тяжёлые электроды и многометровые провода, а измерения производятся на небольшом участке земли. Он является эффективным в городских условиях, например, в многоэтажном доме, где проходит множество коммуникаций.

  1. Измерение Rз с применением токовых клещей. Современный метод измерения производится без отключения заземляющей цепи.

Он удобен и в доме, и на предприятии. При этом учитываются сопротивления соединений, что повышает точность замеров. На рисунке ниже представлена схема измерения и её эквивалентная схема.

В цепь Rз подаётся напряжение Е и по ней проходит ток. Измерив его величину клещами, можно получить все исходные данные для расчёта Rз.

Сопротивление находится из соотношения Rз = E/I. Напряжение Е известно, а сопротивление находится по данной формуле, если измерить величину тока с помощью клещей.

Приборы для измерения

С развитием энергетики, приборы измерения совершенствуются в плане удобства использования и получения более точных результатов. Практически все аналоговые приборы заменены на цифровые с микропроцессорами.

Процессы замеров стали проще, точность повысилась, а результаты сохраняются в памяти. Стоимость приборов высокая. Периодичность измерений составляет 1 раз в 6 лет, и приобретать для этого прибор не стоит.

Кроме характеристик измерительных приборов, важно качественно подготовить шинопровод к подключению контактирующих с ним проводников. Места соединения очищаются от коррозии, а также применяют струбцины с винтовыми зажимами, чтобы продавить верхний слой металла в месте контакта проводника с электродом.

Измерения выполняются с отключением главного автомата щита управления или отсоединением от заземлителя РЕ-проводника. Иначе, может возникнуть аварийный режим с прохождением тока короткого замыкания через тестер и ЗУ.

Прибор МС-08 применяется для замеров, методом амперметра и вольтметра, где устанавливаются 2 электрода на расстоянии более 25 м от заземлителя. Ток в цепи создаётся генератором, приводимым во вращение вручную через редуктор.

После сборки схемы и подключения прибора, сопротивления вспомогательных заземлителей компенсируются. Если этого сделать не удаётся, вокруг дополнительного заземлителя увлажняется грунт. Измерения производят на разных диапазонах, пока тестер не даст заметные показания. Они не должны колебаться после окончательной установки.

Прибор М-416 удобен для измерений, так как имеет небольшой вес, шкалу с вращением и фиксацией измеренных значений, собран на полупроводниках с автономным питанием.

Тестер СА 6415 с токовыми клещами и ЖК-дисплеем позволяет измерять заземление без применения дополнительных электродов. При этом нет необходимости отключать РЕ-проводник от электродов. Трудоёмкость метода значительно меньше по сравнению с другими.

elquanta.ru

Как просто измерить сопротивление контура заземления?

Все значения определяем уже по готовому контуру, для этого пользуемся алгоритмом действий:

  • подсоединяем дополнительные электроды к существующему контуру заземления, после чего подключаем заземляющее устройство к прибору, согласно схемы, которая указана на корпусе приспособления;
  • при непосредственном измерении, М416 должен быть расположен строго горизонтально, так как даже малейший уклон влияет на погрешность измерений;
  • выполните действия с прибором: ручку переключателя поверните на значение х1; нажимая на кнопку, вращаем «реохорд» и добиваемся максимального приближения стрелки циферблата к нулевому значению; обратите внимание на шкалу, на ней появится результат значения сопротивления; при этом умножайте эти цифры на значение, на котором установлен переключатель (в нашем случае х1).

Важно! Если в ходе вычислений сопротивления у вас получилось значение больше 10 Ом, необходимо провести замеры снова, в соответствии с предложенным алгоритмом, к тому же переключатель переместить на следующее положение.

Общие понятия сопротивления заземления

Сразу обращаем внимание, сооруженное заземление должно иметь минимальное сопротивление. Идеально, если вычисленный показатель равен нейтральному значению, тогда можно говорить о полноценном поглощении грунтом электрического пробойного тока.

В частных домах или на дачных участках, подключенных к системе электроснабжения мощностью 220 Вольт, оптимальное значение сопротивления составляет до 30 Ом. В случаях, когда контур заземления напрямую соединяется с нулем трансформатора — сопротивление должно быть не более 4 Ом.

Обратите внимание! Только грамотное сооружение заземлительной конструкции послужит достижением правильного параметра сопротивления.

Если к вашему дому подведен газопровод, требуется установить локальное заземление, сопротивление которого согласно нормам и ПУЭ должно составлять не более 10 Ом.

Нормы сопротивления контура заземления, можно узнать в соответствующей документации в зависимости от почвенных и других условий.

prokommunikacii.ru

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Для чего нужно заземление

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

Устройство заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

electry.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.