Сопротивление заземляющего устройства


Расчет заземления производится для того чтобы определить сопротивление сооружаемого контура заземления при эксплуатации, его размеры и форму. Как известно, контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители вбиваются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления.

К чему сводится расчет заземления?

Заземление служит для снижения напряжения прикосновения до безопасной величины. Благодаря заземлению опасный потенциал уходит в землю тем самым, защищая человека от поражения электрическим током.


Величина тока стекания в землю зависит от сопротивления заземляющего контура. Чем сопротивление будет меньше, тем величина опасного потенциала на корпусе поврежденной электроустановки будет меньше.

Заземляющие устройства должны удовлетворять возложенным на них определенным требованиям, а именно величины сопротивление растекания токов и распределения опасного потенциала.

Поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

размер арматуры для расчета заземления

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.


одиночный заземлитель при расчете заземления

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

rasstojanie

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

расчет заземления

где – ρэкв — эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:


furmula-2

где – Ψ — сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1
Грунт Удельное сопротивление грунта, Ом·м
Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Заглубление горизонтального заземлителя можно найти по формуле:

furmula-3

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2
Тип заземляющих электродов Климатическая зона
I II III IV
Стержневой (вертикальный) 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Полосовой (горизонтальный) 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5
  Климатические признаки зон
Средняя многолетняя низшая температура (январь) от -20+15 от -14+10 от -10 до 0 от 0 до +5
Средняя многолетняя высшая температура (июль) от +16 до +18 от +18 до +22 от +22 до +24 от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

furmula-4

Rн — нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3
Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:    
660/380 до 100 15
свыше 100 0.5·ρ
380/220 до 100 30
свыше 100 0.3·ρ
220/127 до 100 60
свыше 100 0.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

расчет защитного заземления

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

furmula-6 — в ряд; furmula-9— по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

расчет заземления пример

Полное количество вертикальных заземлителей определяется по формуле:


расчет контура заземления

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

коэффициент использования заземлителей для расчета заземления

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

electricvdome.ru

Правила устройства электроустановок


В последнем, седьмом издании ПУЭ в разделе 1 гл.1.8 п. 1.8.37, указаны нормируеиые значения сопротивлений заземляющих устройств в зависимости от их вида и характеристик. Так, подстанции и распределительные пункты напряжением выше 1 кВ, представляют собой электроустановки электрических сетей с глухозаземленной и эффективно заземленной нейтралью, либо электроустановки электрических сетей с изолированной нейтралью, с нейтралью, заземленной через дугогасящий реактор или резистор. Первые должны иметь сопротивление не более 0,5 Ом, вторые — 250/Iр.

Воздушные линии электропередач должны иметь сопротивление заземляющих устройств опор ВЛ в зависимости от удельного сопротивления грунта: до 100 – 10 Ом, более 100 до 500 – 15 Ом, более 500 до 1000 – 20 Ом, более 1000 до 5000 – 30 Ом, более 5000 — ρ•6•103. Заземляющие устройства опор ВЛ с разрядниками на подходах к распределительным устройствам с вращающимися машинами рассчитываются отдельно.

Электроустановки напряжением до 1 кВ делятся на три вида:

  • Электроустановки с источниками питания в электрических сетях с глухозаземленной нейтралью (или средней точкой) источника питания (система TN): в непосредственной близости от нейтрали – сопротивление 15/30/60 Ом;
  • Электроустановки с учетом естественных заземлителей и повторных заземлителей отходящих линий – сопротивление 2/4/8 Ом;
  • Электроустановки в электрических сетях с изолированной нейтралью (или средней точкой) источника питания (система ГГ) — сопротивление 50/I, более 4 Ом не требуется.

В данном случае измерение сопротивления заземляющих устройств должно соответствовать не только групповым, но и частным характеристикам, поскольку в некоторых электроустановках предусмотрено различное сопротивление (кратное минимальному), согласно линейному напряжению в 660, 280 и 220 В соответственно.

Воздушные линии электропередачи напряжением до 1 кВ, имеющие заземляющие устройства опор ВЛ с повторными заземлителями PEN (РЕ) – проводника, рассчитаны на сопротивление в 30 Ом. В формулах использованы обозначения: Iр– расчетный ток замыкания на землю, I – полный ток замыкания на землю.

Характеристики заземляющего устройства

Характеристики ЗУ должны отвечать требованиям ГОСТ и ПУЭ и, обеспечивая основные функции электроустановки, выполнять следующие действия:

  • стабилизация потенциалов относительно земли;
  • защита от статического электричества;
  • отвод рабочих токов;
  • отвод в грунт молнии;
  • защита изоляции низвокольтных цепей и электрооборудования;
  • защита от перенапряжений;
  • релейная защита от замыкания в землю;
  • защита подземного оборудования от токовых перегрузок;
  • обеспечение взрыво- и пожаробезопасности.

Измерение сопротивления заземляющих устройств гарантирует выполнение всех этих функций, если замеры показывают норму.

Замеры заземляющих устройств проводятся по следующим параметрам:

  • сопротивление заземляющего устройства для электростанций, высоковольтных линий электропередач, установок подстанций;
  • напряжение заземляющего устройства при стекании с него тока замыкания на землю;
  • для установок выше 1 кВ с эффективно заземленной нейтралью, за исключением высоковольтных линий электропередач, замеряется напряжение прикосновения.

Измерение сопротивления растеканию заземлителя (З) – Rраст, производится с помощью вспомогательного электрода ( токовый электрод – Т) и зонда (потенциальный электрод – П) – см. рисунок 1. Посредством источника прибора и вспомогательного электрода через проверяемый электрод (заземлитель), сопротивление растеканию которого определяется, пропускается ток Iраст. Сопротивление составляет :

Rраст = Uраст / Iраст

Измеряя с помощью зонда Uраст и пропуская ток растекания через заземлитель, измеряем прибором R раст , шкала которого проградуирована в омах.

Измерение сопротивления заземляющего устройства (ЗУ)

рисунок 1

Проверка правильности заземления

Электролаборатория нашей организации в первую очередь проводит визуальный осмотр заземляющих устройств, чтобы определить, правильно ли они смонтированы, и каким способом осуществлено заземление. Заземление производится либо выносным способом, либо контурным расположением заземляющих проводников. Контурное расположение заземлителей обеспечивает выравнивание потенциалов при однофазном замыкании на землю. Еще одним положительным эффектом является уменьшение значений напряжения прикосновения и шагового напряжения вблизи ЛЭП, благодаря взаимному влиянию заземляющих устройств. Измерения сопротивления заземляющих устройств в этом случае надо производить с учетом этого взаимовлияния.

Элементы заземляющих устройств в помещениях должны быть размещены в соответствии с проектом, и при осмотре не должно быть затруднений в доступе к ним. Однако, они также должны быть надежно защищены от механических повреждений. При укладке по полу проводники ЗУ размещают в специальных заглубленных канавках. Если возможно осаждение едких паров, воздействие газов и т.д., то рекомендуется крепить проводники скобами так, чтобы между ними и стеной был зазор не менее 10 мм. Это же относится и к помещениям с повышенной влажностью. Для того, чтобы сопротивление заземляющих устройств соответствовало требованиям объекта, необходимо подводить проводники к каждому корпусу электрооборудования, делая ответвления от главной заземляющей шины (ГЗШ). Таким образом, мы получаем параллельное подключение, которое является единственно правильным: последовательное подключение объектов один к другому, а потом к ЗУ – запрещено, поскольку является источником повышенной опасности: сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Измерение сопротивления заземляющих устройств должно производиться с учетом времени года: поскольку сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю, то величина сопротивления заземлителя зависит от удельного сопротивления грунта. Наиболее высокое сопротивление фиксируется зимой, когда грунт промерзает, либо летом, в засушливый период – расхождение с весеннее-осенними показателями может составлять несколько раз. Раньше применялись коэффициенты сезонности, которые рассчитывались и с помощью них проводилась корректировка значений сопротивлений ЗУ.

В установках с суммарной мощностью генераторов и трансформаторов 100 кВА допускается значение сопротивления ЗУ, равное 10 Ом, в установках с меньшей мощностью – 4 Ом. Допустимая величина напряжения прикосновения в сетях до 1000 В не должна превышать 40 В. В установках свыше 1000 В допускается сопротивление заземления R3 меньше или = 125/I3 Ом, но не более 4 Ом или 10 Ом. В случае необходимости возможности экстренного отключения участка сети без помощи оператора, в установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом. Эти показатели указаны в ГОСТ, ПУЭ, проекте. Обязательно при измерении сопротивления заземляющих устройств сравнивать полученное значение с нормируемым или расчетным проектным.

Методика проведения измерения сопротивления заземляющих устройств в Санкт-Петербурге

Проведение измерения сопротивления заземляющих устройств осуществляется в соответствии с нормами по пункту 1.7.101 ПУЭ (7 изд.) и пункту 26.4 ПТЭЭП. Методика подходит для измерения сопротивления устройств молниезащиты и удельного сопротивления грунта. Для измерений используются приборы М416 или Ф4103-М1, тестеры заземления MRU-100, MRU-101, MRU-105, MRU-120, C.A 6460, Fluke, Megger, ИС-10/1, TV 440N и другие. Мы используем надежное и опробованное современное испытательное оборудование и средства измерений ведущих отечественных и зарубежных производителей.

К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание требований НД: ПОТ, ППБ, инстукций и методики измерения сопротивления заземляющих устройств. Сотрудники должны быть обеспеченны инструментом, индивидуальными защитными средствами, спецодеждой и средствами измерений, исправными и прошедшими периодическую поверку. Состав бригады должен быть не менее двух человек. Особое внимание должно быть уделено безопасности при подаче напряжения от постороннего источника питания. Требуется проверить соединительные провода и питающий кабель на наличие двойной изоляции, так же, как и понижающий трансформатор. Приборы в схемах измерений должны быть установлены на изолированном основании. Измерения надо проводить в сухой период, а в загазованных помещениях, либо в помещениях со взрывоопасными средами, следует сначала устранить источник опасности. По результатам измерений сопротивления заземляющих устройств составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, несут ответственность в соответствии с действующим Законодательством.

  • ПУЭ (Правила устройства электроустановок) 7-е издание, раздел 1, гл. 1.8, п. 1.8.39, пп. 5, таб. 1.8.38; гл. 1.7, п 1.7.103.
  • РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования», глава 28.
  • РД 153-34.0-20.525-00 Методические указания по контролю состояния заземляющих устройств электроустановок.

 

Вид электроустановки Характеристика электроустановки Сопротивление, Ом
1. Подстанции и распределительные пункты напряжением выше 1 кВ Электроустановки электрических сетей с глухозаземленной и эффективно заземленной нейтралью. 0,5
Электроустановки электрических сетей с изолированной нейтралью, с нейтралью, заземленной через дугогасящий реактор или резистор 250/Iр*
2. Воздушные линии электропередачи напряжением выше 1 кВ Заземляющие устройства опор ВЛ (см. также 2.5.129 – 2.5.131) при удельном сопротивлении грунта, ρ, Ом·м:  
до 100 10
более 100 до 500 15
более 500 до 1000 20
более 1000 до 5000 30
более 5000 ρ·6·103
Заземляющие устройства опор ВЛ с разрядниками на подходах к распределительным устройствам с вращающимися машинами см. главу 4.2
3. Электроустановки напряжением до 1 кВ Электроустановки с источниками питания в электрических сетях с глухозаземленной нейтралью (или средней точкой) источника питания (система TN):
в непосредственной близости от нейтрали
15/30/60**
с учетом естественных заземлителей и повторных заземлителей отходящих линий 2/4/8**
Электроустановки в электрических сетях с изолированной нейтралью (или средней точкой) источника питания (система ГГ) 50/I***, более 4 Ом не требуется
4. Воздушные линии электропередачи напряжением до 1 кВ Заземляющие устройства опор ВЛ с повторными заземлителями PEN (РЕ) – проводника 30
Iр* – расчетный ток замыкания на землю;
** – соответственно при линейных напряжениях 660, 280, 220 В;
I*** – полный ток замыкания на землю.

www.gorod812.com

1.8.39. ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА

1. Проверка элементов заземляющего устройства.

Проверку следует производить путем осмотра элементов заземляющего устройства в пределах доступности осмотру. Сечения и проводимости элементов заземляющего устройства, включая главную заземляющую шину, должны соответствовать требованиям настоящих Правил и проектным данным.

2. Проверка цепи между заземлителями и заземляемыми элементами.

Следует проверить сечения, целостность и прочность проводников, их соединений и присоединений. Не должно быть обрывов и видимых дефектов в заземляющих проводниках, соединяющих аппараты с заземлителем. Надежность сварки проверяется ударом молотка.

3. Проверка состояния пробивных предохранителей в электроустановках до 1 кВ.

Пробивные предохранители должны быть исправны и соответствовать номинальному напряжению электроустановки.

4. Проверка цепи фаза — нуль в электроустановках до 1 кВ с системой TN и ТТ.

Проверка производится одним из следующих способов:

непосредственным измерением тока однофазного замыкания на корпус или нулевой защитный проводник;

измерением полного сопротивления цепи фаза – нулевой защитный проводник с пос­ледующим вычислением тока однофазного замыкания.

Кратность тока однофазного замыкания на землю по отношению к номинальному току предохранителя или расцепителя автоматического выключателя должно быть не менее значения, указанного в главе 3.1 ПУЭ.

5. Измерение сопротивления заземляющих устройств.

Значения сопротивления заземляющих устройств с подсоединенными естественными заземлителями должны удовлетворять значениям, приведенным в соответствующих главах настоящих Правил и таблице 1.8 38.

Таблица 1.8.38 Наибольшие допустимые значения заземляющих устройств

* Iр    — расчетный ток замыкания на землю;

**      — соответственно при линейных напряжениях 660, 280, 220 В;

***   I  — полный ток замыкания на землю.

6. Измерение напряжения прикосновения (в электроустановках, выполненных по нормам на напряжение прикосновения).

Измерение напряжения прикосновения производится при присоединенных естественных заземлителях.

Напряжение прикосновения измеряется в контрольных точках, в которых эти значения определены расчетом при проектировании (см. также 1.7.91).

energ2010.ru

О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Норма сопротивления контура заземленияНачну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

Норма сопротивления контура заземления1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

Норма сопротивления контура заземленияПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

www.megaomm.ru

Виды заземления

  1. Рабочее – заземление определённых мест, например, нейтральных точек трансформаторов. Служит для правильной эксплуатации электроустановок.
  2. Защита от молний – заземление приёмников молний для стока возникающих токов на металлоконструкции, в жилом доме или другом строении.
  3. Защитное – заземление корпусов бытовых приборов или не токопроводящих частей электроустановок. Защищает от поражения электрическим током при случайном прикосновении к деталям, не предназначенным для пропускания электрического тока.

Заземляющие устройства (ЗУ) должны снимать заряды с частей электроустановок, на которых не должно быть напряжения, образующегося в следующих случаях:

  • статическое электричество;
  • наведение напряжения;
  • вынос потенциала;
  • электрический разряд.

В качестве устройства (очага) заземления, выступает закопанный в грунт контур из металлических стержней, вместе с подключёнными к нему проводниками. Место соединения с ЗУ провода от защищаемого оборудования называется точкой заземления.

В большей степени напряжение появляется, когда нарушается изоляция или повреждаются проводники. В обычных условиях контур защитного заземления контактирует с корпусами бытовых приборов и не работает, пока на нём по какой-либо причине не появится потенциал.

Когда цепи исправны, через него не проходят никакие токи, кроме фоновых. Как только на металлическом корпусе бытового электроприбора появляется потенциал, начинается его стекание на землю, через заземляющий контур.

При этом на нетоковедущих частях из металла, напряжение должно снижаться до более низкого уровня. Если нарушается целостность контура заземления или соединённых с ним проводов, напряжение на них остаётся высоким со стороны источника тока, что представляет значительную опасность для человека.

Периодичность замеров сопротивления защитного заземления регламентируется ПТЭЭП (1 раз в 6 лет). Кроме того, делается регулярная проверка его исправности.

Для проверки соответствия ЗУ, нормативным требованиям, производится замер его сопротивления растеканию тока Rз. В идеале оно должно быть равно нулю, но на практике это невозможно.

Факторы учета сопротивления

Величина (Rз) складывается из нескольких составляющих:

  1. Сопротивление металла, закопанного в грунт электрода и на его контакте с проводником. В связи с хорошей проводимостью применяемых материалов (сталь с медным покрытием или медь), а также при надёжном соединении с проводом, величинами сопротивлений обычно пренебрегают.
  2. Сопротивление между грунтом и штырём, которым можно пренебречь, если электрод сидит плотно, а его место контакта свободно от краски и других диэлектрических покрытий. Со временем сталь корродирует, и электропроводность электрода снижается. Поэтому целесообразно использовать омедненные стержни и периодически измерять сопротивление растеканию. Места сварки покрываются лаком, чтобы уменьшить коррозию.
  3. Сопротивление грунта – это основной фактор, который следует учитывать. Особенно это относится к близлежащим слоям. По мере удаления их, сопротивление снижается, и на определённом расстоянии принимается за нулевое.
  4. Неоднородность электрических характеристик грунта трудно учесть. Поэтому важным является замер фактического Rз. На одиночную простую конструкцию заземлителя, преимущественно влияют поверхностные слои грунта, а на контурную – глубинные.

Объект испытания

Проверке подвергаются искусственные ЗУ, которые выполняются в виде одиночных электродов или контуров. К ним не относятся PEN,-и PE-проводники, входящие в виде отдельной жилы в состав кабеля.

Искусственные ЗУ выполняются в виде:

  1. Углублённого заземлителя из горизонтальных стальных полос или круга, уложенных на дно котлована.
  2. Вертикального заземлителя из угловой стали – вбиваемых стержней или труб. Они размещаются в грунте на дистанции не меньше их длины и объединяются в контур горизонтальными полосами или круглым стержнем на глубине около 0,5 м. Распространённой конструкцией в частном доме, и не только в нём, является треугольная. Обвязка для заземляющих электродов учитывается в расчётах.

Элементы меняются, если их коррозия превышает 50%. На электроустановках проверка производится выборочно, где действие коррозии максимально. Там обязательно проверяются заземления нейтралей. На ВЛ контролируется не менее 2% опор. При этом выбираются участки с наиболее агрессивным грунтом.

Значения Rз для каждого вида заземлителя приводятся в ПУЭ и таблице.

Максимально допустимое значение Rз

Характеристика электроустановки Удельное сопротивление грунта, Ом*м Сопротивление заземляющего устройства, Ом
Искусственный заземлитель, к которому присоединяются нейтрали генератора и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 | свыше 100 15 | 0,5*p
380/220 до 100 | свыше 100 30 | 0,3*p
220/127 до 100 | свыше 100 60 | 0,6*p
Примечание: p — удельное сопротивление грунта.

Измерение сопротивления заземлителя

Методика основана на законе Ома для определённого места электроцепи. Величина сопротивления вычисляется, если к ЗУ от источника напряжения подать ток и замерить его с высокой точностью. В принципе это можно сделать мультиметром, но погрешность здесь будет высокая. Поэтому применяются только приборы высокой точности.

Методы измерения сопротивления заземлителя:

  1. Метод пробного электрода. Замеры производят до монтажа заземляющего устройства.

Перед тем как проверить заземление, на испытуемом участке в грунт забивают одиночный пробный заземлитель, равный по длине будущему устройству и выступающий над землёй.

Затем тестером измеряют Rз, после чего по его величине и геометрическим размерам стержня рассчитывают удельное сопротивление земли (ρ), в Ом:

ρ = 2πRзl/[ln(4l/d)], где

  • l – длина стержня, м;
  • d – диаметр стержня, м.
  1. Метод вертикального электрического зондирования (ВЭЗ). На рисунке ниже изображена четырёхэлектродная схема измерения.

К наружным стержням (1) и (2) подключают ЭДС, а разность потенциалов замеряют на расположенных внутри стержнях (3) и (4).

  1. Метод вольтметра и амперметра. При измерениях собирается цепь из заземляющих устройств, основного (потенциального, П) и дополнительного (токового, Т) электродов, забиваемых в грунт.

Затем к ЗУ и Т прикладывается стабилизированное напряжение с последующим измерением амперметром (А) проходящего тока. К зачищенной поверхности контура защитного заземления и потенциальному электроду подключается вольтметр (V), которым измеряется падение напряжения между ними.

Электрод П располагается в зоне нулевого потенциала грунта и должен находиться на достаточно большом расстоянии от ЗУ и электрода Т.

Сопротивление заземления находится как частное, от деления измеренного значения напряжения на величину тока. Полученный результат можно принять как окончательный, в первом приближении. Уточнённый расчёт получится, если учитывать сопротивление соединительных проводов.

На рисунке выше изображена принципиальная электрическая схема и как собираются схемы измерения Rз с прибором МС-08. Первая из них отличается большей точностью, а во второй следует из показаний прибора вычесть сопротивления проводников, соединяющих заземлитель с клеммами (I1) и (E1).

Как видно из схем на рисунке выше, расстояния между заземлителями требуются большие и не всегда в городских условиях метод можно применить. Кроме того, показания прибора искажают металлические коммуникации.

  1. Компенсационный метод. Для измерений применяют высокоточные промышленные приборы.

Общим с предыдущим методом является аналогичное заглубление двух электродов. Их размещают на одной линии, захватывая исследуемый контур заземления.

В качестве прибора используется измерительный зонд, который подключают к дополнительным электродам 1 и 3, а также как можно ближе к шине 2 контура заземления.

Переменная ЭДС подаётся через заглублённые в грунт, дополнительные стержни, землю, соединительные проводники и первичную обмотку трансформатора тока (ТТ). На его вторичной обмотке появляется ток (I1). Реохордом «б» выставляется равенство напряжений U2 = U1. Оно достигается путём установки на ноль показаний прибора V, подключённого к реохорду через трансформатор ИТ.

Искомая величина Rз находится из системы уравнений:

U1=I1∙ Rз;

U2=I2∙ Rаб;

U1= U2;

I1=I2.

После решения системы устанавливается, что Rз=Rаб. Остаётся определить величину Rаб. Для этого на подвижной части ручки устанавливается стрелка, служащая указателем значения Rаб, на неподвижной шкале.

Таким образом, путём вращения ручки реостата и установки показаний прибора V на ноль, по положению стрелки реохорда можно найти Rз.

  1. Замеры Rз с использованием калиброванного резистора. Электричество подаётся на ЗУ напрямую с фазы питания через охлаждаемый калиброванный резистор Rкр.

Ток через ЗУ определяется по измеренному напряжению Uкр на резисторе и известной величине сопротивления.

Падение напряжения на ЗУ находится по разности напряжений (рабочего и на резисторе): Uз = Uф — Uкр.

Сопротивление заземляющего устройства находится из формулы: Rз = Rкр (Uф — Uкр)/Uкр. Здесь не учитываются сопротивления проводников, а также сопротивление заземления нейтрали трансформатора на подстанции, поскольку их значениями можно пренебречь. Погрешность метода составляет около 10%.

Измерения производят путём отключения провода PE сети от заземлителя, на который затем подаётся фазное напряжение через калиброванное сопротивление типа НР-64/220 (46 Ом). Выделяемая мощность составляет сотни ватт, что требует его водяного охлаждения.

Преимуществом метода является его простота: не требуются тяжёлые электроды и многометровые провода, а измерения производятся на небольшом участке земли. Он является эффективным в городских условиях, например, в многоэтажном доме, где проходит множество коммуникаций.

  1. Измерение Rз с применением токовых клещей. Современный метод измерения производится без отключения заземляющей цепи.

Он удобен и в доме, и на предприятии. При этом учитываются сопротивления соединений, что повышает точность замеров. На рисунке ниже представлена схема измерения и её эквивалентная схема.

В цепь Rз подаётся напряжение Е и по ней проходит ток. Измерив его величину клещами, можно получить все исходные данные для расчёта Rз.

Сопротивление находится из соотношения Rз = E/I. Напряжение Е известно, а сопротивление находится по данной формуле, если измерить величину тока с помощью клещей.

Приборы для измерения

С развитием энергетики, приборы измерения совершенствуются в плане удобства использования и получения более точных результатов. Практически все аналоговые приборы заменены на цифровые с микропроцессорами.

Процессы замеров стали проще, точность повысилась, а результаты сохраняются в памяти. Стоимость приборов высокая. Периодичность измерений составляет 1 раз в 6 лет, и приобретать для этого прибор не стоит.

Кроме характеристик измерительных приборов, важно качественно подготовить шинопровод к подключению контактирующих с ним проводников. Места соединения очищаются от коррозии, а также применяют струбцины с винтовыми зажимами, чтобы продавить верхний слой металла в месте контакта проводника с электродом.

Измерения выполняются с отключением главного автомата щита управления или отсоединением от заземлителя РЕ-проводника. Иначе, может возникнуть аварийный режим с прохождением тока короткого замыкания через тестер и ЗУ.

Прибор МС-08 применяется для замеров, методом амперметра и вольтметра, где устанавливаются 2 электрода на расстоянии более 25 м от заземлителя. Ток в цепи создаётся генератором, приводимым во вращение вручную через редуктор.

После сборки схемы и подключения прибора, сопротивления вспомогательных заземлителей компенсируются. Если этого сделать не удаётся, вокруг дополнительного заземлителя увлажняется грунт. Измерения производят на разных диапазонах, пока тестер не даст заметные показания. Они не должны колебаться после окончательной установки.

Прибор М-416 удобен для измерений, так как имеет небольшой вес, шкалу с вращением и фиксацией измеренных значений, собран на полупроводниках с автономным питанием.

Тестер СА 6415 с токовыми клещами и ЖК-дисплеем позволяет измерять заземление без применения дополнительных электродов. При этом нет необходимости отключать РЕ-проводник от электродов. Трудоёмкость метода значительно меньше по сравнению с другими.

elquanta.ru

7. Уточняется необходимое сопротивление вертикальных электродов с учетом проводимости горизонтальных соединительных электродов из выражений

Сопротивление заземляющего устройства

или

Сопротивление заземляющего устройства

где Сопротивление заземляющего устройства — сопротивление растеканию горизонтальных электродов, определенное в п. 6.
8. Уточняется число вертикальных электродов с учетом коэффициентов использования по табл. 12-4 или 12-5:

Сопротивление заземляющего устройства

Окончательно принимается число вертикальных электродов из условий размещения.
9. Для установок выше 1000 В с большими токами замыкания на землю проверяется термическая стойкость соединительных проводников по формуле (12-5).

Пример 12-1. Требуется рассчитать заземление подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 100 кВ 3,2 кА; наибольший ток через заземление при замыканиях на землю на стороне 10 кВ 42 А; грунт в месте сооружения подстанции — суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы — опоры с сопротивлением заземления 1,2 Ом.

Решение
1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом. Для стороны 10 кВ по формуле (12-6)

Сопротивление заземляющего устройства

где расчетное напряжение на заземляющем устройстве принято равным 125 В, так как заземляющее устройство используется также для установок подстанции до 1000 В. Таким образом, в качестве расчетного принимается сопротивление Сопротивление заземляющего устройства.
2. Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы — опоры;

Сопротивление заземляющего устройства

3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя — суглинке по приведенным выше данным составляет 100 ОмЧм. Повышающие коэффициенты для климатической зоны 2 по табл. 12 2 принимаются равными 4,5 для горизонтальных протяженных электродов при глубине заложения 0,8 м и 1,8 для вертикальных стержневых электродов длиной 2—3 м при глубине заложения их вершины 0,5—0,8 м.
Расчетные удельные сопротивления:
для горизонтальных электродов
Сопротивление заземляющего устройства
для вертикальных электродов
Сопротивление заземляющего устройства
4. Определяется сопротивление растеканию одного вертикального электрода — уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м по формуле из табл. 12-3:

Сопротивление заземляющего устройства

где Сопротивление заземляющего устройства

Сопротивление заземляющего устройства

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования Сопротивление заземляющего устройства:

Сопротивление заземляющего устройства

6. Определяется сопротивление растеканию горизонтальных электродов — полос 40 X 4 мм2, приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре при числе уголков порядка 100 и отношении Сопротивление заземляющего устройства по табл. 12-7 равен: Сопротивление заземляющего устройства.
Сопротивление растеканию полосы по формуле из табл. 12-3

Сопротивление заземляющего устройства

7. Уточненное сопротивление вертикальных электродов

Сопротивление заземляющего устройства

8. Уточненное число вертикальных электродов определяется при коэффициенте использования Сопротивление заземляющего устройства, принятом из табл. 12-5 при n=100 и Сопротивление заземляющего устройства:

Сопротивление заземляющего устройства

Окончательно принимается 117 уголков.
Дополнительно к контуру на территории подстанции устраивается сетка из продольных полос, расположенных на расстоянии 0,8—1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления; проводимость их идет в запас.
9. Проверяется термическая стойкость полосы 40 X 4 мм2. Минимальное сечение полосы из условий термической стойкости при к. з. на землю по формуле (12-5) при приведенном времени прохождения тока к. з. Сопротивление заземляющего устройства

Сопротивление заземляющего устройства

Таким образом, полоса 40 X 4 мм2 условию термической стойкости удовлетворяет.

По результатам примера 12-1 можно видеть, что при достаточно большом количестве вертикальных электродов горизонтальные электроды, соединяющие верхние концы вертикальных, весьма слабо влияют на результирующее расчетное сопротивление контура заземления. При этом также обнаруживается дефект существующей методики расчета для случаев, когда требуется достаточно малое сопротивление контура. В выполненном примерном расчете этот дефект выявился в том, что учет дополнительной проводимости контура от горизонтальной соединительной полосы привел не к уменьшению потребного количества вертикальных электродов, а наоборот, к его увеличению примерно на 5%. На основании этого можно рекомендовать в подобных случаях рассчитывать необходимое количество вертикальных электродов без учета дополнительной проводимости соединительных и других горизонтальных полос, полагая, что их проводимость будет идти в запас надежности.

www.websor.ru

Оборудование, подлежащее защитному заземлению

Защитному заземлению в соответствии с ГОСТ 12.1.030-81 подлежат металлические части электроустановок (с изолированной нейтралью), доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.

Защитное заземление следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех случаях;

  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Во взрывоопасных помещениях заземление выполняется независимо от значения напряжения.

Проверка заземляющего устройства осуществляется по окончании монтажа, а затем периодически в процессе эксплуатации устройства не реже одного раза в год в период наименьшей проводимости почвы: летом — при наибольшем просыхании, а зимой — при наибольшем промерзании.

Ш. Экспериментальная часть Измерение сопротивления заземления. Принцип измерения

Измерение сопротивления заземления основано на компенсационном методе (рис. 1) и проводится специальным измерителем.

Для проведения измерения сопротивления заземлителя (Rx ) используется вспомогательный заземлитель (Rв ) и потенциальный электрод (зонд) (Rз).

Сопротивление заземляющего устройства

При измерении выход генератора (Г) переменного тока подключается к измеряемому сопротивлению Rx и вспомогательному заземлителю Rв через первичную обмотку трансформатора Тр. Вторичная обмотка трансформатора подключена к калиброванному резистору Rк (реохорду).

При такой схеме включения помимо основной цепи тока через землю создается цепь тока через резистор Rк . Схема обеспечивает равенство этих токов.

Изменение положения подвижного контакта реохорда приводит к изменению падения напряжения (U1) на участке реохорда.

Момент компенсации наступает при таком положении подвижного контакта реохорда, при котором падение напряжения на участке реохорда U1 равно падению напряжения U2 на измеряемом сопротивлении. При этом ток в цепи индикатора (ИП), включенного между подвижным контактом реохорда и зондом, равен нулю.

Реохорд имеет оцифрованную шкалу, что позволяет непосредственно определять измеряемое сопротивление заземления Rк .

Описание лабораторной установки

Лабораторная установка предназначена для измерения сопротивления одиночных заземлителей (Rо ), представляющих собой забитые вертикально в землю электроды.

На панели установки находится прибор М416, соединительные провода и гнезда для подключения прибора к электродам. В установке имитируется пять различных грунтов: глина, суглинок, песок, чернозем, супесок.

Сопротивление заземляющего устройства

Предусмотрено изменение длины вертикальных электродов (l= 2; 2,5; 3 м), а также различное содержание влаги в грунте (сухо, влажно, сыро), что устанавливается соответствующими переключателями.

На лицевой панели прибора М416 (рис.2) расположены: стрелочный индикатор, переключатель пределов измерения, реохорд, кнопка включения прибора и четыре зажима для присоединения измерительных проводов, обозначенные цифрами 1,2,3,4.

Для измерения величины сопротивления переключатель пределов необходимо поставить в положение «100», нажать кнопку и, удерживая ее, вращением ручки «РЕОХОРД», добиться наибольшего приближения стрелки к нулю, отпустить кнопку. Результат измерения равен произведению показания индикатора на множитель переключателя пределов (100).

Если измеренное сопротивление меньше 200 Ом, то переключатель пределов измерения поставить в положение « 20», « 5» или « 1» и произвести измерение искомого сопротивления.

studfiles.net

Удельное сопротивление грунта.

Определяет собой удельное сопротивление грунта уровень "электропроводности" земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — "удельное сопротивление грунта".

 

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

Сопротивление заземления

www.calc.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.