Тип системы заземления


Заземление – тема насколько сложная, настолько и простая. Этот вопрос вызывает множество споров на электрических сайтах и форумах. Выскажу своё мнение, которое иногда будет непопулярным. Кому нужна официальная трактовка – читайте ПУЭ (пункт 1.7). Также в интернете много сайтов и форумов, где подробно изложен вопрос заземления.

Попробуем разобраться, что к чему в этой теме.

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.


Корпус утюга частично металлический. Что будет, если вдруг фаза внутри утюга попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

Этот ток называется током замыкания на землю. Я писал об этом подробно в статье От чего срабатывает УЗО — от тока утечки, тока замыкания на землю, или от дифференциального тока?

А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет. А если не повезёт…

Но если  корпус утюга будет заземлён (что сейчас делается в обязательном порядке в подобных электроприборах), то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии (или сработает УЗО — об этом по ссылке выше). А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.


Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник,  это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.

То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

  • T — провод подключен к земле .
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение рабочего и защитного нулевых проводов.
  • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу. (по мнению некоторых комментаторов, L происходит от Live)
  • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE – Protect Earth, защитная земля, провод защитного заземления.
  • PEN – совмещенный рабочий и защитный нулевой проводник.

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией – одну и ту же систему называют и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.


ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Скачать ПУЭ, а также много литературы по электротехнике можно у меня на блоге СамЭлектрик.ру.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
  2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

Подробно пишу об этом в статье про обрыв нуля в однофазной и трехфазной цепях — в чем разница?

В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

Схемы систем заземления

Система TN-C

TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.


Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

Строго говоря, PEN проводника нет в системе TN-C, поскольку разделения на N и PE не происходит. Подробно этот вопрос обсуждается, в частности, в моей статье на Дзене Советы читателю по электрощитку в Грузинской глубинке, особенно в комментариях.

Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.


Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.


Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

Вот хороший рисунок, иллюстрирующий ситуацию:

Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.


Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Такая система чаще всего используется в частном секторе, где электросети изношены.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.


Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

Система TT

Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Подробнее я писал об этом в статье про подключение генератора Хутер.

Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

Видео про заземление

Алекс Жук. Пожалуй,  самое адекватное и понятное видео про заземление, которое я видел. Посмотрите, если кому показалось, что я пишу слишком скучно:

На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

Источник статьи

Источник: zen.yandex.ru

Правильный ремонт либо модернизация электрической проводки требует точных сведений о типе системы заземления, примененной на объекте. Этого зависит безопасность выполнения электромонтажных работ, кроме того, эти данные необходимы для составления проекта реконструкции системы электроснабжения.

Для выполнения качественного контура заземления используются комплекты заземления Bolta

Классификация систем заземления электроустановок согласно МЭК

Международная электротехническая комиссия и по ее рекомендации Правила Устройства Электроустановок (ПУЭ) 7 редакции определяют три основных типа системы заземления и несколько подсистем.

1. Система заземления TN (подсистемы TN-C, TN-S, TN-C-S);
2. Система заземления TT;
3. Система заземления IT.

Система заземления TN

Система заземления TN является системой заземления с глухозаземленной нейтралью. В системе заземления TN открытые токопроводящие части электрооборудования присоединяются к глухозаземленной нейтрали источника посредством нулевых защитных проводов.

Понятие глухозаземленная нейтраль означает подключение рабочего нуля (нейтрали) непосредственно к заземляющему контуру на трансформаторной подстанции.

Подсистема заземления TN-C — это TN, где нулевой рабочий и нулевой защитный проводники совмещаются на всем ее протяжении, так называемое защитное зануление.

Подсистема заземления TN-S является системой заземления, где нулевой рабочий и нулевой защитный проводники разделены на всем протяжении. Такая система заземления является самой безопасной, но самой дорогой.

Подсистема заземления TN-C-S является промежуточным вариантом. При такой системе заземления нулевой рабочий и нулевой защитный проводники совмещены в какой-то ее части. Это может быть главный щит на объекте (защитное заземление дополняется защитным занулением). А далее по объекту проводники защитного заземления и зануления разделены. Такая система заземления является оптимальной с точки зрения соотношения цена — качество.

Система заземления IT

Является системой заземления, где ноль источника изолируется от Земли, или заземляется посредством приборов, имеющих высокое сопротивление, в то же время открытые токопроводящие элементы электроустановки заземлены посредством заземляющих устройств. Применение системы заземления IT на сегодня практически нигде не зафиксировано.

Система заземления TT

Является системой, где ноль источника заземлен и токопроводящие элементы электроустановки заземляются посредством электрически независимого от заземленного нуля источника заземляющего устройства. Другими словами — на объекте применяется свой заземляющий контур, никаким образом не связанный с нулем.

На сегодня система заземления ТТ является основной подключения мобильных сооружений (дома-вагоны, бытовки и др.). Согласовывать применение такой системы с энергоснабжающими организациями сложнее, чем системы заземления TN. При этом обязательным является применение устройств защитного отключения (УЗО), необходима организация качественного заземления.

Особенности модернизации систем заземления:

1. В случае частного дома, где проводка уже выполнена 3-жильным проводом (фаза, ноль и заземление), замена системы заземления TN-C на TN-C-S трудностей не вызывает. При этом необходимо выполнить качественное заземление, подключить его к электрощиту и РЕ провода розеток и светильников (желто-зеленый провод) подключить к точке соединения нуля и Земли (N и РЕ).

2. В квартирах многоквартирных домов, в которых не организован контур заземления, реализовывать предыдущую схему запрещено. Проводку при этом лучше выполнить 3-проводным кабелем, но провод заземления нигде не подключать, пока в доме не появится контур заземления.

Причина запрета системы зануления заключается в том, при подключении заземляющего провода к нулю проводки вследствие падения напряжения в нулевом проводе под воздействием токов подключенных нагрузок, корпуса аппаратуры окажутся под напряжением относительно Земли.

3. В процессе эксплуатации электроснабжающего хозяйства возникают ситуации, например, после устранения аварии на линии электроснабжения могут перепутать фазный провод с нулевым. И если выполнить зануление, все корпуса электроприборов в квартире окажутся под напряжением.

4. Довольно часто возникают ситуации обгорания рабочего нуля на вводе, которое происходит в случае перекоса фаз. При этом корпуса электроприборов также окажутся под воздействием опасного потенциала.

Вывод — появляется необходимость установки устройств защитного отключения (УЗО) либо дифавтоматов. Такие устройства отключают электрическую сеть 220/380 В в случае протекания через тело человека токов 10-30 мА. Недостатком УЗО и дифференциальных автоматов является возможность сработки в случае любых утечек, например, вследствие затопления и промокания электропроводки. И места таких утечек бывает определить довольно сложно.

Источник: bolta.pro

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

shema-razdeleniya-pen-provodnika-na-re-i-n

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

sistema-tn-s

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

sistema-tn-c-s

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

sistema-tt

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Похожие статьи:

Источник: odinelectric.ru

Естественное и искусственное заземление

Рассматривая виды заземления, упомянем естественные и искусственные конструкции, а также разновидности систем заземления (TT, IT, TN S, TN C S, TN C). Итак, естественное заземление — это конструкции, находящиеся в земле постоянно, такие как железобетонный фундамент. Сопротивление таких предметов нигде не регламентировано, поэтому как заземление электроустановок подобные естественные конструкции использовать нельзя.

заземление дома

Однако среди видов заземления нас больше интересуют искусственные конструкции. Это когда точку электросети, оборудования или установки специально объединяют с заземляющим устройством. Состоит заземляющее устройство из заземлителя и заземляющего проводника (шина, он же проводник с низким сопротивлением). Простейший заземлитель являет собой стержень из стали или меди, но может быть и более сложным сочетанием деталей различной формы.

Что нужно знать о качественном заземлении? Нужно добиться низкого соотношения сопротивления заземления к сопротивлению растеканию тока. Как это сделать? Для улучшения качества заземления подходит расширение площади заземляющих электродов, снижение удельного электрического сопротивления грунта, увеличение концентрации солей в грунте или его нагрев, а также большее заглубление электродов заземления или увеличение их количества.

Ознакомьтесь с требованиями ПУЭ и другими стандартами, по которым нормируется электросопротивление заземляющего устройства. Сопротивление будет отличаться в зависимости от условий грунта.

Типы систем заземления

Для частного дома и квартиры подходят следующие типы заземления:

  • TN;
  • IT;
  • TT.

У первой и самой распространенной системы TN есть подтипы — S и C S. Вообще, для расшифровки аббревиатур нужно понять несколько моментов.

  1. По умолчанию, первая буква t говорит о принципе функционирования питающего источника.
  2. Вторая буква — N, T или I — указывает на принцип заземления и защиту открытых элементов отводов. T прописывают, если контур заземлен, N — если зануление осуществляется подключением к нейтрали, а I — когда электрическое оборудование не имеет электрических контактов, то есть отвод изолирован. На картинке ниже вы увидите обозначение заземления и соответствующую схему.обозначение типов заземление и схемы
  3. В нынешних Госстандартах есть понятие нулевого заземляющего проводника. Он актуален для систем с напряжение до 1 кВ. Выделяют землю (PE), нулевой заземляющий проводник (N) и объединение земли с нулем (PEN).

Виды заземления и их назначение

Рассмотрим виды заземления в электроустановках с их основными чертами в таблице.

Типы и подтипы заземления Особенности
TN популярнейший тип заземляющей системы, являющий собой комплекс из штырей, вертикально вбитых в землю до водоносного горизонта на глубину свыше 2,5 м; штыри объединены кабелем (полосой) в общий заземляющий контур для жилого здания; альтернативное название — глухозаземленная нейтраль, т. е. ноль совмещен с землей по всей длине
TN-C дешевый, но устаревший вариант с высоким риском опасности: рабочий нуль N одновременно является защитным проводом PE, поэтому при обрыве N-проводника весь потенциал перейдет на электрическое оборудование, что может привести к возгоранию или поражению током
TN-S в новых строительных проектах принимают эту подсистему, поскольку она наиболее надежная, и в тоже время дорогая (требует дополнительного проводника от подстанции к энергопотребителю); конструктивно в TN-S входят отдельный фазный провод, нейтраль N и защитный проводник PE (последние два проводника — отдельные компоненты, начиная с подстанции с глухозаземленной нейтралью)
TN-C-S это комплекс плюсов описанных выше подсистем; очень просто реализуется при реконструкции старых видов заземления нейтрали; конструктивно состоит из системы TN-C (до главного распределительного щита), а дальше нейтральный провод PEN расходится на N-проводник и защитный PE; и уже дальше организовывается подсистема TN-S; минус — образуется полное напряжение в системе при обрыве PEN-шины, проблема решается установкой защитных реле напряжения
TT электропитание идет по фазным проводам от источников с глухозаземленной нейтралью, заземление обустраивается прямо у потребителя; в обязательном порядке требуется подключение УЗО
IT IT-система не использует глухозаземленную нейтраль, нуль источника подключается через спецустройство с большим внутренним сопротивлением, у потребителя при этом устанавливается дополнительно устройство ноля и защитного заземления (см. главу 1.7 ПУЭ); метод заземления IT создает минимальные помехи

Кратко резюмируем виды заземления и их назначение:

  • IT-система снабжения подходит для специальных лабораторий;
  • TT-система актуальна для подключения временных объектов или мобильных сооружений, к примеру, на стройке;
  • подсистема TN-C-S чаще всего выбирается при реконструкции старых зданий;
  • TN-S — при проектировании новых строительных объектов;
  • TN-C обнаруживается преимущественно в старом жилом фонде и в настоящее время не используется ввиду высоких рисков пожарной опасности и удара электрическим током;
  • TN-система оптимально пригодна для жилых домов (обращайте внимание на современные подсистемы из этой категории).

Не пользуйтесь трубами водопровода, отопления, газа в качестве защитного заземления! Так же как и части оградительных конструкций из металла, они провоцируют при аварийной ситуации появление полного напряжения 220V на своих элементах, что несет угрозу здоровью и жизни человека и животных.

заземление через трубу

Полезное видео о видах заземления

Смотрите о типах и системах заземления со схемами и подробным описанием по ПУЭ в формате видео.

Источник: Web-electric.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.