Устройство защитного заземления


Домашний уют — это то, что окружает человека в период его жизни. Но случись какая-то неурядица, и хозяин дома уже не может наслаждаться прежним теплом и комфортабельностью. В этой статье мы поговорим об электрической безопасности, а точнее обсудим вопрос, что такое защитное заземление и как его применяют на практике в домашних условиях.

Общие основы и цели заземления

Защитным заземлением считается устройство, которое соединяется с эквивалентом грунта и состоит из нетоковедущих проводников, однако, есть вероятность попадания их под напряжение. В первую очередь задача подобного устройства состоит в том, чтобы снизить силу пробойного тока до минимальной величины.

Важно! Обустройство защитного заземления—это дополнительный шаг к безопасности в вашем доме.

Данный вариант заземляющего устройства выполняется не только для бытовых условий, но еще встречается в промышленности, общественных заведениях также предохраняет помещение от влияния атмосферного электричества. Эта разновидность заземлителя используется для трехфазной и трехпроводной электрической цепи. На данном этапе мы разобрались с понятием, что называется защитным заземлением, перейдем к следующим не менее важным моментам.

Защитное заземление: его назначение и устройство


В первую очередь, прямым назначением заземления считается ликвидация опасной ситуации в связи с пробоями электрического тока, которые могут нанести поражения человеку и бытовому оборудованию, и влекут за собой плачевные последствия. Также приспособление предупреждает выход напряжения на корпус электрического оборудования.

Присутствие заземления в доме характеризуется следующими весьма определенными преимуществами:

  • данный вариант контура очень простой в монтаже и дальнейшей эксплуатации;
  • контурная фигура в итоге получается компактной с маленькими габаритами, при этом отлично справляется с поставленными задачами;
  • все использованные детали устойчивы к коррозии, следовательно, не может быть и речи о механическом повреждении целостности конструкции;
  • соединение электродов выполняется крепежными деталями, в следствие чего обходятся без сварочных швов.

Важно! Ни в коем случае не пренебрегайте преимуществами, они играют первоочередную роль в установке контура защитного заземления.


Устройство защитного контура выполнено следующим образом: металлические части любого электрического оборудования соединяются специальными проводниками с грунтом, эти детали элементарно попадают под напряжение, когда нарушается изоляция проводки или происходит короткое замыкание. Устранение напряжения и снижение его до нормальных величин, не наносящих вред, происходит в момент уменьшения потенциала приборов, которые заземлены. Иными словами, происходит выравнивание того же потенциала за счет подъема сопротивления основания прибора.

Молниезащита или особенности монтажа заземления

В отличие от искусственного электричества заземление при молниезащите имеет совершенно другие особенности. Однако, можно выделить и одно общее сходство среди всех систем заземления, и это—использованные материалы и детали.

Конструкция защитного заземления может состоять из разного вида металлических деталей, однако, к ним есть отдельное требование такое же важное, как и нормативы относительно правил установки. Например, очень важно, чтобы элементы заземления были использованы нужного размера, как указывается в нормах и ПУЭ, прутья должны иметь гладкую структуру с диаметром не менее 5 мм. Сам металл и основа сооружения должны быть устойчивыми к воздействиям окружающей среды, то есть лучше, если электродами будут стальные элементы ведь от этого зависит долговечность защитного заземления. Известно, что сталь практически не поддается коррозии и отлично проводит электрический ток к грунту. При установке контура, следует использовать метод кольцевого, фундаментального или глубинного монтажа.

Важно! Каждый из способов монтажа защитного заземления для молниезащиты имеет индивидуальные правила. Не применяйте одинаковую тактику установки ко всем нижеперечисленным вариантам.


  • Кольцевой способ представляет собой крепление металла в виде замкнутого кольца, которое обустраивается вокруг всего здания, подвергающегося заземлению.
  • Фундаментальный тип используется еще в начале строительства, поэтому планировку подобного заземления продумывают заранее. Важно чтобы в дальнейшем из постройки выступали элементы, предназначенные для крепления к ним токоотводящих металлических проводников.
  • Глубинный метод не предусматривает строгих параметров при установке, однако приходиться руководствоваться типом почвы и ее структурой, отсюда и высчитывать оптимальную глубину залегания электродов. Доступность и простота монтажа—это большой плюс подобного способа.

В нашей статье мы подробно разобрали для каких целей применяется защитное заземление и что из себя представляет назначение защитного заземления, следовательно, в заключение нужно выделить, что без подобного устройства в современных условиях нельзя обойтись.

Устройство защитного заземления

prokommunikacii.ru

Рабочее или функциональное заземление


В разделе ПУЭ в параграфе № 1.7.30 дано определение рабочего заземления: «рабочим называют заземление одной или нескольких точек токоведущих частей электроустановки, которое служит не в целях безопасности».

Такое заземление подразумевает электрический контакт с грунтом. Оно необходимо для нормальной эксплуатации электроустановки в штатном режиме.

Назначение функционального заземления

Для того чтобы понять, что называется рабочим заземлением, следует знать его основное назначение – устранение опасности удара током в случае соприкосновения человека к корпусу электроустановки или к её токоведущим частям, которые в данный момент находятся под напряжением.

Такая защита применяется в сетях с трёхфазной системой распределения тока. Изолированная нейтраль необходима для электросети, где напряжение не превышает 1 кВ. В сетях с напряжением свыше 1 кВ защитное заземление допускается делать с любым режимом нейтрали.

Как работает защитное (функциональное) заземление

что называется рабочим заземлением

Принцип действия функционального заземления заключается в снижении напряжения между корпусом, который в результате непредвиденной аварии оказался под током, и землёй до безопасной для человека величины.


Если корпус электроустановки, оказавшийся под током, не оснащён функциональным заземлением, то прикосновение человека к нему равносильно контакта с фазным проводом.

Если учесть, что сопротивление обуви человека, который дотронулся до электроустановки, и пола, на котором он стоит, ничтожно мала относительно земли, то ток может достигнуть опасной величины.

При правильной работы функционального заземления ток, проходящий через человека, будет безопасным. Напряжение во время прикосновения также будет незначительным. Основная часть электроэнергии будет уходить через заземляющий проводник в землю.

Различия между рабочим и защитным заземлениями

Рабочее и защитное заземление отличается друг от друга прежде всего назначением. Если первое необходимо для обеспечения правильной и бесперебойной работы электрооборудования, то второе служит для защиты людей от поражения электрическим током. Также оно защищает и оборудование от поломок в случае пробоя какого-нибудь электрического прибора на корпус. Если здание оборудовано громоотводом, такой тип заземления защитит приборы от перегрузки в случае удара молнии.

Рабочее заземление электроустановок, в случае возникновения чрезвычайной ситуации, сыграет роль защитного, но основная её функция — обеспечение правильной бесперебойной работы электрооборудования.

В неизменном виде функциональное заземление применяют только на промышленных объектах. В жилых домах используется заземляющий проводник, который подводится к розетке. Однако есть бытовые приборы в доме, которые таят в себе потенциальную опасность для потребителя, поэтому не будет лишним заземлить их, используя глухозаземлённую нейтраль.

Домашние приборы, которые требуется подключить к рабочему заземлению:


  1. Микроволновка.
  2. Духовка и плита, которые работают за счёт электричества.
  3. Стиральная машина.
  4. Системный блок персонального компьютера.

Конструкция заземления

заземляющий проводник

Рабочее заземление представляет собой вбитые в землю железные штыри, играющие роль проводников, на глубину около 2-3 метров.

Такие металлические прутья соединяют заземлительные клеммы электрооборудования с шиной заземления, тем самым образуя металлосвязь.

Металлосвязь есть в каждом жилом доме. Это сварная железная конструкция, которая соединяет друг с другом верхние концы заземлителей. Её заводят к вводному щитку дома для дальнейшей разводки по квартирам.

В качестве заземляющего проводника используют шину или провод с сечением не менее 4 кв. мм, окрашенные в жёлтые и зелёные полосы. Кабель в основном используют для переноса функционального заземления от шины к шине.

В целях безопасности проводится периодическая проверка электронного сопротивления металлической связи заземления. Оно измеряется от клеммы заземления электроустановки до наиболее удалённого от неё наземного контура заземления. Показатель сопротивления в любой части рабочего заземления не должен превышать 0,1 Ом.

Для чего делают несколько заземлителей


рабочее и защитное заземление

Электроустановку нельзя оснащать только одним заземлителем, поскольку почва является нелинейным проводником. Сопротивление земли находится в сильной зависимости от напряжения и площади контакта с воткнутыми штырями рабочего заземления. У одного заземлителя площадь контакта с почвой будет недостаточной, чтобы обеспечить бесперебойную работу электроустановки. Если установить 2 заземлителя на расстоянии в несколько метров друг от друга, то появляется достаточная площадь контакта с землёй. Однако следует помнить, что разносить слишком далеко металлические части заземления нельзя, поскольку связь между ними прервётся. В итоге останется только два отдельно установленных в почву заземлителя, никак не связанных друг с другом. Оптимальное расстояние между двумя контурами заземления составляет 1-2 метра.

Как нельзя осуществлять заземление

рабочее заземление электроустановок

Согласно параграфу 1.7.110 ПУЭ, запрещается использовать в качестве рабочего заземления любые виды трубопроводов.
оме того, запрещено выводить заземляющий кабель наружу и подключать его к неподготовленной контактной площадке на шине. Такой запрет объясняется тем, что каждый металл имеет свой индивидуальный потенциал. При воздействии внешних факторов образуется гальванический пар, который способствует процессу электроэрозии. Коррозия может распространиться под оболочку заземляющего провода, что повышает опасность его оплавления во время подачи больших токов на контур заземления в случае аварии. Специальная защитная смазка предотвращает разрушение металла, но действует она лишь в сухом помещении.

Также ПУЭ запрещает осуществлять поочерёдное заземление электроустановок друг с другом, подключать более одного кабеля на одну площадку заземляющей шины. Если пренебречь такими правилами, то в случае аварии на одной установке она будет создавать помехи в работе соседа. Такое явление называется электрической несопоставимостью. При неправильном подключении рабочего заземления работы по устранению недостатков опасны для жизни.

Требования к заземляющим конструкциям

Чтобы разобраться в том, что называется рабочим заземлением, а также какие требования предъявляются к таким конструкциям, следует знать, что для защиты людей от удара электрическим током, напряжение которого не превышает 1000 В, необходимо заземлять абсолютно все металлические части электрооборудования. Немаловажно, чтобы все конструкции, построенные в целях заземления, отвечали всем нормам безопасности, предъявляемым для обеспечения нормальной работоспособности сетей и дополнительных предохранителей от возможной перегрузки.

Опасность соприкосновения с токоведущими частями


При контакте человека с токоведущими частями электрической цепи или с металлическими конструкциями, которые оказались под напряжением в результате нарушения изоляционного слоя кабеля, возможно поражение электрическим током. Полученная травма проявляется в виде ожога на кожном покрове. От такого удара человек может потерять сознание, возможна остановка дыхания и сердца. Встречаются случаи, когда удар тока при малом напряжении приводит к смерти человека.

Меры предосторожности от поражения током

рабочее заземление определение

Чтобы максимально обезопасить людей от контакта с токоведущими частями электроустановки, а также с её металлическими частями, необходимо полностью изолировать опасный объект. Для этого устанавливают различные ограждения вокруг электроустановок.

fb.ru

Что это такое?

Итак, что называется защитным заземлением. Традиционно процесс заземления представляет собой объединение любой точки электросети или оборудования, а также электрических установок с устройствами заземляющего типа. Данный вид устройств является совокупностью одного или сразу нескольких эффективных заземляющих элементов и специальных проводников, пригодных для заземления.

Защитные заземлители в виде одного элемента или совокупности проводящих частей, чаще всего прибывают в стандартном электрическом контакте с грунтом. К важным конструкционным особенностям заземлителя относится количество проводящих частей, их длина и тип размещения электродов, что рассчитывается в зависимости от предъявляемых к заземлителю требований и способностей земли выполнять защиту от электрического тока.

Применяемые в настоящее время защитные заземлители бывают не только естественными, но и искусственного типа. Первый вариант является наиболее распространенным, и чаще всего бывает представлен:

  • водопроводными трубами, проложенными в грунтах;
  • конструкциями построек из металла, имеющих достаточное соединение с грунтом;
  • кабельными оболочками из металла, за исключением алюминиевых проводов;
  • обсадными трубами, установленными внутри артезианских скважин.

Заземлитель естественного типа подсоединяется к сети заземления минимум в паре мест.

Все используемые на сегодняшний день искусственные защитные заземлители могут быть представлены:

  • стальными трубами, диаметр которых составляет 30-50 мм при толщине стенок в 3,5 мм и длине 200-300 см;
  • стальными полосами, имеющими толщину в 0,4 см и более;
  • стальным уголком толщиной в 0,4 см и более;
  • стальными прутами, имеющими диаметр в 1 см и более, при длине около 10-11 м.

Следует отметить, что применение искусственных заземлителей в грунтах агрессивного типа, включая излишне кислые или щелочные почвы, сопровождается коррозийными изменениями металлов. Именно поэтому заземлители в таких почвах должны быть представлены медью, омедненными или оцинкованными элементами.

При выборе искусственного заземлителя нужно избегать использования алюминиевых кабельных оболочек и голых алюминиевых проводников, потому что под воздействием почвы происходит окисление.

Назначение

Рассмотрим, для каких целей применяется защитное заземление. На сегодняшний день, к основным сферам применения традиционной системы защитного заземления относятся:

  • использование электрических установок с напряжением не выше 1 тыс. V, внутри сети с заизолированной централью токового источника;
  • использование электрических установок с напряжением свыше 1 тыс. V, внутри сетей с заизолированной или глухо-заземленной централью токового источника.

Согласно установленным нормативам ГОСТ-12.1.030-8, защитным заземлением должны обладать все электрические установки в условиях:

  • номинальных показателей напряжения, равного 380 V или больше;
  • переменных токовых величин, равных показателям 440 V или больше;
  • любого постоянного тока.

Обязательным является эффективное защитное заземление всех металлических элементов электрической установки или оборудования, которые доступны для людей, а также не обладают другими видами надежной защиты.

Особое внимание уделяется защитному заземлению при номинальном напряжении в пределах 42-380 V, переменных показателей — в диапазоне 110-440 V и при постоянном токе, если работы осуществляются в зоне повышенной опасности.

Принцип действия

контур заземленияГлавным действием является снижение показателей напряжения при прикосновении к корпусу электрических приборов до безопасных для жизни и здоровья величин, что обуславливается малым сопротивлением заземлителя.

Таким образом, основное защитное воздействие системы заземления базируется на паре принципов, представленных:

  • Снижением до безопасных показателей разности потенциалов, которые возникают между подлежащим заземлению токопроводящим прибором и токопроводящими предметами, обладающими естественным типом заземления.
  • Токоотводом утечки в результате контакта токопроводящего предмета, подлежащего заземлению и фазной жилы кабеля. Грамотно спроектированная система при проявлении токовой утечки вызывает немедленное срабатывание устройств защиты или УЗО.

Системы, имеющие глухо-заземлённую нейтраль, характеризуются стандартным срабатыванием предохранителя в результате попадания фазного потенциала на поверхность с заземлением.

Как показывает практика, наибольшую эффективность система заземления показывает исключительно в комплексе с установкой УЗО-приборов. При таких условиях значительные нарушения в изоляции потенциала на заземлённом предмете не превышают безопасные величины.

Устройство защитного заземления

Главный элемент представлен заземляющим контуром, состоящим из электродов металлического типа, которые размещаются внутри земли.

Чаще всего электроды являются стержнями, уголками, трубами или листами, которые рассеивают токовые величины, а показатели эффективности такого процесса напрямую зависят от качественных характеристик грунта и климатических особенностей.

Прежде чем приступить к самостоятельному обустройству эффективной системы заземления, требуется правильно определиться с параметрами электрической проводимости грунта и уровнем сопротивления:

  • для глинистых грунтов — 20 Ом х М;
  • для песчаных грунтов — 10-60 Ом х М;
  • для садового грунта — 40 Ом х М;
  • для гравийного грунта — 300 Ом х М.

Правильное устройство заземления является необходимым условием при использовании сетей электрического снабжения, включая частные домовладения и квартиры.

Такая не слишком сложная система безопасного пользования электричеством позволяет предотвратить поражение током.

Подсоединение корпуса к заземлителю может осуществляться при помощи стального провода с сечением в 2,4 см. Внутри грунта элементы соединяются стальной шиной с сечением 5,0-12,0 см, а также медным проводом с сечением в 2,5 см.

Монтаж защитного заземления

В процессе самостоятельного монтажа системы защитного заземления, на треугольном контуре надежно фиксируется проводник заземляющего типа.

Особенностью установки электродов является отсутствие покрытия в виде диэлектрических антикоррозионных составов.

В этом случае допускается только нанесение лака на свариваемые участки.

Особые требования предъявляются также к проводнику, который протягивается от контура до электрической установки:

  • высокие показатели прочности;
  • гарантированная долговечность;
  • устойчивость к коррозийным изменениям.

В качестве проводников рекомендуется применять стальные ленты размерами 0,5х3,0 см или металлические стержни диаметром не менее 1,0 см. При незначительных нагрузках может также применяться традиционная катанка.

В соответствии с современными требованиями и стандартами, электрическая проводка внутри жилых зданий производится трёхжильными кабелями, в которых один из проводов является заземляющим. Защиту требуется подключать на участках от контура до корпуса эксплуатируемого электрического прибора.

Все электрические розетки и вилки приборов должны в обязательном порядке иметь специальные заземляющие контакты, подсоединяемые с корпусу.

Попадание фазы на прибор в условиях нарушения изолирующего слоя, сопровождается возникновением токовой утечки, в результате чего срабатывает УЗО или защитные автоматы.

proprovoda.ru

Назначение защитного заземления

Уже из самого названия понятно, что цель заземления – это защита человека от поражения электрическим током. Где он (ток) может появиться? На всех металлических частях и корпусах различных электроприборов, которые работают от электричества. Но, скажите Вы, сейчас такие хорошие изоляционные материалы, высокие технологии и т. д. И будете правы. Но не стоит забывать и случайности, которые в нашей жизни происходят довольно часто.

Простой пример из нашего быта. Представьте обыкновенную небольшую духовку для приготовления курочки, тортиков, выпечки. Она имеет, как и многие бытовые приборы (холодильник, боллер, микроволновка, насос и т.д.) металлический корпус. Со временем изоляция на проводах может разрушиться, подплавиться или просто отгорит какой-нибудь провод. Причин много: длительное время эксплуатации, высокая температура, вибрация, заводской брак, нарушение правил эксплуатации прибора и многое другое.

Этот «голый провод», находящийся под напряжением  может случайно оказаться на металлическом корпусе, значит, он весь окажется под напряжением (корпус). Что может произойти в данном случае? Может быть короткое замыкание, и тогда автоматика просто отключит электричество. А может ничего не произойти, всё будет работать до тех пор, пока человек не затронет корпус духовки.

Во время прикосновения к металлической части (токопроводящей), человек получит электрический удар. Какой силы он будет, не знает никто. Здесь всё индивидуально и зависит от сотни факторов. Рассматривать их не будем (факторы), но любой удар током – это сильный стресс для организма, особенно для сердца. Благо, если всё закончится хорошо, а ведь бывают и смертельные случаи. Никого не хочу пугать и отказываться от электротехники, но статистика не умолима и показывает конкретные факты.

Итак, для чего делают заземление, думаю понятно. Не случайно в любой бытовой технике питающие провода выполнены трёхжильным проводом и вилка имеет заземляющую клемму. Кстати, требования к электропроводке, сейчас значительно изменились, и для питания любых приборов применяют только трёхжильный провод. Одним словом — наличие защитного заземления обязательно. Если раньше двух жил проводов (фаза и нуль) в электропроводке дома или квартиры было достаточно, то сейчас уже «такое безобразие» монтировать нельзя. Наличие «земли» обязательное и нужное требование. Даже светильники для бани имеют на клемнике заземляющий провод, подключенный к корпусу.

Устройство защитного заземления

Начнём с определения, выскажусь простыми словами без электрических терминов и определений. Защитное заземление – это преднамеренное (специальное) соединение электрическим проводом металлического корпуса бытового прибора и заземляющего контура (заземлителя). В нормальном состоянии этот корпус находиться под напряжением никогда не должен. А если уже случится непредвиденное, то электрический заряд уйдёт в землю при помощи заземления.

Почему именно в землю? Тут уже действуют элементарные законы физики. Любой электрический заряд «стремится куда-то уйти». И лучшее место для этого «куда-то» — это наша с Вами планета Земля. Простой пример – железная дорога. Трамвай или электровоз, проводя через свои электродвигатели ток, уводит его через рельсы именно в землю. Это закон нашей природы, от него никуда не деться, а надо грамотно использовать.

Устроено защитное заземление довольно просто. Схема работы примерно такая: бытовой прибор (потребитель электроэнергии) электрический проводник заземляющий контур.

В качестве электрического проводника могут быть провода, железные конструкции, металлические ленты и так далее. Многие, наверно, видели узкие металлические ленты, которые спускаются со зданий и уходят в землю. Часто их можно встретить на больницах, школах, садах. Это потому, что современные требование к медицинской аппаратуре, оргтехнике, устройствам пищеприготовления очень высоки, и нарушать их никак нельзя.

Элементарный заземляющий контур представляет собой железный штырь, вбитый в землю. Через него случайный ток будет уходить в землю. Ещё заземляющими контурами могут быть естественные сооружения. К ним можно отнести металлические трубопроводы, отдельные железные фрагменты зданий и их фундаментов, какие-то железобетонные конструкции и прочие схожие объекты. Главное – чтобы они удовлетворяли определённым требованиям. Какие эти требования, тем более цифры – рассматривать пока не будем.

С назначением и устройством защитного заземления понятно. Теперь перейдём к следующему вопросу  — как сделать заземляющий контур своими руками.

Монтаж защитного заземления своими руками

Вообще, качество защитного заземления напрямую зависит от грунта. Например, сложно сделать хорошее заземление на камнях. Здесь нужно создать «надёжный контакт» с землёй, что в данном случае очень проблематично. Но и здесь существуют свои методы и разработки, которые рассматривать не будем. Просто затронем обычный житейский вариант.

Самые подходящие почвы для надёжного контура заземления – это суглинок, глина и торф. На песчанике устроить хорошее заземление гораздо сложнее. Не маловажным показателем будет глубина залегания грунтовых вод. Чем выше грунтовые воды, тем лучше будет заземление. Как известно, вода отличный проводник электричества, поэтому, она играет важную роль в данном вопросе.

Для изготовления надёжного заземляющего контура Вашей бани или дома нужно выбрать примерно в метре от фундамента, влажное тенистое место возле постройки. Людям здесь ходить нежелательно, можно организовать цветник с тенелюбивыми растениями. После этого выкапывается траншея в виде периметра треугольника шириной на штык лопаты. Глубину выбираем в зависимости от грунта. Чем суше и каменистее почва – тем глубже копаем. Но в среднем углубляться следует не меньше полуметра.

Приготовив траншеи, переходим к заземлителям. В их роли могут быть использованы железные трубы, уголки, швеллера, металлические прутья и арматура. Конечно, стеклопластиковая арматура здесь применяться не может, так как является идеальным диэлектриком. Более продвинутый вариант – специальные электроды из стали или меди, которые изготавливают именно для этих целей. В этом видео как раз рекламный ролик этой темы.

Отрезав выбранный или имеющийся материал длиной примерно 2 метра, забиваем заземлители в грунт по углам приготовленного треугольника. Затем при помощи сварки или специальных зажимов (плашек) соединяем забитые уголки или электроды между собой. В роли соединителя лучше всего применить металлическую полосу. Если соединения происходят при помощи сварки, то эти места очищаются от шлака и прокрашиваются суриком. Только не стоит красить все металлические части, это значительно ухудшит результат. Цель этой работы – создать большую площадь соприкосновения металлических частей с землёй. Чем больше будет площадь, тем лучше. Электрическое сопротивление при этом значительно снизится. Чего мы и добиваемся.

Следующий этап – проводом (лучше голым) соединяем сделанный заземляющий контур с заземляющей шиной в электрическом распределительном щите дома или бани. Сечение провода лучше взять 16 мм2  или больше. Соединяем с помощью болтовых соединений: для лучшего контакта целесообразно воспользоваться наконечниками. Если вводной щит металлический – его также заземляем через специальный болт. Это делается обязательно.

После того, как заземляющий контур смонтирован и подключен к сборке, можно его немного засыпать землёй, посыпать обычной поваренной солью, полить водой и хорошо утрамбовать. Соль и вода создадут наименьшее электрическое сопротивление между грунтом и контуром. Затем вся траншея засыпается остатками земли и выравнивается.

На этом монтаж защитного заземления можно считать законченным. Если всё сделано правильно, то при замерах, сопротивление контура не должно превышать 4 Ом. Но этого, как правило, никто никогда не делает. Существуют фирмы, которые занимаются электрическими замерами, но цены на эти услуги ощутимо «кусаются». Так что лучший вариант – всё устройство защитного заземления сделать самостоятельно и правильно, соблюдая те моменты, которые описаны выше.

Цитата мудрости: Настоящая жизнь совершается там, где она не заметна.

postroibanu.ru

Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности.

Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств.

Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы.

Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи.

Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания.

Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода.

Правила устройство заземления

Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п.

Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей.

Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта.

По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом.

Варианты и особенности

Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки.

Ustroistvo zazemleniia TN - C - S

В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров.

Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S.

Ustroistvo zazemleniia TT

Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной.

Монтаж заземления

Существует два вида устройство заземления, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу.

Набор, приобретенный в торговой сети, имеет свои преимущества:

  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Ustroistvo zazemleniia soedineniia

Из недостатков заводского исполнения можно отметить высокую стоимость набора.

Материалы и инструменты

Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы.

Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать.

При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится. Наименьшие сечения проката выбираются:

  • Оцинкованный пруток – 6 мм.
  • Пруток из металла без покрытия – 10 мм.
  • Прямоугольный прокат – 48 мм2.

Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2.

Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:

  • Алюминиевый без изоляции – 6 мм.
  • Медный без изоляции – 4 мм.
  • Изолированный алюминиевый – 2,5 мм.
  • Изолированный медный – 1,5 мм.

Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика.

Ustroistvo zazemleniia shina

Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой.

Земляные работы

Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра.

Ustroistvo zazemleniia ustanovka 1

Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м.

Подготовка электрода (штыря)

Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой.

Заглубление электродов

Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром.

Ustroistvo zazemleniia ustanovka 2

Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины.

Соединение электродов

Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом.

Ustroistvo zazemleniia ustanovka 3

Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита.

Ustroistvo zazemleniia ustanovka 4

На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой.

Засыпка траншеи

Для засыпания траншеи целесообразно использовать плотную однородную почву.

Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии.

Ustroistvo zazemleniia ustanovka 5

Проведение в щит

Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением.

Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре.

Похожие темы:
  • Система уравнивания потенциалов. Виды и назначение. Установка
  • Атмосферное электричество. Что это? Виды и особенности
  • Варианты статического электричества. Возникновение и удаление статики
  • Защитное зануление. Принцип действия и порядок, чем опасно зануление
  • Заземление в доме-квартире
  • Молниезащита дома
  • Наведенное напряжение. Причины возникновения и опасность
  • Глухозаземленная нейтраль
  • Изолированная нейтраль. Устройство и принцип действия
  • electrosam.ru

    Назначение и устройство защитного заземления

    Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

    Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

    Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

    Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

    Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

    Монтаж устройства защитного заземления востребован практически повсеместно.

    Проверка защитного заземления

    Заземляющая система: область применения и принцип работы

    При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

    1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
    2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

    Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

    1. Электрической сети напряжением менее 1 кВт:
    • с переменным током трех трехфазных проводников с изоляцией нейтрали;
    • с переменным током двух однофазных проводников, которые изолированы от земли;
    • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
    1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

    Схема электросети с изолированной нейтралью

    Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

    Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

    Классификация заземляющих устройств

    В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

    1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
    • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
    • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

    Самыми распространенными конструкциями такого типа заземлителей выступают:

    • металлоконструкции зданий и фундаментов;
    • металлические оболочки проводников;
    • обсадные трубы.

    Железобетонный фундамент в качестве естественного заземлителя

    Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

    Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

    1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
    • определенного размера стальные трубы;
    • сталь полосовую толщиной свыше 4 мм;
    • сталь прутковую.

    Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

    Установка глубинного заземлителя

    Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

    Как производится расчет параметров основных заземляющих элементов

    На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

    Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

    Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

    Выполняются расчеты на основании таких данных:

    1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
    2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
    3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
    4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
    5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
    6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
    7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
    8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

    Конфигурация контура заземления

    Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

    Принцип расчета сопротивления заземлителей

    Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

    К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

    • I — показатель расчетного тока заземления;
    • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

    В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

    Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

    Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

    Схема заземления частного дома

    220.guru

    Принцип работы

    Обычно его устанавливают для защиты при возникновении короткого замыкания. Если фазный проводник отсоединится и прикоснется к металлическому шасси установки, то корпус окажется под напряжением.

    Правильно созданное защитное заземление образует электрическую цепь, имеющую низкое сопротивление. Именно этот путь является наиболее благоприятным для электрического тока, поэтому случайное прикосновение человека к корпусу не будет опасным (рис. выше).

    Надо отметить, что такое устройство одновременно будет выполнять несколько важных функций:

    1. Оно обеспечит защиту и в том случае, когда потенциально опасное напряжение на корпусе образовано не коротким замыканием, а индукционными токами. Такие ситуации возможны в установках с высоким напряжением и там, где допустимо воздействие излучения СВЧ.
    2. При использовании глухозаземленной нейтрали и некоторых других схем подключения в цепи питания при коротком замыкании возникнут продолжительные и большие по амплитуде импульсы, достаточные для срабатывания автоматов, отключающих напряжение.
    3. Если заземленное оборудование подвергнется удару молнии, то такой проводник обеспечит определенную защиту от повреждений.

    Чтобы не ошибаться с терминологией, надо понимать действительное значение следующих названий:

    • Рабочим называют заземление, которое выполняет функции второго проводника. Его используют для электрического питания установок, решения иных задач.
    • Упомянутая выше защита от молнии не является целевым предназначением. Для обеспечения безопасности при грозах применяют специально предназначенные для этого устройства. Они рассчитываются на относительно большие величины токов и напряжений.

    Схемы подключения

    Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.

    Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.

    Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи.  Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.

    Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».

    Схемы подключения

    Система Принцип работы Преимущества, недостатки, особенности
    C В системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом. Эта схема относительно проста и экономична. Корпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение.
    S В этой схеме используются два раздельных нулевых проводника, рабочий и защитный. Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты.
    C-S Это – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE». Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников.

    Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.

    Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.

    IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.

    Виды

    Чтобы сопротивление было минимальным, желательно сократить длину защитного проводника. Это обеспечивают с помощью создания заземляющего контура по периметру объекта.

    Заземлители разделяют также на искусственные и естественные. Это распределение по группам условно, так как в обоих случаях используются металлические части конструкций, находящиеся в земле:

    • В первом – их создают специально, для системы заземления. Такой подход позволяет точно рассчитать сопротивление, размеры отдельных частей, иные важные параметры.
    • Второй вариант предусматривает подсоединение к металлическим частям конструкции здания, арматуре фундаментных блоков. Он экономичнее, так как для защиты применяются некоторые готовые детали. Однако надо учитывать, что для подключения оборудования понадобится прокладка соответствующих линий, которые будут иметь определенное нормативами сопротивление. Недостатком является относительная доступность обычному персоналу.

    В частности, имеет значение уровень влажности.  При расчете проверяют удельное сопротивление и другие особенности грунтов.

    elquanta.ru

    Защитное заземление — преднамеренное соединение с землей металлических частей оборудования, не находящихся под напряжением в обычных условиях, но которые могут оказаться под напряжением в результате нарушения изоляции электроустановки.

    Назначение защитного заземления — устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при «замыкании на корпус».

    Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных «замыканием на корпус». Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по величине к потенциалу заземленного оборудования.

    Область применения защитного заземления — трехфазные трех-проводные сети напряжением до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали (рис. 71).

    Принципиальные схемы защитного заземления

    Рис. 71. Принципиальные схемы защитного заземления:
    а — в сети с изолированной нейтралью до 1000 В и выше; б — в сети с заземленной нейтралью выше 1000 В, 1 — заземленное оборудование; 2 — заземлитель защитного заземления; 3 — заземлитель рабочего заземления; r3. rо — сопротивления соответственно защитного и рабочего заземлений

    Типы заземляющих устройств. Заземляющим устройством называется совокупность заземлителя — металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное (или сосредоточенное) и контурное (или распределенное).

    Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

    Недостаток выносного заземления — отдаленность заземлителя от защищаемого оборудования, вследствие чего коэффициент прикосновения а = 1. Поэтому этот тип заземления применяется лишь при малых токах замыкания на землю и, в частности, в установках напряжением до 1000 В, где потенциал заземлителя не превышает допустимого напряжения прикосновения.

    Достоинством такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта (сырое, глинистое, в низинах и т. п.).

    Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещаются по контуру (периметру) площадки, на которой находится заземляемое оборудование, или распределяются по всей площадке по возможности равномерно.

    Безопасность при контурном заземлении обеспечивается выравниванием потенциала на защищаемой территории до такой величины, чтобы максимальные значения напряжений прикосновения и шага не превышали допустимых. Это достигается путем соответствующего размещения одиночных заземлителей.

    Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводы, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

    Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные — находящиеся в земле металлические предметы другого назначения.

    Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.

    В качестве вертикальных электродов используют стальные трубы диаметром 3—5 см и угловую сталь размером от 40 X 40 до 60 X 60 мм длиной 2,5—3 м. В последние годы находят применение стальные прутки диаметром 10—12 мм и длиной до 10 м.

    Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода используют полосовую сталь сечением не менее 4 X 12 мм или сталь круглого сечения диаметром не менее 6 мм.

    Для установки вертикальных заземлителей предварительно роют траншею глубиной 0,7—0,8 м, после чего с помощью механизмов забивают трубы или уголки.

    В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии; обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические конструкции и арматура железобетонных конструкций зданий и сооружений, имеющие соединение с землей; свинцовые оболочки кабелей, проложенные в земле. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока и поэтому использование их для целей заземления дает весьма ощутимую экономию. Недостатками естественных заземлителей являются доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей (при ремонтных работах и т. п.).

    В качестве заземляющих проводников, предназначенных для соединения заземляющих частей с заземлителями, применяют, как правило, полосовую сталь, а также круглую сталь и т. п. Прокладку заземляющих проводников производят открыто по конструкциям зданий, в том числе по стенам на специальных опорах. Заземляющие проводники в помещениях должны быть доступны для осмотра.

    Присоединение заземляемого оборудования к магистрали заземления осуществляется с помощью отдельных проводников. При этом последовательное включение заземляемого оборудования не допускается.

    Согласно требованиям Правил устройства электроустановок сопротивление защитного заземления в любое время года не должно превышать:

    4 Ома — в установках напряжением до 1000 В; если мощность источника тока (генератора или трансформатора) меньше 100 кВА, то сопротивление заземления допускается 10 Ом;

    0,5 Ом — в установках напряжением выше 1000 В с большими токами замыкания на землю (больше 500 А);

    250/I3, но не более 10 Ом — в установках напряжением выше 1000 В с малыми токами замыкания на землю и без компенсации емкостных токов; если заземляющее устройство одновременно используется для электроустановок напряжением до 1000 В, то сопротивление заземления не должно превышать 125/I3, но не более 10 Ом (или 4 Ом, если это требуется для установок до 1000 В). Здесь I3 — ток замыкания на землю.

    Оборудование, подлежащее заземлению. Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением, и к которым возможно прикосновение людей и животных. При этом в помещениях с повышенной опасностью или особо опасных заземление является обязательным при номинальном напряжении электроустановки выше 36 В переменного и 110 В постоянного тока, а в помещениях без повышенной опасности — при напряжении 500 В и выше. Лишь во взрывоопасных помещениях заземление выполняется независимо от величины напряжения.

    Предыдущая Устройство защитного заземления Вперед

    ohrana-bgd.narod.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.