Виды систем заземления


Системы защитного заземления – виды и различия

Строго говоря, применять обозначение – “системы защитного заземления” не верно. По определению Правил Устройства Электроустановок ( ПУЭ 1.7.2. и 1.7.3.) буквенные обозначения TN, TT и IT употребляются для разделения систем электроустановок в отношении мер электробезопасности. В некоторых из этих систем, для соблюдения электробезопасности, применяется как заземление так и зануление, а в других только заземление.

Системы защитного заземления подразделяются на три вида TN, TT и IT. Система TN в свою очередь разделяется на TN-C, TN-C-S и TN-S

Система TN

Система TN-C

Система TN-CS

Система TN-S

Система TT

Система IT

Буквенные обозначения, характеризующие системы защитного заземления

Первая буква – положение нулевой точки (нейтрали) источника питания (трансформатора, генератора) относительно земли

  •  T – Terra (лат. Земля) – Нейтраль заземлена.
  •  I – Isolation (англ. Изолированный) – Изолированная нулевая точка источника питания.

Вторая буква – положение открытых частей и корпусов электроприборов потребителя относительно земли

  • T – Корпуса электроприборов заземлены.
  • N – Корпуса приборов соединены с нейтралью источника питания.

Следующие после N буквы в системе TN

  •  C  – Combined (англ. Объединенный) – Назначения нулевого рабочего N и нулевого защитного PE проводников объединены в одном проводнике PEN.
  •  S – Separated (англ. Отдельный ) – Нулевой рабочий N и нулевой защитный проводники разделены.

Остальные буквенные обозначения

  •  N – Neutral (англ. Нейтральный, нулевой) – Нейтраль ( Нулевая точка) источника питания или электроприёмника и соответственно Нулевой рабочий проводник соединенный с этой точкой. В рабочем состоянии по нулевому рабочему проводнику протекает электрический ток.
  •  PE – Protective Earth (англ. Защитное заземление) – Защитный нулевой проводник, заземляющий проводник, проводник системы уравнивания потенциалов. PE проводник соединяет открытые части электрооборудования, корпуса электроприборов и возможные места, по которым во время аварии может протекать электроток, с землей. В рабочем состоянии электрический ток по защитному нулевому проводнику не протекает. (Теоретически – в идеальном случае. Практически – протекает небольшой ток, намного меньший, чем по N проводнику.) Течение эл. тока по проводнику PE происходит в аварийной ситуации.

  •  PEN – Protective Earth and Neutral (англ. Защитное заземление и нейтраль) – Функции нулевого рабочего N и нулевого защитного PE объединены в одном проводнике PEN. В рабочем состоянии по проводнику PEN протекает электрический ток.

 

Электроустановки системы TN

Существуют три системы TN-C, TN-C-S и TN-S. Про каждую из этих систем можно сказать – это система TN. Не существует четвертой отдельной системы TN.

Система TN своим буквенным обозначением T поясняет что нейтраль источника электроэнергии глухо заземлена, а корпуса электроприемников соединены с нейтралью этого источника N, то есть занулены. Различия в системах показаны с помощью последующих букв. Буквы означают, как именно занулены корпуса электроприемников и другие их электропроводящие части.

ПЭУ  1.7.61. рекомендует при применении системы TN выполнять на вводе повторное заземление PE и PEN проводников. При вводе питания к потребителю с Воздушных Линий повторное заземление на вводе обязательно (ПУЭ 1.7.102).

Проводники PE и PEN не должны разрываться коммутирующими аппаратами – автоматическими выключателями, рубильниками и тому подобным (ПУЭ 1.7.145.). Это правило касается всех систем. Но только в системах TN, проводники PE и PEN приходят от ввода питающих потребителя проводников. В этом месте до счетчика часто устанавливается двух или четырехполюсный автомат или рубильник. Он не должен разрывать защитные проводники. Разрываться может только рабочий N проводник.


Во всех подсистемах системы TN применяется одновременно защитное зануление и защитное заземление.

Наряду с защитными заземление и занулением обычно в системах TN используется защитное отключение.

Суть применения всех систем TN в том, чтобы снизить потенциал при аварийном прикосновении фазного проводника на зануленный и повторно заземленный корпус или другие металлические части электрооборудования. Одновременно произойдет короткое замыкание. Повышение тока до больших величин приведет к отключению защитного автоматического выключателя или перегоранию предохранителя. Оборудование обесточится и это защитит человека от удара электрическим током, который бы мог произойти при прикосновении к оборудованию, находящемуся под напряжением.

 

Система защитного заземления TN-C – зануление с повторным заземлением

 Именно систему TN-C в разговорном языке чаще всего называют занулением. Намного реже так говорят про системы  TN-C-S и TN-S, чаще их называют заземлением. На самом деле во всех этих системах осуществляются оба эти действия.

Буква C в системе TN-C говорит о том, что соединение корпусов и нейтрали происходит с помощью проводника PEN, объединяющего в себе рабочую N и защитную функцию PE, то есть корпуса электроприборов занулены.


Система заземления TN-C

На вводе, соблюдая рекомендации ПУЭ в пункте 1.7.61, делается дополнительное заземление PEN проводника.

Не допускается применять УЗО, реагирующие на дифференциальный ток, в четырехпроводных трехфазных цепях для системы TN-C (ПУЭ 1.7.80.). При необходимости применения такого УЗО проводник PE, соединенный с корпусом электрооборудования, подключается к PEN до УЗО.

Система TN-C применяется только в трехфазных сетях и только на еще не реконструированных промышленных предприятиях или в многоэтажных зданиях, в том числе жилых, до ввода в квартиру. Однофазные электроприемники, включенные в такую систему, не зануляются и не заземляются.

Другими словами, если нулевой проводник соединен с корпусом трехфазного промышленного станка, то это защитный PEN проводник (синего цвета изоляция и желто-зеленая окраска в месте соединения). Если же ответвление от этого же нулевого проводника соединено с клеммой питания однофазного прибора, то оно не имеет соединения с корпусом, и это рабочий N проводник для этого прибора (изоляция синего цвета).


Применение системы TN-C в  однофазных сетях и в быту запрещено (ПУЭ 7.1.13), то есть квартиры и дома в системе TN-C не имеют защитного заземления. Обеспечить электробезопасность в однофазных и трехфазных сетях частного дома и квартиры с данной системой практически не возможно. Поэтому при реконструкции электросетей в домах старой постройки должен выполнятся переход на систему TN-C-S.

 

Системы защитного заземления – система TN-C-S

Система TN-C-S своим названием говорит о том, что нейтраль трансформатора заземлена, а корпуса электроприемников соединенны с нейтралью источника питания. Соединение нейтрали с корпусами оборудования происходит с помощью проводника PEN, который на вводе к потребителю разделяется на N и PE.

Системы защитного заземления - Система заземления TN-C-S

Так как система TN-C не может быть использована в однофазных сетях и бытовом секторе, то она, подвергаясь модификации, может быть превращена в систему TN-C-S. Это относительно недорогое преобразование, не требующее переделки всей системы электроснабжения, но не без недостатков.


Применение PEN проводника не допускается в цепях однофазного и постоянного тока, кроме ответвлений от ВЛ (Воздушных Линий) до 1ооо вольт к однофазным потребителям электроэнергии (ПУЭ 1.7.132.). Из этого пункта правил можно сделать вывод, что применение системы TN-C-S в квартирах, с разделением PEN в этажном щите, недопустимо. Разделение должно производиться в трехфазной цепи распределительного щита на вводе в здание. Применять проводник PEN можно в частных домах, к которым питание приходит по опорам электропередач.

Если ввод при TN-C-S с Воздушных Линий электропередачи, то делается обязательное повторное заземление защитного проводника (ПУЭ 1.7.102.).

Такая  система не может применяться в случае сильного износа электросетей из-за большой вероятности нарушения контакта нулевого проводника. Также она не может применяться, если жилы кабеля на вводе имеют менее 16мм² алюминия или 10мм² меди (ПУЭ 1.7.131.).

Разделение проводника PEN на проводники PE и N должно быть произведено на вводе, на главной заземляющей шине. После того как проводник PEN разделён, проводники PE и N нигде не должны соединятся обратно (ПУЭ 1.7.135.), в противном случае это будет система TN-C.

 

Система защитного заземления TN-S

В системе TN-S, как и во всех системах защитного заземления типа TN, нейтраль источника питания глухо заземлена. Корпуса оборудования соединены с нейтралью источника питания (занулены). Соединение производится с помощью отдельного проводника PE, то есть нуль рабочий N и нуль защитный PE разделены уже на трансформаторной подстанции. Проводник PE дополнительно заземляется на вводе к потребителю, при вводе с ВЛ обязательно, в остальных случаях рекомендательно.


Система заземления TN-S

Это наиболее дорогая в устройстве система, так как требует ещё один дополнительный проводник. В масштабах страны только одно количество меди на этот проводник будет выглядеть внушительно, не считая затрат на труд, производство и различные дополнительные изменения. Тем не менее все новые электросети должны строиться уже с системой TN-S.

Для потребителя – это самая удобная и безопасная система защитного заземления, особенно в бытовых однофазных сетях. Не требует частого осмотра и обслуживания как другие системы TN. Менее требовательна к качеству выполнения повторного заземления на вводе к потребителю.

 

Система заземления TT

Система TT представляет собой систему заземления, у которой нейтраль источника питания и корпуса приборов потребителя заземлены отдельно, независимо друг от друга. Зануление на этой системе не применяется.

 

Система заземления TT


В быту такая система может использоваться, если по условиям электробезопасности систему TN применить нельзя (ПУЭ 1.7.59.).

При однофазном замыкании на заземленный корпус электрооборудования при системе TT токи короткого замыкания могут быть слишком малы для отключения автоматического выключателя. Поэтому применять эту систему без УЗО или диффавтоматов запрещено ПУЭ в пункте 1.7.59, что не отменяет обязательного применения автоматического выключателя. Он отключает подачу питания при замыкании фазы с нулем и в случае замыкания между разными фазами.

 

www.natrix-el.kz

Заземление

Системы заземления устанавливаются в электрических сетях снабжения на любом объекте. В первую очередь эти устройства нужны для обеспечения безопасного использования электроэнергии. Но для каждого объекта необходимо подбирать наиболее адекватный вариант. Выбор зависит от технических параметров источника питания. Это – глухозаземленая нейтраль или нейтраль изолированная.

Виды защитного заземления

На сегодняшний день различают три порядка функционала, они определены Госстандартом РФ и Международной электротехнической комиссией:


  • TN. Этот формат обустроен глухозаземленной нейтралью, к ней подключаются металлические конструкции электрической установки. Она классифицируется по трем подвидам.
  • TT. Этот формат имеет глухозаземленую нейтраль, а у потребителей устанавливается отдельное заземление, которое не соединяют с нулевым электропроводом. Преимущественно у потребителей устанавливают модульно-штыревые конструкции.
  • IT. Этот формат с изолированной нейтралью или нейтралью, соединенной через сопротивление резонансного типа. Металлические конструкции электрического оборудования обустроены отдельным заземлением.

 

Особенности различных видов

Функционал защитного заземления направлен для защиты человека от поражения электрическим током. От правильно выбора напрямую зависит безопасность ваших сотрудников или домочадцев. Устройство выбирают по трем критериям: назначение, особенности подключения, особенности конструкции заземления. Виды заземления различают по способу функционала, источнику электрической энергии. Типы указаны в буквенном обозначении:

  1. Первая буква обозначает источник питания, где Т – непосредственное соединение нейтрали с землей, а I – их соединение через сопротивление.
  2. Вторая буква говорит о заземлении на открытых зонах установок сооружения, где Т – это раздельное заземление оборудования и источника, а N – указание на применение PEN-проводника.

TN

Система с глухозаземленной нейтралью, подключенными к ней металлическими конструкциями классифицируется на три подвида, согласно типу использования рабочего нулевого N-проводника и защитного PE-проводника:


    • C. Эта схема активно использовалась во времена Советского Союза. Сегодня не применяется. Здесь PE-проводник и N-проводник совмещены одним кабелем на всем протяжении электрической сети к потребителю. Порядок выполняет защитные и рабочие функции. Она экономична и проста. Ее недостаток в том, что если электрическая сеть разорвана, то защитные свойства пропадают, появляется опасное напряжение. А такое повреждение невозможно исключить при эксплуатации при перегреве, или разрушении проводника, или аварийном повышении электротока. Если выбирается данный формат, необходимо предусмотреть наличие надежной автоматики, которая немедленно отключит напряжение.

tn-c

    • C-S. Этот порядок нуждается в дополнительном заземлении. В ней N-проводник совмещается с PE-проводником одним электрокабелем от трансформаторного сооружения до распределительного щита, где на входе они разъединяются. Система финансово доступна широкой аудитории потребителей, но менее надежна, нежели другие виды. Защитные функции утрачиваются, если появляется повреждение на участке до PE-проводника (или до объекта). Если устанавливать данный тип заземления, необходимо предусмотреть надежную защиту проводников от механических воздействий. Этого требуют технические стандарты.

tn-c-s

    • S. Это наиболее безопасная схема, в ней PE-проводник и N-проводник разделены на всем протяжении электрической сети. Этот фактор увеличивает стоимость, но делает ее надежной.

tn-s

Система TN актуальна для установки на стационарных объектах с обычными характеристиками источника питания. Это может быть бытовое или промышленное оборудование, работающее от электросетей с напряжением не более 1000 В.

 

IT

Эта система актуальна для стационарных объектов, где установлено оборудование особой чувствительности. Металлические элементы конструкции не соединятся с изолированной нейтралью, а обустраиваются отдельными заземлениями. Здесь может быть использована соединенная нейтраль через сопротивление резонансного типа. Данный порядок часто применятся в научно-исследовательских центрах, чтобы наводки-паразиты не искажали показания аппаратуры.

it

TT

Этот порядок предназначен для мобильных объектов, таких как киоски, вагончики, ларьки и прочее. Здесь рекомендована к эксплуатации УЗО. Глухозаземленая нейтраль соединяется с генератором, передача тока выполняется по четырем проводам. На объекте потребителя корпусы технических устройств подключаются к автономной системе заземления. TT используется для воздушных линий электропередачи, поскольку они сопряжены с высокими рисками повреждений от ураганов и других механических воздействий.

tt

Технологии монтажа заземления

Специалисты используют несколько технологий установки, среди которых наиболее часто используемые:

  • Традиционная. Работы начинаются с создания проекта. В документе означается место прокладки контура с учетом существующих или строящихся подземных коммуникаций. Затем в грунт на глубину 3 метров укладывают металлические изделия (они же электроды) с рассчитанным сечением, они должны располагаться на расстоянии не менее пяти метров друг от друга. Заземление формируется из металлопроката: труб, уголков или полос. После укладки электроды сваривают единым контуром с помощью полосы металла. Соединение выполняется по периметру. На протяжении длительного времени данная технология оставалась основной, но она имеет существенный недостаток – ржавление материала, поэтому сейчас в большинстве случаев используют другой метод.
  • Модульная. Данный формат формируется из стальных стержней с медным покрытием, диаметров 1,4 см и длиной – около 1,5 метра. Внутри грунта их располагают – вертикально. На каждый стержень наносится нарезка резьбы для латунных муфт. Элементы соединяются между собой по контуру медной проволокой или полосами из стали. Конструкция комплектуется наконечниками, материал которых подбирается в соответствии с особенностями грунта на участке. Для защиты от коррозии на все элементы конструкции наносится специальная паста. Для надежности, безопасности системы соединения стержней, горизонтальных элементов выполняется защитной лентой.

zazemlenie

Преимущества модульной системы заземления:

  • Конструкцию можно установить на небольшом участке, например, на 1 м2, что разрешает экономить полезную территорию.
  • Для установки не требуется выполнять сложные земляные работы.
  • Для сооружения не нужна сварочная установка.
  • Модельная система применима для установки на грунте любого типа.
  • Модульно-штыревая система формирует глубину – до 50 метров.
  • Проводники из нержавеющей стали характеризуются длительной эксплуатацией.
  • Для сооружения и эксплуатации не требуется дополнительное оборудование.
  • Модельно-штыревая система поставляется в комплекте, так вам не нужно искать недостающие элементы.


Видео рассказывает о том, какую систему можно, а также целесообразно выбирать для частного дома. А также о критериях выбора.

Резюмируем

Правильная и безопасная работа системы на объекте любого назначения, в том числе и частного дома, гарантируется только при адекватном выборе вида и профессиональном монтаже. Данное устройство, как и любая техническая конструкция должна получать регулярное техническое обслуживание.

Электрические системы, в том числе заземление – это сложные конструкции повышенной опасности, поэтому работы с ними проводят профессиональные электрики, имеющими адекватные доступы.

voltamperwatt.ru

Какие бывают системы заземления?

Чтобы избежать поражения электрическим током при прикосновении к оголенному проводку или поврежденному электрооборудованию, Международной Электротехнической Компанией (МЭК) была разработана специальная защита, называемая заземлением. Также эта система стандартизирована в ГОСТ РФ и подробное описание имеется в книге ПУЭ (правила устройства и эксплуатации электрооборудования). Что же представляет собой заземляющий контур электрической сети? Всё очень просто, это дополнительный проводник аппаратов, присоединенный к нулю. В случае аварии, при пробое изоляции или появлении контакта там, где его не должно быть, энергия фазы уйдет по PE проводу в ноль, и даже в случае случайного прикосновения человек не пострадает. Разберем какие бывают типы систем заземления, применяемых в России.

TN и ее разновидности

Самый распространенный тип заземляющей системы — это TN, в котором ноль совмещен с землей по всей длине. Этот тип еще называют в снабжении глухозаземленная нейтраль, когда условный ноль N источника соединен с устройством заземления PE. Устройство заземления не сложно, но тем не менее технологично и представляет собой группу штырей, вбитых вертикально в землю на значительную глубину до водоносного слоя, от 2.5 и более метров. Эти штыри соединены полосой или же кабелем в единый контур заземления жилого дома. Рассмотрим, какая существует классификация систем TN на сегодняшний день и в чем различие между всеми разновидностями.

В старом жилом фонде используется тип защиты ТN-C, это когда ноль N выполняет также роль защитного провода PE, совмещен. Это самый простой и дешевый вариант заземления электроустановки до 1000 В.

Виды заземления и их назначения

Тип TN-С морально устарел и электрически опасен, так как не имеет отдельного защитного проводника, и в случае обрыва нулевого провода. во время ЧП, весь потенциал окажется на электрооборудовании, подвергая риску поражения током или же возникновению пожара.

Поэтому во вновь проектируемых зданиях используют другую подсистему TN-S, в этом устройстве присутствует отдельный провод фаза, ноль (нейтраль) и защитный проводник PE. Проводники N и PE, начиная от подстанции с глухозаземленной нейтралью являются отдельными компонентами системы электроснабжения.

Виды заземления и их назначения

Данный вид является самым надежным из принятых типов заземления электрической сети. К его недостаткам можно отнести дороговизну, так как нуждается в дополнительном проводнике, от подстанции к потребителю.

Лишенная этих недостатков, относительно простая в реализации система TN-C-S. которая сочетает в себе достоинства описанных ранее систем. Также легко реализуется во время реконструкции старых зданий. Смысл данной схемы в том, что до ГРЩ организуется система TN-C, тут разделяют нейтральный провод PEN на два проводника N и PE, далее идет система TN-S.

Виды заземления и их назначения

Недостаток этой системы такой же, как и TN-C, при обрыве PEN шины система оказывается под полным напряжением. С этим недостатком борются установкой дополнительных устройств, таких как реле напряжения, производящих аварийное отключение потребителя от сети.

Существуют еще два вида снабжения, которые используются в специальных условиях, это тип TT — когда доставка электрической энергии организуется фазными проводами от источника с глухозаземленной нейтралью, а заземление организовывается непосредственно у потребителя. Таким способом осуществляют подключение мобильных домов, временных объектов. Данный тип требует обязательного использования устройств защитного отключения УЗО.

Виды заземления и их назначения

Еще один вариант — система IT, тип снабжения, не использующий глухозаземленную нейтраль. Ноль источника подключается через специальные устройства, имеющие высокое внутреннее сопротивление, а непосредственно у потребителя установлено устройство нуля и защитного заземления (согласно ПУЭ 7, глава 1.7). Данный тип снабжения используется в спец лабораториях, так как помехи, вносимые таким способом, минимальные.

Виды заземления и их назначения

Также рекомендуем просмотреть видео, на котором предоставлено описание каждой разновидности заземляющих систем с расшифровкой аббревиатур:

Какие бывают варианты защиты электроустановок до 1 кВ?

И напоследок хотим обратить внимание — запрещено использовать в качестве защитного заземления трубы отопления, газа, трубы водопровода, элементы металлических ограждений. В этом случае возможно появление на этих элементах полного напряжения 220 вольт, подвергая жизнь окружающих опасности. Берегите себя.

Вот и все, что хотелось рассказать вам об основных типах систем заземления, применяемых в России. Надеемся, теперь вы знаете, какие бывают схемы заземляющих контуров и в чем отличия между существующими вариантами!

Будет интересно прочитать:

Какие бывают варианты защиты электроустановок до 1 кВ?

Системы заземления — классификация и типы, выбор оптимального варианта защиты

Заземление – один из наиболее важных технологических методов защиты от поражения электротоком при работе с электрическими приборами. Для правильной модернизации или ремонта проводки нужно точно представлять, какая система заземления используется на объекте. От этого зависит безопасность человека и нормальная работа оборудования. Также информация важна при создании проекта реконструкции. Соответственно, нужно изучить все имеющиеся системы заземления, отличия друг от друга, а также технологии их монтажа.

Содержание

Международная электротехническая комиссия (МЭК) и Госстандарт РФ установили типы систем заземления. Все они указаны в ПУЭ (правилах устройства электроустановок). Различают:

  1. Систему TN (с подсистемами TN-C, также TN-S и, наконец, TN-C-S);
  2. Систему TT;
  3. Систему IT.

Виды заземления и их назначения

Системы заземления TN, ТТ, IT

Различаются они по источнику электроэнергии и способу заземления электрооборудования. Тип системы заземления обозначается буквами:

1. По первой букве определяется, как заземлен источник питания:

  • если это Т – то имеется непосредственное соединение нулевого рабочего проводника (нейтрали) источника электроэнергии с землей;
  • если это I – то нейтраль источника энергии соединяется с землей исключительно через сопротивление.

2. По второй букве определяется заземление в проводящих открытых частях электроустановки здания:

  • буква Т обозначает местное (раздельное) заземление электрооборудования и источника электропитания;
  • буква N говорит о том, что источник электропитания заземлен, но заземление потребителей происходит лишь через PEN-проводник.

3. Следующие буквы за N определяют функциональный способ, по которому устроен нулевой рабочий и нулевой защитный проводник:

  • если стоит S – значит функции рабочего (N) как и защитного (РЕ) проводников обеспечены раздельными проводниками;
  • если стоит С – значит функции нулевого рабочего и защитного проводников обеспечены общим проводником (PEN).

Система TN отличается наличием глухозаземленной нейтрали: открытые проводящие части любой электроустановки присоединены к конкретной глухозаземленной нейтральной точке источника электропитания посредством специальных нулевых защитных проводников.

[include id=»1″ title=»Реклама в тексте»]

Термин «глухозаземленная нейтраль» означает, что нейтраль (ноль) на трансформаторной подстанции подключена прямо к заземляющему контуру (т.е. заземлен).

Основное условие электробезопасности TN заключается в следующем: значение тока между открытой проводящей частью и фазным проводником при коротком замыкании должно превышать величину электротока срабатывания устройства защиты за нормированное время.

Востребованная подсистема TN-C

Подсистемой TN-C является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы совмещены (в 1 проводник PEN), т.е. произведено защитное зануление. Это наиболее используемая разновидность TN со времен СССР. Однако эта система сейчас устарела. Из современных электроустановок, она встречается лишь в уличном освещении (в целях экономии, а также пониженного риска). Для нового жилья ее рекомендовать нельзя. Сейчас на смену ей пришли более современные системы.

Вариант заземления TN-S

Подсистемой TN-S является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы разделены. Это современная, самая безопасная, однако самая дорогая система. Она уже очень давно применяется в телекоммуникационных сетях (что примечательно, при ее использовании исключены помехи в слаботочной сети).

TN-C-S — специфика устройства

Виды заземления и их назначения

Системы заземления TN-C, TN-C-S

Подсистему TN-C-S – можно отнести к промежуточному варианту. В ней нулевой рабочий, а также защитный проводники совмещены лишь в какой-то одной ее части. Обычно — в главном щите здания (где защитное заземление дополнено защитным занулением). По всему зданию далее эти проводники разделены. Система оптимальна с позиции соотношения цена — качество. Данная схема является в настоящее время основной, которую можно реализовывать в отдельных частях электроустановок при реконструкции. Другие системы заземления электроустановок сделать этого не позволяют. Сечения проводников выбираются, исходя из значений токов (расчетных), протекающих через них. Площадь сечения (минимальная) PEN-проводника равна 4 мм2. Необходимо предусмотреть, чтобы в распределительном щите были отдельные зажимы на шине PEN (для каждого проводника — N и РЕ). При применении многожильного или одиночного провода в качестве PEN-проводника его цвет изоляции должен быть исключительно желто-зеленым.

Это система отличается тем, что ноль источника в ней заземлен, при этом открытые проводящие части любой электроустановки подсоединены к заземлению, которое является электрически независимым от заземленного нуля (нейтрали) источника питания. Иными словами, на объекте применяется свой контур заземления, который никак не связан с нулем. На сегодняшний день эту систему как основную применяют в мобильных сооружениях, например бытовках, домах-вагонах и т.д. (там, где не всегда удается монтировать заземлитель в соответствии с требуемыми нормами). Примечательно, что согласование ее применения проходит сложнее, чем TN. Обязательным становится применение УЗО, также необходимо качественное заземление (а именно 4 Ом на 380 В ), существует много особенностей при подборе необходимых защитных автоматов.

Это система отличается тем, что ноль источника в ней изолирован от земли либо заземлен через приборы, которые обладают большим сопротивлением, а проводящие открытые части электроустановок заземлены с использованием заземляющих устройств. IT применяется крайне редко. В основном — в электроустановках зданий специального назначения. Например, для аварийного освещения и электроснабжения в больницах. Вообщем, там где предъявляются повышенные требования безопасности и надежности.

Существуют несколько технологий установки контура заземления. Наиболее применяемые две: традиционная и модульно штыревая система заземления.

Заземление выполняется из черного металлопроката: уголков, труб полос и т. п. Начинается установка с создания проекта, отражающем место, где будет устроен заземляющий контур, расположение технических коммуникаций в грунте. Затем, ориентируясь на объект, в почву на глубину в 3 м, на расстоянии около 5 м др. от друга вкапываются металлические изделия (электроды) определенного сечения (не < 3-х). После этого эти электроды они свариваются в общий контур по периметру при помощи металлической полосы.

[include id=»2″ title=»Реклама в тексте»]

Эта технология была основной в течение многих десятков лет. Однако она имеет ряд недостатков (например, коррозия металла, трудоемкость установки и т.п.), поэтому сейчас ее стараются заменять другой, более современной и совершенной технологией заземления.

Виды заземления и их назначения

Модульно штыревая система заземления

Что входит в комплект?

  1. Состоит она из стержней, изготовленных из высококачественной стали и покрытых медью. Их располагают в грунте вертикально. Каждый из этих стержней достигает в длину порядка полутора метров, а в диаметре – 14 мм, масса 1-го элемента – не более 2-х кг. С двух сторон каждого стержня делается нарезка омедненной резьбы 30 мм в длину.
  2. Стальные элементы этой системы соединяются между собой при помощи латунных муфт.
  3. Комплект модульной системы заземления включает также латунный зажим, используемый для соединения горизонтальных (особые стальные полосы или медный провод, проходящий от щитка-распределителя прямо к заземлительному контуру этой системы) и вертикальных (омедненные стальные стержни) элементов заземления.
  4. Также в комплект входит два стальных наконечника, которые будут крепиться к стержню путем навинчивания на омедненную резьбу. Выбирать наконечники придется в зависимости от грунта (особо твердый или обычный). В нем будет проходить все устройство этой системы заземления здания.
  5. Для антикоррозийной защиты всех элементов заземления обычно прилагается защитная паста, которой обрабатываются элементы всей будущей заземлительной системы.
  6. Для более безопасного и надежного соединения горизонтальных и вертикальных составляющих используют защитную ленту (например, PREMTAPE).

Как происходит монтаж?

Монтаж модульной штыревой системы заземления проходит в несколько этапов:

  1. Устанавливается 1-ый вертикальный стальной штырь.
  2. Проводится замер промежуточного сопротивления.
  3. Монтируются остальные вертикальные штыри.
  4. Укладывается горизонтальный заземлитель.
  5. Затем элементы соединяются и обрабатываются защитной лентой.

Преимущества модульно штыревой системы заземления

  1. Позволяет сэкономить площадь (может обустраиваться на 1 м2 площади).
  2. Простая, не требует трудоемких земляных работ.
  3. Не требуется сварка.
  4. Применять такое заземление можно при любом виде грунта
  5. Достигается большая глубина – до 50 м.
  6. Используются проводники из нержавеющей стали.
  7. Нет необходимости в специальном оборудовании.
  8. Длительный срок эксплуатации.

Из всего вышеизложенного можно сделать вывод, что на сегодняшний день наиболее рациональным является применение системы TN-C-S и модульно-штыревой технологии ее монтажа. Все факты говорят о том, что технологии устройства заземления последнего поколения по многим параметрам превосходят традиционные. Их применением сокращает срок проведения работ, уменьшает финансовые затраты, увеличивают срок службы заземляющих элементов.

Рекомендуем похожие статьи

Виды заземления и их назначения Монтаж электропроводки своими руками: требования, виды и схема проводки

Назначение заземления

Сначала определимся с определением заземления. Заземление нужно понимать как специальное электрическое соединение некоторых элементов сети, металлических корпусов различных электроприборов или электроустановок с конструкцией заземления.

Виды заземления и их назначения

Заземление нейтрали и защитное заземление

Устройство заземления нужно рассматривать как некоторую конструкцию специальных заземлителей с заземляющими проводниками, которые представляют собой электрическую связь электроустановки с грунтом.

То есть, эта конструкция заземляющих устройств предназначена для поглощения землей опасного для жизни напряжения, появившегося на металлическом корпусе электроустановки при пробое изоляции сетевых проводов. Заземлители обеспечивают надежный контакт с грунтом, и через проводники связаны с металлическими частями электрических установок.

Для оценки надежности и качества ЗУ существуют определенные значения сопротивления заземления с грунтом. Чем меньше величина сопротивления заземления, тем качественнее электрическое соединение между заземлителем и грунтом. Для идеального варианта сопротивление равно нулю, но такого не может быть из-за наличия удельного электрического сопротивления грунта.

Виды заземления и их назначения

Варианты контура заземления для частного дома

Поэтому для различных типов электросетей определены нормированные сопротивления заземления. Сопротивление заземление нейтрали у трансформатора подстанции по нормативу 4 Ома. Величина сопротивления заземления молниезащиты в однофазных сетях 220 В, также в 3-х фазной электросети 380 В составляет 10 Ом. По правилам ПЭУ 1.7. 103 для систем электропитания TN-C-S частных домов и электросети 220/380 В значение сопротивления заземления не превышает 30 Ом.

Виды заземления и их задачи

Существует два типа заземления электроустановок — это рабочее и защитное. Эти виды заземления имеют свою функциональность. Так рабочее заземление обеспечивает нормальные условия работы электроустановок. Рабочее заземление предназначено для заземления отдельных частей установки, необходимое для эффективной работы. Т. е. здесь не говорится о защитных свойствах заземления.

Как пример, является заземление трансформаторов подстанций, генераторов тока с целью создания рабочего режима и повышения устойчивости и надежности энергосистем. А ответственной задачей защитного заземления будет защита от поражения током во время аварии. Таким образом, защитное заземление предотвращает появление опасного напряжения на тех металлических конструкциях, где его не ждут, но оно может появиться.

Виды заземления и их назначения

Рабочее и защитное заземление в разных системах энергоснабжения

Опасное напряжение может появиться на любых металлических конструкциях, трубах, ограждениях, корпусах. Появится опасное напряжение также может в результате пробоя изоляции проводов, утечки тока через изоляцию, электростатических разрядов, молнии. Работа защитного заземления заключается в отводе опасного напряжения с металлических конструкций на землю и создании тока утечки с заземленных участков, для срабатывания УЗО и отключения электросети.

Важным элементом заземления является сам заземлитель, который имеет прямое соприкосновение с землей. Особенно важным параметром заземлителя считается сопротивление заземления, которое уменьшается с увеличением площади заземлителя. Чтобы увеличить площадь заземлителя устанавливают их несколько, увеличивают их длину, меняют конфигурацию. Со стороны грунта — насыщают солями или вовсе засыпают другой грунт или устанавливают заземление в местах с близкими грунтовыми водами.

Заземлению не подлежат трубы централизованного отопления, водопровод, канализация, трубопровод горючих жидкостей и газопроводы.

В качестве заземлителей можно приспособить естественные заземлители — это конструкции установленные в земле которые соответствуют предъявляемым требованиям. К естественным заземлителям можно отнести арматуру фундаментов, бетонных плит, обсадные трубы.

Повторное заземление

Такое заземление снижает величину опасного напряжения при пробое фазного проводника электроустановки, по отношению к земле в обычном рабочем режиме и в случае обрыва нулевого проводника. Можно сказать что повторное заземление — это заземление которое выполняется не в одном месте, а одновременно в нескольких местах на протяжении всей длины нулевого проводника.

Виды заземления и их назначения

Повторное заземление должно выбираться так, чтобы при аварии и к. з. на корпус, отключался ближайший автомат. Контур заземления старых домов уже не соответствует современным требованиям, поэтому необходимо делать повторное заземление. Провод заземления, при повторном заземлении должен быть непрерывным относительно каждого источника напряжения и присоединяется с варкой, а к корпусу приборов возможно соединение болтом.

electricremont.ru

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Виды систем заземления
Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Виды систем заземления
Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Независимые заземлители

Виды систем заземления
Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Виды систем заземления
Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Модульно-стержневое заземление

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Стандартное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Фундамент подстанции

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

ЗаземлениеНе стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

househill.ru

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет…

Но если  корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник,  это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.

То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

 

 Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

  • T — провод подключен к земле .
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение рабочего и защитного нулевых проводов.
  • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
  • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE – Protect Earth, защитная земля, провод защитного заземления.
  • PEN – совмещенный рабочий и защитный нулевой проводник.

 

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – в другой моей статье.

ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Скачать ПУЭ у меня можно здесь, в разных вариантах.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
  2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

Подробно пишу об этом в статье про обрыв нуля в однофазной и трехфазной цепях.

В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновению к на фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

 

 

Схемы систем заземления

Система TN-C

TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

 

Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

Вот хороший рисунок, иллюстрирующий ситуацию:

Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

 

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

 

Система TT

Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

 

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Подробнее я писал об этом в статье про подключение генератора Хутер.

Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

 

На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

P.S. Схемы взял из статьи Плакаты по технике безопасности.

samelectric.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.