Защитное заземление зануление


Заземление электроустановки — это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с «землёй». Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение.

Заземление

Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством — «землёй». Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства — его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали — заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.


Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от «земли» величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей — человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.


Два типа заземления

Заземлители делятся на два типа — естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.

Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов.


оговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки — земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.

Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство.
качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты — выравниванием потенциала и защитным отключением.

www.novation.by

Принцип действия

Заземляющий контур электрической цепи – система проводов, соединяющая каждого потребителя, в обслуживаемой цепи, со специальным заземляющим контуром здания. При пробое на корпус прибора или утечке тока с поврежденной проводки, ток проходит по проводам к заземлителю.

Сопротивление заземления, как правило, выполняется меньше, чем сопротивление всей цепи. Поэтому ток течет по «легкому» пути и отводится с корпусов оборудования.

Защитное заземление зануление


Занулением называется выполнение электрического соединения токопроводящих корпусов приборов с глухозаземленной нейтралью. При возникновении пиковых значений тока, его потенциал отводится, с помощью шины зануления, в специальную щитовую или на трансформаторную будку. Главное его назначение – в случаях пробоев и утечек напряжения на корпус оборудования, вызывается короткое замыкание, сгорают предохранители или срабатывают автоматические размыкатели цепи.

Это и есть главное отличие заземления от зануления. Заземляющий контур принимает на себя токи КЗ, зануление вызывает срабатывание предохранительных устройств.

Разберем подробнее работу систем защиты от воздействия электрического тока.

Особенности заземляющего устройства

Защитное заземление занулениеОсновной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения. При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

Контур заземления – это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

Защитное заземление занулениеПри искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков. Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Нельзя устанавливать групповые заземлители в пробуренные отверстия. Их необходимо забить в месте разметки, на глубину, не менее 2-х метров. Затем, соединяют заземлители в единую конструкцию с помощью отрезков стальной полосы.


Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов. При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Защитное заземление зануление

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.


Защитное заземление зануление

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

Защитное заземление занулениеПри этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами. Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.


Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой. Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Защитное заземление зануление

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

Все системы защиты и отключения подачи тока в сеть оснащаются автоматическими выключателями. В их конструкции предусмотрена установка специального оборудования защитного отключения. При этом, период времени для отключения сети не должен превышать 2-е десятые секунды.

В заключение разберем вопрос, который может задать начинающий электрик.

evosnab.ru

Терминология

· Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока.

· Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

Обозначения

Защитное заземление зануление

Защитное заземление зануление

Обозначение на схемах (два символа справа)

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

· T — непосредственное соединения нейтрали источника питания с землёй;

· I — все токоведущие части изолированы от земли.

Вторая буква определяет состояние открытых проводящих частей относительно земли:

· T — открытые проводящие части заземлены, независимо от характера связи источника питания с землёй;

· N — непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

· S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;

· C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Разновидности систем заземления

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C

Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР.

Система TN-S

Защитное заземление зануление

Защитное заземление зануление

Разделение нулей в TN-S и TN-C-S

На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE).

Система TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Система IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения.

Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью.

Принцип действия

Защитное заземление зануление

Защитное заземление зануление

Принцип действия зануления

Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с.

mirznanii.com

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

tn c Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

tn s Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

tn c s Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

tn tt Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

tn ti Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

pue8.ru

Одними из эффективных средств защиты от поражения электрическим током являются защитное заземление и зануление электроустановок. В соответствии с ГОСТ 12.1.009–76:

защитное заземление это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В вопросах применения и практического выполнения защитного заземления и зануления следует руководствоваться требованиями не только ПУЭ, но и ГОСТ Р 50571. В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S (рис.2).

Применительно к сетям переменного тока напряжением до 1 кВ обозначения имеют следующий смысл.

Первая буква – характер заземления источника питания (режим нейтрали вторичной обмотки трансформатора):

  • I – изолированная нейтраль;

  • Т – глухозаземленная нейтраль.

Вторая буква – характер заземления открытых проводящих частей (металлических корпусов) электроустановки:

  • Т – непосредственная связь открытых проводящих частей (ОПЧ) с землей (защитное заземление);

  • N – непосредственная связь ОПЧ с заземленной нейтралью источника питания (зануление).

Последующие буквы (если они имеются) – устройство нулевого рабочего и нулевого защитного проводников:

  • С – нулевой рабочий (N) и нулевой защитный (РЕ) проводники объединены по всей сети;

  • CS – проводники N и РЕ объединены в части сети;

  • S – проводники N и РЕ работают раздельно во всей сети

Защитное заземление зануление

Рис. 2. Разновидности систем заземления

Проводники, используемые в различных типах сетей, должны иметь определенные обозначения и расцветку (табл. 1).

Таблица 1

Обозначение проводников

Наименование проводника

Обозначение

Расцветка

буквенное

графическое

Нулевой рабочий

N

Защитное заземление зануление

Голубой

Нулевой защитный (защитный)

PE

Защитное заземление зануление

Желто-зеленый

Совмещенный нулевой рабочий и нулевой защитный

PEN

Защитное заземление зануление

Желто-зеленый с голубыми по концам метками, наносимыми при монтаже

Фазный

в трехфазной сети

L1, L2, L3

Все цвета, кроме вышеперечисленных

в однофазной сети

L

Область применения этих способов защиты определяется режимом нейтрали и классом напряжения электроустановки.

Защитное заземление состоит (рис.3) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Защитное заземление зануление

Рис. 3. Схема защитного заземления:

1 — электроустановка; 2 — заземляющий проводник; 3 — заземлитель

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью, а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки.

При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза L1 — корпус электроустановки 1 — человек — земля — емкостные ХL3, ХL2 и активные RL3, RL2 сопротивления связи проводов с землей, фазы L3 и L2. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она происходит за счет несовершенства изоляции проводов, опор и т. п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

При наличии заземляющего устройства образуется дополнительная цепь: фаза L1 — корпус электроустановки — заземляющее устройство — земля — сопротивления ХL3, RL3, XL2, RL2 — фазы L3 и L2. В результате этого ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно должно быть не более 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды, забитые вертикально или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб диаметром не менее 32 мм и толщиной стенок не менее 3,5мм, угловой стали с толщиной полок не менее 4 мм, полосы сечением не менее 100 мм2, а также из отрезков швеллеров, прутковой стали диаметром не менее 10мм. Электроды, выполненные из более тонких профилей, вследствие коррозии быстро выходят из строя. Кроме того, тонкие профили имеют малый контакт с землей, поэтому их применение нежелательно. Длину электродов и расстояние между ними принимают не менее 2,5–3,0 м.

Между собой вертикальные электроды в групповом заземлителе соединяют с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом.

Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемых расчетом.

Сопротивление заземляющего устройства — это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю. Различают выносное и контурное заземляющие устройства.

Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением.

Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Занулениеэто преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В зануление — основное средство защиты.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ — проводника). Его нельзя путать с нулевым рабочим проводом (N — проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник прокладывают по трассе фазных проводов, в непосредственной близости от них.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети.

Работает зануление следующим образом: при попадании напряжения на корпус зануленной электроустановки 8 (рис. 4) большая часть тока с него пойдет в сеть через нулевой защитный провод 6. По цепи: корпус электроустановки 8 — человек — земля — заземляющее устройство 9 — нулевой рабочий провод 5 — пойдет незначительный ток, не вызывающий поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6).Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2—7 с срабатывает токовая защита (перегорает предохранитель 7, срабатывает автоматический выключатель и т. п.), и электроустановка, а вместе с ней и человек, полностью обесточиваются.

Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, т.к. сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а сопротивление заземлителя допускается до 4 Ом.

Защитное заземление зануление

Рис. 4. Схема зануления:

1 — заземлитель нейтрали трансформатора; 2 — источник тока (трансформатор); 3 — нейтраль источника тока; 4 — зануление корпуса трансформатора; 5 — нулевой рабочий (он же и нулевой защитный) провод сети; 6 — нулевой защитный провод электроустановки; 7 — предохранитель; 8 — электроустановка; 9 — повторное заземление нулевого защитного провода сети

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза — для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза — с величиной тока более 100 А.

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью (с целью надежного обеспечения автоматического отключения аварийного участка) проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания.

Нулевой защитный провод 5 сети (рис. 4) должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника, поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; а также на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты.

Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В.

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN–проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли ρо > 100 Ом∙м допускается увеличивать указанные нормы в 0,01 ρо раз, но не более десятикратного.

Зануление (заземление) металлических корпусов переносных электроустановок осуществляют третьей жилой для однофазных или четвертой жилой для трехфазных электроприемников, находящейся в одной оболочке с фазными проводами.

Жилы этих проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение заземляющих и нулевых защитных проводников происходило до соединения фазных проводников, а рассоединение происходило в обратной последовательности. Обычно это достигают применением у вилки более длинного штыря для защитного проводника, чем для фазных проводов. Во всех случаях вилку подсоединяют к электроприемнику, розетку — к сети.

    1. Средства индивидуальной защиты от поражения электрическим то­ком

Средства индивидуальной защиты от поражения электрическим то­ком — электрозащитные сред­ства (ЭЗС), которые делятся на ос­новные и дополнительные.

Основные ЭЗС — это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет с помощью их прикасаться к токоведущим частям, находящимся под напряжением.

Для работы на электроустанов­ках до 1000 В к ним относятся: изолирующие штанги, изолирую­щие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолированными рукоятка­ми, указатели напряжения.

При напряжении электроустановки свыше 1000 В основные средства включают изолирующие штан­ги, изолирующие и электроизмерительные клещи, указатели на­пряжения.

Дополнительные ЭЗС — это средства защиты, изоляция ко­торых не может длительно выдерживать рабочее напряжение электроустановок. Они применяются для защиты от напряжения прикосновения и шага, а при работе под напряжением исключи­тельно с основными ЭЗС.

К ним относятся: при напряжении до 1000 Вдиэлектрические галоши, коврики, изолирующие подставки; свыше 1000 Вдиэлектрические перчатки, боты, ков­рики, изолирующие подставки. ЭЗС должны иметь маркировку с указанием напряже­ния, на которое они рассчитаны, их изолирующие свойства под­лежат периодической проверке в установленные нормативами сроки.

Сроки испытаний защитных средств от поражения электрическим током представлены в табл.2.

Таблица 2

Сроки испытаний защитных средств от поражения электрическим током (фрагмент)

Защитное средство

Напряжение электроуста-новки

Срок периодичес-ких испытаний, мес.

Срок периодических осмотров, мес.

Изолирующие клещи

до 1000В

24

12

Указатели напряжения, работающие на принципе протекания активного тока

до 500В

12

перед употреблением

Инструмент с изолирующими рукоятками

до 1000В

12

то же

Перчатки резиновые диэлектрические

до 1000В

6

то же

Галоши резиновые диэлектрические

до 1000В

12

6

Коврики резиновые диэлектрические

до 1000В

24

12

studfiles.net

Как выполняется зануление электрооборудования

Далее расскажем о том, откуда защитное зануление попадает в наш дом, и рассмотрим его путь от трансформаторной подстанции и безопасно ли выполнять зануление в квартире. Начинается такое зануление с глухозаземлённой нейтрали — соединенной с заземляющим устройством нейтрали силового трансформатора.

схема зануления

Нейтраль вместе с трехфазной линией сначала попадает во вводной шкаф. Оттуда же она распределяется по находящимся на этажах электрическим щиткам.

От нее берется рабочий ноль, образующий вместе с фазой привычное для нас фазное напряжение. Название «рабочий ноль» связано с тем, что он используется для работы электроустановок или электроприборов.

зануление и заземление электроустановок

Взятым с электрощитка защитным отдельным нулем, имеющим электрическое соединение с глухозаземлённой нейтралью, и образуется защитное зануление. Необходимо обязательно знать, что в цепи защитных зануляющих проводников никаких коммутационных аппаратов (автоматов, рубильников и т.п.), а также предохранителей быть не должно.

Область применения защитного зануления

Защитное заземление используется в электрических установках напряжением до 1 кВ:

  1. — в сетях постоянного электрического тока с заземленной средней точкой источника;
  2. — в однофазных электросетях переменного тока с заземленным выводом;
  3. — в трехфазных электросетях переменного тока с заземленным нулем (система TN – S; как правило, это сети 660/380, 380/220, 220/127 В);

Предназначено защитное зануление для защиты от возможного поражения электрическим током. Например возникла ситуация когда внутри электроустановки произошло повреждение изоляции и корпус установки (например стиральной машины или холодильника) оказался под напряжением. В этом случае возникает ток короткого замыкания на который реагирует защита (автомат или пробки) и мгновенно отключает электроустановку от сети.

Образование цепи тока однофазного короткого замыкания (т.е. замыкания между нулевым и фазным защитными проводниками) происходит в случае замыкания фазного провода на зануленный корпус электропотребителя. Поврежденная электроустановка отключается от питающей сети вследствие срабатывания защиты, вызывающейся током однофазного короткого замыкания.

Для быстрого отключения находящейся электроустановки могут использоваться автоматические выключатели и плавкие предохранители, устанавливаемые для защиты от токов короткого замыкания. Также для этой цели применяются магнитные пускатели с тепловой защитой встроенного типа, контакторы с тепловыми реле, с помощью которых обеспечивается защита от перегрузки и др.

Принцип действия защитного зануления

Короткое замыкание происходит при попадании фазового провода (напряжения) на металлический корпус прибора, соединенный с нулевым проводником. При этом фиксируется увеличение силы тока в цепи до огромных величин, вследствие чего срабатывают защитные аппараты, которые отключают питающую неисправный прибор линию.

Время отключения в автоматическом режиме поврежденной электролинии для фазного напряжения сети 380/220 В, в соответствии с ПУЭ, не должно превышать 0,4 секунд.

Для осуществления зануления используются специально предназначенные проводники, к примеру, третья жила кабеля или провода в случае с однофазной проводкой.

зануление принцип действия

Петля «фаза-ноль» должна иметь небольшое сопротивление, ведь только в таком случае отключение защитного аппарата происходит в предусмотренное правилами время. Поэтому добиться эффективного зануления можно исключительным образом при высоком качестве всех соединений и монтажа сети.

Зануление позволяет обеспечивать не только быстрое отключение от электричества неисправной линии, но и, благодаря заземлению нейтрали, низкое напряжение прикосновения на корпусе электрического прибора. Благодаря этому вероятность поражения человеческого организма электрическим током исключается. Заземленная нейтраль дает повод называть зануление определенной разновидностью заземления.

Следовательно, в качестве основания принципа действия защитного зануления выступает превращение замыкания на корпус в однофазное к.з. для вызова обеспечивающего срабатывание защиты большого тока, конечной целью чего является отключение от сети поврежденной электрической установки.

Чем опасно зануление в квартире

Зануление значительно отличается от заземления. Попробуем рассмотреть это отличие более подробно. В соответствии с ПУЭ, использование на бытовом уровне такой преднамеренной защиты, как зануление, запрещено из-за ее небезопасности.

Но, несмотря на то, что практиковаться такая система должна только в промышленном производстве, многие ставят ее и в своих квартирах. Прибегают к этой далекой от совершенства защите, в частности, в связи с отсутствием иного варианта или вследствие недостатка знаний в данной сфере.

Действительно, зануление в квартире сделать можно, но последствия от этого будут далеко не наилучшими. Далее на примерах рассмотрим некоторые ситуации, которые могут возникать в случае выполнения в квартире зануления.

1) Зануление в розетках

Иногда предлагается выполнить «заземление» электрических приборов посредством перемычки клеммы рабочего нуля в розетке на защитный контакт. Такой метод «заземления» не соответствует требованиям пункта 1.7.132 ПУЭ, ведь он подразумевает использование нулевого проводника двухпроводной сети в качестве защитного и рабочего нуля одновременно.

зануление в квартире

Помимо того, на вводе в квартиру обычно имеется аппарат, предназначенный для коммутации как фазы, так и нуля, к примеру, пакетник или двухполюсный аппарат. Но коммутировать нулевой проводник, который используется в качестве защитного, запрещено. То есть, нельзя использовать в качестве защитного проводник, цепь которого имеет коммутационный аппарат.

защитное зануление

Опасность «заземления» перемычкой в розетке заключается в том, что корпуса электроприборов при нарушении целостности нуля в любом месте окажутся под фазным напряжением. При обрыве же нулевого провода работа электроприемника прерывается, и тогда такой провод имеет вид обесточенного, то есть безопасного, что, конечно же, усугубляет ситуацию.

чем опасно зануление

Можно только представить, сколько беды наделает такая розетка, если в нее включить стиральную машину. В данном случае можно увидеть перемычку, которая соединяет «нулевой» контакт с защитным. И, если бы отгорел «ноль», то такая стиральная машина превратилась бы в «убийцу».

Если же во время принятия человеком душа вывалится нулевая «сопля» в розетке, к которой подключен бойлер, такого человека просто «прошьет» током. Поэтому такое зануление в квартире крайне опасно и его запрещено выполнять.

2) Перепутаны местами фаза и ноль

Рассмотрев следующий пример, можно наглядно увидеть наиболее вероятную опасность в двухпроводном стояке. Нередко при осуществлении каких-либо ремонтных работ в домовом электрохозяйстве ноль «N» ошибочно меняют местами с фазой «L».

Отличительной окраски жилы проводов в электрощитке в домах с двухпроводкой не имеют, и при выполнении каких-либо работ в щитке любой электрик может переключить ноль и фазу местами – корпуса электроприборов в таком случае тоже окажутся под фазным напряжением.

Необходимо обязательно помнить о высокой опасности выполнения защитного зануления в двухпроводной системе. Поэтому, в соответствии с правилами, это делать запрещено!

electricvdome.ru

Защитное заземление и защитное зануление

Что такое заземление электроустановок?

Защитное заземление, это специальное соединение металлических нетоковедущих частей оборудования (корпуса например) с землей. Это делается при помощи заземлителя и заземляющих проводников.

что такое заземление и что такое зануление

Что такое зануление электроустановок?

Защитное зануление, это специальное соединение металлических нетоковедущих частей оборудования с глухозаземлённой нейтралью генератора или трансформатора.

защитное зануление электроустановок

Жилу провода, кабеля защитного заземления принято маркировать желто-зеленым цветом. Жилу зануления, голубым.

 

elektrobiz.ru

Обозначения системы заземления

Cистемы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников:
C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.
S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные системы заземления

1. Система заземления TN-C

Система заземления tn-c

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.

2. Система заземления TN-C-S

Система заземления tn-c-s

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в
здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке). Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.

3. Система заземления TN-S

Система заземления tn-s

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. С подстанции приходит пяти жильный кабель. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.

4. Система заземления TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

Схема контурного заземления

Ситема контурного заземления

1. Заземлители
2. Заземляющие проводники
3. Заземляемое оборудование
4. Производственное здание.

Пример схемы заземления дома

Схема заземления дома

1. Водонагреватель
2. Заземлитель молниезащиты
3. Металлические трубы
водопровода, канализации, газа
4. Главная заземляющая шина

5. Естественный заземлитель (арматура фундамента здания)

Меры для защиты от поражения электрическим током

Для защиты человека от поражения электрическим током применяют защитные средства — резиновые перчатки, инструмент с изолированными ручками,
резиновые боты , резиновые коврики, предупредительные плакаты.

Контроль изоляции проводов

Для предупреждения несчастных случаев от поражения электрическим током необходимо контролировать состояние изоляции проводов электроустановок. Состояние изоляции проводов проверяют в новых установках, после реконструкции, модернизации, длительного перерыва в работе.
Профилактический контроль изоляции проводов проводят не реже 1 раза в 3 года. Сопротивление изоляции проводов измеряют мегаомметрами на номинальное напряжение 1000 В на участках при снятых плавких вставках и при выключенных токоприемниках между каждым фазным проводом и нулевым рабочим проводом и между каждыми двумя проводами. Сопротивление изоляции должно быть не меньше 0,5 Мом.

www.electricdom.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.