Заземление это


Каждый человек знает, что такое электричество. Каждый судит о нем по-разному. Для кого-то это телевизор, люстра и выключатель, для кого-то — источник энергии, но все понимают, что это такая штука, которая может и долбануть. И они правы, поскольку тряхнуть может действительно крепко, а порой и вообще убить. 

Организм человека — почти вода с растворенными солями в ней. Одни говорят: на 60 % из воды, другие — на 99… Оставим это, важно другое: человек электропроводен! То есть, он способен проводить через себя ток. И если этот ток достаточной силы, в организме возникают порой необратимые процессы, ведущие к гибели. 

Зачем нужно заземление

Не будем скрупулезно считать, какой силы ток может убить, все равно это достаточно неприятно. Я испытал это на себе, нисколько не совру, не один десяток раз. Причины: по малолетству — незнание, а далее — обычный русский авось и пофигизм. 


Исход ситуации, когда человек касается оголенного проводника, находящегося под напряжением,  может быть разным.  Если представить себе такое, что человек висит в воздухе, ничего более не касаясь, то ничего не происходит. Он остается целехонек и здоровехонек, он даже не поймет, что провод под напряжением. Потому что действует правило: если нет цепи, то нет и тока. К примеру, сидит ворона на проводе — и ничего, жива-здорова, еще и каркает сверху. 

Совсем другая ситуация, когда человек стоит босыми ногами на мокрой земле и хватается за провод. Создается замкнутая цепь: силовой трансформатор — провод — человек — земля — и снова трансформатор. Обмотки трансформатора тоже заземлены определенным образом, а земля — прекрасный проводник. 

И даже совсем не обязательны босые ноги и мокрая земля. И обувь сырая — тоже проводник, и пол бетонный, и плитка, и даже гидроизоляция гарантий не дает. И вот по этой замкнутой цепи побежали электроны, а у несчастного закатились глаза и пошла клочьями пена изо рта. Хорошо, если он в судорогах отцепился от провода, но чаще всего совсем наоборот: еще больше сжал его скрюченными пальцами. Кошмарная картина. 

И воронам тоже несдобровать, если их слишком много на проводах соберется, да еще крыльями начнут размахивать. Я не однажды наблюдал, как от такого вороньего шабаша только перья летят, потому что замыкают они собою два провода, тем самым создавая опять же замкнутую цепь для протекания тока. 

У электриков, кстати, в правилах безопасности предусмотрены не только диэлектрические перчатки и изолированный инструмент, а еще и диэлектрические коврики, боты. Эти коврики и эта обувь — дополнительная защита, которая не позволяет создавать замкнутую цепь при случайном касании проводника голой рукой. Короче, нет замкнутой цепи — нет тока. 

Что нужно заземлять


Все, что выше — лишь преамбула, но теперь мы понимаем, зачем заземление. Оно служит для защиты человека при прикосновении к металлическим частям оборудования, находящегося под напряжением.

Пример: сделал Вася систему отопления в доме, поставил батареи, скрутил/сварил нужные трубы, да встроил еще и электрический котел с электротэнами. Включил — все работает, все прекрасно, Вася ходит, трубы щупает, радуется: тепло! 

А в один прекрасный момент (какой уж тут «прекрасный»?) его ТЭН вышла из строя, да замкнула фазу на корпус котла. Батареи и трубы теперь под напряжением, ждут не дождутся, когда кто-нибудь или что-нибудь не создаст цепь для протекания тока. И вот жена Васина пол только что в кухне вымыла да вздумала тряпку на батарею повесить, посушить… Пол сырой, ноги босые, тряпка мокрая… Ох и достанется Васе, если жена жива останется, тут-то и усвоит Вася раз и навсегда, для чего заземление да зачем…

А вот если бы Вася сделал нормальный контур заземления, да котел свой надежно заземлил — ничего бы не было. Говоря простецким языком, ушла бы фаза на землю, ток получился бы  огромный, автоматический выключатель не выдержал бы и давно уже отключил бы этот котел. И даже если бы не отключил, то потенциал на батареях да трубах, соединенных с землей, был бы практически нулевой, а жене уж ничего бы не досталось. 


Котлы разного рода, даже если греют они не электричеством, а газом. Ведь к ним тоже подводятся провода, питают автоматику. Перетрется где-нибудь от времени фазный провод, или мышь, вечно голодная зараза, изоляцию погрызет — и здрасьте: фаза на корпусе. Станки бытовые разные, инструменты. У обмотки двигателя изоляция нарушилась — опять привет, опять корпус под напряжением. Или насос, к примеру, да мало ли еще чего электрического нагорожено в доме! 

А еще нельзя пренебрегать заземлением при использовании бетоносмесителя. Тут уж прямая дорога к беде в случае чего. Работаем с водой, все вокруг сырое, обувь, земля вокруг… Упаси господи! 

А возьмем чайник. Чего тут может быть, безвредный такой электроприбор! Корпус пластмассовый, изоляция, как-никак. Но и чайник может оказаться мокрым. Подсунул Вася чайник под кран, налил воды, да неаккуратно налил и на корпус попало. Только у Васи теперь все в ажуре, и третий контакт в евророзетке не пустой висит, а все чин по чину: заземлен. Молодец Вася, все правильно сделал. 

Как сделать контур заземления 


Это совсем несложно. Ведь для заземления что нужно: организовать так называемый контур  из нескольких металлических штырей, вбитых в землю и соединенных меж собой прутом или полосой на сварке. Штыри эти располагаются по периметру дома, таким образом создается как бы защитная зона, в которой выровнен электрический потенциал. Четыре штыря по углам — хорошо. Шесть таких точек — еще лучше. Можно и больше, срок службы увеличится. 

Длина штырей — не менее 3-х метров. Диаметр стального штыря — 16 мм или более. Никакой краски на нем не должно быть. Если штырь оцинкованный или медный — допускается 12 мм. 

Если грунт податливый, вобьешь их кувалдой в считанные минуты. Не забудь только заострить конец. Концы штырей соедини меж собой по всему периметру стальной полосой сечением не менее 100 кв. мм на сварку. Останется только покрыть полосу горячим битумом, чтоб меньше ржавело. Можно все это заглубить в землю, это допускается. 

Сама по себе эта конструкция панацеей не является, ничего не даст, если к ней не подключать ничего. Шинка должна быть в дом введена и на ней в удобном месте должны быть болты приварены, с их помощью и подключаются провода заземления от того же Васиного котла и третий провод евророзеток. 

Остается только одно: проверить параметры этого устройства, насколько они отвечают нормативам. Здесь придется обратиться к электрикам, у которых имеются соответствующие приборы для замера сопротивлений, соответствующие методики. Вообще, замеры необходимо проводить периодически, хотя бы 1 раз в 10 лет, потому как штыри в земле со временем ржавеют, электрическое сопротивление увеличивается. Исправить это тоже несложно: вбить рядом еще по штырю и приварить к ним шинку. 


Вот и все, и пусть ни одна микроволновка никогда не щиплет твоих домочадцев, ни одна труба или батарея не бьет, молнии держатся подальше от громоотвода. Да, кстати: никогда не используй в качестве заземления трубопроводы центрального отопления или, упаси господь, газовые и канализационные трубы, проложенные в земле. Правилами допускается применять проложенные в земле трубы сети централизованного водоснабжения, но лично я и этого делать не стал бы. 

Все это имеет соединения, все это изолируется в земле, утепляется, и никто не производит никаких замеров по электрическому сопротивлению. Если Петя, твой сосед, утверждает, что у него и через эти трубы все работает нормально — это его проблемы, поскольку это еще не значит, что он защищен… 

В этой статье читайте про системы заземления для загородного дома: разновидности, отличия и особенности конструкции.

Источник: www.forumhouse.ru

Что такое заземление

Как было сказано выше, заземление — это преднамеренное соединение электрических приборов со специальными заземляющими элементами. Такими заземляющими элементами, служат металлические заземлители, которые погружаются в грунт на глубину в несколько метров.


В качестве заземлителей, может быть использована металлическая арматура, штыри и прочий металлопрокат. Не допускается в качестве заземлителей использовать металлические трубы центрального отопления и водопровода, трубопроводы покрытые изоляцией от коррозии, и другие металлоконструкции, которые не предназначены специально для этого.

Зачем нужно заземление?

Заземление нужно для того, чтобы обеспечить максимальную защиту от поражения электрическим током при использовании всевозможных электроприборов. Это одна из основных функций заземления — защитная.

Однако заземление способно сберечь жизнь не только человеку, но и значительно продлить срок эксплуатации электроприборов в доме. Речь идёт о «рабочей функции» заземления, которая призвана защищать работу многих электроприборов в доме.


Дело в том, что при эксплуатации электроприбора, через его металлический корпус не должен проходить электрический ток. Заземление электроприборов с металлическим корпусом, будет являться залогом их нормальной и бесперебойной работы.

Виды заземления

Заземление может быть, как естественного происхождения, так и искусственным. К естественному заземлению относятся различные металлические конструкции всё время находящиеся глубоко в земле. Ярким примером естественного заземления, может служить железобетонный фундамент частного домостроения.

Искусственное заземление представляет собой умышленное подключение электроприборов с заглублённым в землю металлическим проводником, который называется заземлителем. Такой заземлитель может быть выполнен в виде одного или нескольких металлических элементов, расположенных друг от друга на определенном расстоянии.

Чем больше расстояние между заземлителями, тем больше площадь, и соответственно выше сопротивление заземления, что является основным его показателем.


Увеличить сопротивление заземления, можно несколькими способами:

  • Сделав расстояние между заземляющими электродами больше, увеличив тем самым рабочую площадь между ними;
  • Увеличив количество заземлителей и их длину;
  • Нагреванием грунта, и добавлением в него где будут заложены заземлители, соли.

Основная роль заземления — это обеспечения электробезопасности. Благодаря заземлению, люди использующие электроприборы, будут надёжно защищены от поражения электрическим током, а сами приборы более устойчивыми к повышенному напряжению и его чрезмерным скачкам.

Источник: zen.yandex.ru

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.


Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.


PE-проводник — это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

shema-razdeleniya-pen-provodnika-na-re-i-n

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

  • TN-C;
  • TN-S;
  • TNC-S;
  • TT.

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

sistema-tn-s

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

sistema-tn-c-s

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

sistema-tt

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Похожие статьи

Источник: odinelectric.ru

СОДЕРЖАНИЕ

Часть 1

1. Введение

2. Защитное заземление в сети c изолированной нейтралью

3. Заземляющее устройство

4. Напряжение шага. Напряжение прикосновения. Выравнивание потенциалов

5. Защитное заземление в сети с заземленной нейтралью (зануление)

6. В каких случаях требуется заземление

 

Часть 2

7. Сопротивления заземляющих устройств

8. Влияние характера грунта и его состояния на сопротивление растеканию заземлителей

9. Естественные заземлители и заземляющие контуры

10. Заземляющие проводники

 

Часть 3

11. Прокладка заземляющих проводников, соединения и присоединения

12. Пример расчета заземляющего устройства

13. Правильная эксплуатация — основа безопасности

14. Измерение сопротивления заземляющих устройств


1. ВВЕДЕНИЕ

Потребление электроэнергии находит все большее развитие в промышленности, на транспорте, в коммунальном хозяйстве, в быту и других областях.

Производство электроэнергии в Советском Союзе в 1958 г. составило 233 млрд. квт·ч. Для сравнения напомним, что в дореволюционной России в 1913 г. производство электроэнергии составляло всего 1,94 млрд. квт·ч. Таким образом, производство электроэнергии с 1913 по 1958 г. возросло в 120 раз. В 1956 г. расход электроэнергии на одного рабочего составлял 8498 квт·ч. Считается, что мировое потребление электроэнергии возрастает более чем в 2 раза через каждые 10 лет. У нас в Советском Союзе темпы роста значительно выше.

При таком широком применении электроэнергии особое значение имеет обеспечение безопасности при эксплуатации электрических установок и пользовании электрическими приемниками — двигателями, осветительными приборами, всякого рода аппаратами и другими устройствами.

Несоблюдение правил устройства электрических установок, правил их эксплуатации, неосторожное обращение с электроприемниками, прикосновение к токоведущим частям, дефекты конструкции электроприемников — все это может привести к тяжелым поражениям от электрического тока (ожоги, ослепление от дуги и т. п.) и даже к смертельным случаям.

Поражения и травмы от электрического тока могут произойти под воздействием как высоких, так и низких напряжений. Большинство несчастных случаев происходит при напряжениях 380 и 220 в (вольт), как наиболее распространенных и с которыми часто имеют дело люди, не имеющие специальной подготовки.

Таким образом, осторожное обращение с электрическими устройствами требуется всегда. При работе в особо неблагоприятных условиях, например вблизи металлических масс, в целях обеспечения безопасности для переносных электроприемников применяются пониженные напряжения 36 и 12 с.

Один и тот же ток воздействует на разных людей в разной степени, а также различно на одного и того же человека в зависимости от его состояния в момент поражения. Во всяком случае токи порядка 30-40 ма (миллиампер) уже могут быть опасными для жизни (имели место случаи смертельных поражений и при более низких значениях тока) и вызывать паралич дыхания и нарушения деятельности сердца.

В ряде случаев поражения электрическим током может наступить так называемая «мнимая смерть» — состояние, когда в течение некоторого времени после поражения путем применения искусственного дыхания может быть восстановлена деятельность сердца и легких.

Одна из причин поражения электрическим током — повреждение изоляции электроприемников. При таком повреждении прикосновение к металлическому корпусу электроприемника равносильно прикосновению к голым токоведущим частям.

Чтобы защитить людей от поражения электрическим током при повреждениях изоляции, корпусы электрических приемников заземляются.

Рассмотрим, в чем состоит смысл такого заземления, которое называется защитным, и как его нужно устраивать, чтобы обеспечить необходимую безопасность. При этом будем рассматривать отдельно сети с изолированной и заземленной нейтралью, так как условия устройства заземлений в них различны.

У нас в Советском Союзе сети 3, 6, 10 и 35 кв (киловольт, т. е. тысяч вольт) работают с изолированной ней

тралью трансформаторов и генераторов. Сети 380 и 220 в могут работать как с изолированной, так и с заземленной нейтралью, однако наиболее распространенные четырехпроводные сети 380/220 и 220/127 в в соответствии с требованиями «Правил устройства электро-установок» должны иметь заземленную нейтраль.

2. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

На рис. 1 изображена схема сети трехфазного тока, питаемой от трансформатора с изолированной нейтралью. Для простоты на рисунке показана только одна вторичная обмотка трансформатора. Она изображена соединенной в звезду, однако все сказанное ниже относится также к случаю соединения обмотки в треугольник.

Как бы хороша ни была в целом изоляция токоведущих частей сети от земли, все же проводники сети имеют связь с землей. Связь эта— двоякого рода.

Заземление это

Рис. 1. Схима сети трехфазного тока с изолированной нейтралью.

1. Изоляция токоведущих частей имеет определенное сопротивление по отношению к земле, его обычно выражают в мегомах (Мом или 1 000 000 ом). Это означает, что через изоляцию проводников и землю протекает ток некоторой величины. При хорошей изоляции этот ток весьма мал.

Допустим, например, что между проводником одной фазы сети и землей напряжение равно 220 в, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 Мом. Тогда ток на землю этой фазы равен Заземление это а (а — ампер) или 0,44 ма. Этот ток называется током утечки.

Условно для наглядности на схеме сопротивления изоляции трех фаз rА, rB, rC изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. На самом деле токи утечки в исправной сети раслределяются равномерно по всей длине проводов; в каждом участке сети они замыкаются через землю.

2. Связь второго рода образуется емкостью между проводниками сети и землей. Как это понимать?

Каждый проводник сети и землю можно представить себе как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля—обкладки конденсатора, а воздух между ними-—диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и металлическая оболочка, соединенная с землей, а диэлектриком— изоляция между жилами. При переменном на-

Заземление это

Рис. 2. Замыкание на землю в сети с изолированной нейтралью.

пряжении изменение зарядов конденсаторов вызывает возникновение соответствующих переменных токов. Эти так называемые емкостные токи в исправной сета также равномерно распределены по длине проводов и в каждом отдельном участке замыкаются через землю. На рис. 1 сопротивления емкостей трех фаз на землю хA, хB и хC также условно показаны присоединенными каждое к одной точке сети.

Посмотрим, что же произойдет в изображенной на рис. 1 сети, если в одной из фаз (например, A) произойдет замыкание на землю, т. е. провод этой фазы будет соединен с землей через относительно малое сопротивление.

Такой случай изображен на рис. 2. Поскольку сопротивление между проводом фазы А и землей мало, то токи утечки и емкостные токи на землю этой фазы заменяются током замыкания на землю. Теперь под воздействием линейного напряжения сети Uл через место замыкания и землю будут протекать токи утечки и емкостные токи двух исправных фаз, как показано стрелками на рисунке.

Замыкание, показанное на рис. 2, называется одно-фазным замыканием на землю, а возникающий при этом аварийным ток — током однофазного замыкания.

Представим себе теперь, что однофазное замыкание вследствие повреждения изоляции произошло не непосредственно на землю, а в каком-нибудь электроприемнике — электродвигателе, аппарате, либо на конструкцию, по которой проложены электрические провода, на ограждение электропроводок и т. д. Такое замыкание называется замыканием на корпус.

Заземление это

Рис. 3. Замыкание на корпус в сети с изолированной нейтралью при отсутствии заземления.

Из сказанного следует, что для протекания тока через землю необходимо наличие замкнутой цепи (иногда представляют себе, что ток «уходит в землю» — это неверно).

Чтобы предотвратить поражения людей при замыканиях на корпус, все корпуса электроприемников, металлические конструкции и т. п., которые могут оказаться из-за повреждения изоляции под опасным напряжением, должны быть заземлены (рис. 4).

Как видно из рис. 4, при наличии заземления человек, прикасающийся к заземленному корпусу, оказавшемуся под напряжением, присоединен параллельно к цепи замыкания на участке между корпусом и землей.

Назначение защитного заземления заключается в том, чтобы создать между корпусом защищаемого устройства и землей электрическое соединение достаточно малого сопротивления, для того чтобы в случае замыкания на корпус прикосновение к последнему человека (параллельное присоединение) не могло вызвать через его тело ток такой величины, который угрожал бы его жизни или здоровью.

Заземление это

Рис. 4. Заземление электроприемника.

Заземление это

Рис. 5. Прикосновение к токоведущему проводнику при наличии в сети "земли".

Отсюда следует, что для обеспечения безопасности пригодно не всякое заземление, а только имеющее достаточно малое сопротивление.

Если заземление выполнено в соответствии с требованиями «Правил», т. е. с достаточно малым сопротивлением (об этом см. ниже в § 7), то непосредственной опасности при прикосновении к заземленному корпусу не возникает.

В сетях с изолированной нейтралью отключение поврежденного участка сети при однофазных замыканиях на землю или корпус (т. е. при наличии «земли» в сети) обычно не применяется, и установка при наличии такого замыкания (о чем сигнализируют приборы контроля изоляции) может продолжать работать. Однако сеть с наличием в ней однофазного замыкания все же должна рассматриваться как находящаяся в аварийном состоянии, так как общие условия безопасности при таком состоянии сети резко ухудшаются. Так, наличие «земли» увеличивает опасность поражения электрическим током, даже при исправном заземлении. Это видно, например, из рис. 5, где показано протекание тока поражения при случайном прикосновении к токоведущему проводу и не устраненной «земле» в сети.

Помимо того, напряжения неповрежденных фаз по отношению к земле возрастают до линейных и способствуют возникновению второго замыкания на землю в другой фазе.Образовавшееся двойное замыкание на землю представляет собой для человека более серьезную опасность по сравнению с однофазным замыканием.

Поэтому однофазное замыкание на землю и на корпус должно устраняться в кратчайший срок.

В некоторых случаях для обеспечения безопасности приходится применять, кроме заземления, еще дополнительные меры (быстродействующее отключение, выравнивание потенциалов). Так, при особо неблагоприятных условиях (например, в сырых местах — шахтах, на торфоразработках и-т. п.), а также на линиях, питающих особо ценные агрегаты, применяется специальная быстродействующая защита, отключающая аварийный участок при замыканиях на корпус (и непосредственно на землю).

Мы рассмотрели выше назначение защитных заземлений. В электрических установках имеют место и другие заземления, которые необходимы по условиям эксплуатации, например заземления разрядников, заземления нейтралей трансформаторов и др. В отличие от защитных они называются рабочими заземлениями.

3. ЗАЗЕМЛЯЮЩЕЕ УСТРОЙСТВО

Соединение заземляемых частей электроустановки с землей осуществляется при помощи заземлителей и заземляющих проводников.

Заземлители представляют собой металлические проводники (трубы, уголки, полосы), располагаемые в земле в определенных количестве и порядке.

Допустим, что в земле в точке О (рис. 6) находится за-землитель 3 в виде уголка и через этот заземлитель протекает ток однофазного замыкания на землю. Зададимся целью определить напряжения по отношению к земле на разных расстояниях от заземлителя. Если замерить напряжения между точками земли, находящимися на разных расстояниях в любом направлении от заземлителя, и точками нулевого потенциала, затем построить график зависимости этих напряжений от расстояния до заземлителя, то получится кривая, изображенная на рис. 6.

Из этой кривой видно, что напряжения по отношению к земле всех точек, расположенных от заземлителя на расстояниях, больших 20 м (точка М), близки к нулю.

Заземление это

Рис. 6. Напряжение по отношению к земле на различных расстояниях от заземлителя и напряжение шага.

ми, еще более удаленными, не обнаруживается сколько-нибудь ощутимо. Сопротивление, которое оказывает току земля на участке растекания, называется сопротивлением растеканию заземлителя. Его часто сокращенно называют сопротивлением заземлителя (не следует смешивать с сопротивлением заземлителя как проводника).

Заземляющие проводники соединяют заземляемые части электроустановок с заземлителями. В целом заземляющие проводники и заземлители образуют заземляющее устройство.

Сопротивление заземляющего устройства состоит, таким образом, из:

1) сопротивления растеканию заземлителя, в которое входит также сопротивление контакта между заземлителем и землей;

сопротивление контакта составляет незначительную часть сопротивления растеканию заземлителя; даже наличие на стальном заземлителе слоя окиси (ржавчины) не оказывает существенного влияния на сопротивление растеканию заземлителя;

2) сопротивления заземляющей сети, включающего в себя заземляющие проводники; в большинстве случаев оно составляет незначительную долю общего сопротивления заземляющего устройства.

Если обозначить сопротивление заземляющего устройства через RЗ (ом), а ток замыкания на корпус через IЗ (a), то напряжение корпуса по отношению к земле будет равно произведению IЗRЗ=UЗ(в).

Если, например, ток замыкания на землю в сети равен 15 а, а сопротивление заземляющего устройства 4 ом, то напряжение по отношению к земле UЗ равно 15·4 = 60 в.

4. НАПРЯЖЕНИЕ ШАГА. НАПРЯЖЕНИЕ ПРИКОСНОВЕНИЯ. ВЫРАВНИВАНИЕ ПОТЕНЦИАЛОВ

Кривая на рис. 6 показывает, что напряжения по отношению к земле вблизи заземлителя при протекании через него тока замыкания на землю определяются точками А, Б, В, Г и т. д., а падения напряжения между этими точками — отрезками АД, БЕ, ВЖ и т. д. Таким образом, если разбить линию ОМ на участки длиной 0,8 м, что соответствует длине шага человека, то ноги его могут оказаться в точках разного потенциала. Чем ближе к заземлителю, тем напряжения между этими точками будут больше (АД > БЕ и БЕ > ВЖ) . Через тело человека может в таких случаях протекать ток, величина которого может оказаться опасной.

Напряжение, воздействию которого в подобном случае может подвергаться человек, называется напряжением шага (Uш). На рис. 6 справа показано в увеличенном масштабе напряжение шага, когда ноги человека захватывают участок, соответствующий точкам В и Г кривой.

Напряжение шага может возникнуть также при падении находящегося под напряжением провода на землю, вблизи него. Опасны такие случаи и для крупных животных—лошадей, коров, тем более (помимо других причин), что шаг их значительно больше шага человека. Поэтому при падении провода на землю необходимо отключать аварийную линию (если она не отключилась автоматически защитой), а до того не допускать приближения людей и животных к месту падения провода.

Прикасаясь к корпусу электроприемника с поврежденной изоляцией (рис. 4), человек может оказаться либо под полным напряжением корпуса по отношению к земле, т. е. напряжением IЗRЗ, либо под частью этого напряжения.

То напряжение, под которым оказывается человек в цепи замыкания, называется напряжением прикосновения Uпр

Напряжение прикосновения, близкое или равное полному напряжению корпуса по отношению к земле, может иметь место, например, если человек, прикасаясь к корпусу с поврежденной изоляцией, стоит непосредственно на земле в сырой или подбитой гвоздями обуви или, еще хуже, вовсе без обуви.

Степень выравнивания потенциалов зависит от насыщенности здания металлическими конструкциями и оборудованием, от конструкции здания; в железобетонных зданиях, имеющих также перекрытия из железобетона, происходит, например, выравнивание потенциалов, при котором напряжение прикосновения снижается в 2 и более раз. С этой точки зрения металлический пол, будучи связан с электрооборудованием и заземляющим устройством, дал бы наилучшее выравнивание потенциалов (но при этом не надо забывать, что хорошо проводящий и связанный с землей пол создает, с другой стороны, большую опасность при случайном прикосновении к токоведущим частям, находящимся под напряжением, так как при этом в цепи замыкания отсутствует благоприятный фактор — сопротивление пола).

Из сказанного следует, что фактор выравнивания потенциалов имеет первостепенное значение в обеспечении безопасности. В некоторых случаях добиться хороших условий безопасности только одним заземлением оборудования без выравнивания потенциалов было бы невозможно. Это относится, например, к установкам 110 кв, в которых токи однофазного замыкания достигают нескольких тысяч ампер.

5. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ В СЕТИ С ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ (ЗАНУЛЕНИЕ)

Как было указано ранее, в четырехпроводных сетях 380/220 и 220/127 в в соответствии с требованиями «Правил» применяется заземление нейтралей (нулевых точек) трансформаторов или генераторов. Заземление в таких сетях имеет ряд особенностей.

Рассмотрим вначале трехпроводную сеть 380 или 220 в с заземленной нейтралью. Такая сеть изображена на рис. 7. Если человек прикоснется к проводнику этой сети, то под воздействием фазного напряжения Uф образуется цепь поражения, которая замыкается через тело человека, обувь, пол, землю, заземление нейтрали (см. стрелки). Та же цепь образуется, если человек прикоснется к корпусу с поврежденной изоляцией. Однако выполнить заземление в такой сети таким же образом, как и при изолированной нейтрали, нельзя.

Чтобы это понять, допустим, что такое заземление все же выполнено (рис. 8) и на установке произошло замыкание на корпус двигателя. Ток замыкания будет протекать через два заземлителя — электроприемника RзRв и нейтрали (см. стрелки).

По известному закону электротехники фазное напряжение сети Uф распределится между заземлителями Rз и R0 пропорционально их величинам, т. е. чем больше сопротивление заземлителя, тем больше будет падение напряжения в нем. Если, например, сопротивление R0=1 ом, Rз=4 ом, Uф=220 в, то падение напряжения распределится так:

на сопротивлении Rз будем иметь Заземление это в;

на сопротивлении R0 будем иметь Заземление это в;

Таким образом, между корпусом электродвигателя и землей возникает достаточно опасное напряжение. Человек,

Заземление это

Рис. 7. Прикосновение к проводнику в сети с заземленной нейтралью.

Заземление это

Рис. 8. Заземление электроприемника в сети с заземленной нейтралью.

прикоснувшийся к корпусу, может быть поражен электрическим током. Если будет иметь место обратное соотношение сопротивлений, т. е. R0 будет больше, чем Rз, опасное напряжение может возникнуть между землей и корпусами оборудования, установленного возле трансформатора и имеющими общее заземление с его нейтралью.

По указанной причине в установках с заземленной нейтралью напряжением 380 и 220 в применяется система заземления иного вида: все металлические корпуса и конструкции связываются электрически с заземленной нейтралью трансформатора через нулевой провод сети или специальный зануляющий проводник (рис. 9). Благодаря этому всякое замыканйе на корпус превращается в короткое замыкание, и аварийный участок отключается предохранителем или автоматом. Такая система заземления называется занулением.

Заземление это

Рис. 9. Зануление электроприемника в сети с заземленной нейтралью.

Таким образом, обеспечение безопасности при запулении достигается путем отключения участка сети, в котором произошло замыкание на корпус.

В дальнейшем будем применять общий термин «заземление», а термин «зануленне» будем применять, если речь идет об особенностях этой системы.

Так же как не всякое заземление обеспечивает безопасность, не всякое зануление пригодно для обеспечения безопасности; зануление должно быть выполнено так, чтобы ток короткого замыкания в аварийном участке достигал значения, достаточного для расплавления плавкой вставки ближайшего предохранителя или отключения автомата. Для этого сопротивление цепи короткого замыкания должно быть достаточно малым.

6. В КАКИХ СЛУЧАЯХ ТРЕБУЕТСЯ ЗАЗЕМЛЕНИЕ

В соответствии с требованиями «Правил» заземлять следует металлические нетоковедущие части электроустановок и оборудования во всех производственных помещениях и наружных установках, как-то:

а) корпуса электрических машин, трансформаторов, аппаратов, светильников и т. п.;

б) приводы электрических аппаратов;

в) вторичные обмотки измерительных трансформаторов и трансформаторов местного освещения 36 в и корпуса последних;

г) каркасы распределительных щитов, щитов управления, щитков и шкафов;

д) металлические и железобетонные конструкции подстанций и открытых распределительных устройств, металлические корпуса кабельных муфт, металлические оболочки кабелей и проводов, стальные трубы электропроводки, металлические и железобетонные опоры воздушных линий и т. п.

Не требуется специально заземлять:

а) арматуру подвесных и штыри опорных изоляторов, кронштейны и осветительную арматуру при установке их на деревянных опорах и деревянных конструкциях открытых подстанций (дерево рассматривается как изоляция); однако заземление выполняется, если это требуется по условиям защиты от атмосферных перенапряжений (грозозащиты):

б) оборудование, установленное на заземленных металлических конструкциях при наличии на опорных поверхностях надежного электрического контакта (зачистка);

п) корпуса электроизмерительных приборов, реле и т. п., установленные на щитах, щитках, в шкафах;

г) кабельные конструкции, по которым проложены кабели любых напряжений с металлическими оболочками, заземленными с обоих концов линии;

д) рельсовые пути, если они выходят за территорию электростанций, подстанций, распределительных устройств;

е) съемные или открывающиеся части на металлических заземленных каркасах и в камерах распределительных^ устройств, на ограждениях, в шкафах и т. п.;

ж) металлические конструкции в помещениях аккумуляторных батарей при напряжении до 220 в включительно.

Заземление металлических частей электроустановок вообще не требуется:

а) при номинальном напряжении 380 в и ниже переменного тока и 440 в и ниже постоянного тока в сухих производственных помещениях без повышенной и особой опасности.

Помещения с повышенной опасностью в соответствии с „Правилами“ характеризуются наличием одного из следующих условий:

а) сырости или проводящей пыли;

б) токопроводящих полов (металлических, земляных, железобетонных, кирпичных и т. п.);

в) высокой температуры;

г) возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой.

Помещения особо опасные характеризуются наличием одного из следующих условий:

а) особой сырости;

б) химически активной среды;

в) одновременного наличия двух или более условий повышенной опасности.

б) при номинальном напряжении сети ниже 127 в переменного тока и 110 в постоянного тока во всех помещениях (за исключением взрывоопасных; в последних заземление следует выполнять при любых напряжениях).

Источник: zandz.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.