Заземление металлоконструкций


В промышленности заземление используется давно, в жилом фонде оно стало использоваться относительно недавно. Правда, в правилах устройства электроустановок (ПУЭ) о заземлении написано немало. Здесь четко расписано, как должен проводиться заземляющий контур, какие элементы должны в нем использоваться, параметры заземляющих контуров и все остальное. Вот почему к этой системе защите от утечек тока необходимо относится со всей ответственность, имеется в виду монтаж, расчет и обслуживание. Итак, заземление (ПУЭ лежит в основе) определяет безопасность эксплуатации электрических сетей.

Заземление водопроводных труб

Термины заземляющей системы

Прежде чем переходить к рассмотрению правил монтажа заземления, необходимо обозначить термины, которыми пользуются специалисты, проводя данный тип работ.

  • Во-первых, что такое заземляющее устройство? Это конструкция, состоящая из заземлителя и заземляющих проводников.
  • Во-вторых, что такое заземлитель? Это проводник из металла, который непосредственно соединяется с землей.
  • В-третьих, что такое заземляющие проводники? Это система металлических проводников, которые соединяют заземлитель с электрическим оборудованием.

Обратите внимание, что заземление электроустановки искусственным способом называется преднамеренным. Есть такое понятие, как сопротивление заземляющего устройства. Это, по сути, сумма сопротивлений заземлителя и заземляющих проводников. Если говорить о сопротивлении самого заземлителя, то это напряжение относительно земли к проходящему по металлическому проводнику току.

Заземлители искусственные и естественные

С терминами разобрались, теперь можно рассмотреть, какие проводники можно использовать в качестве заземлителя. По заголовку раздела становится понятным, что они могут быть или естественными, или искусственными.

К естественным относятся металлические системы подземных трубопроводов (водопровод, канализация, скважины) или металлические конструкции зданий и сооружений, глубоко входящие в землю.

Внимание! Трубопроводы, проложенные под землей, могут быть использованы в качестве естественного заземления лишь в том случае, если стыки труб были соединены газо- или электросваркой. Использовать в данных целях нефте-, газо- и бензопроводы запрещается. В ПУЭ это четко обозначено.


Что касается искусственных заземлителей, то для этого чаще всего используются металлические профили, которые вбиваются в землю на глубину от 2,5 до 3 м. Чаще всего для этих целей применяются стальные уголки с шириною полки 50 мм, арматуру или трубы. Обязательное условие – это оставить над поверхностью земли 10 см торчащего профиля. Заземлителей должно быть или четыре, или три, они устанавливаются или квадратом, или треугольником. Торчащие концы обвязываются круглой арматурой диаметром 10-16 мм или стальной полосой шириною 30 мм. Все стыки производятся только электросваркой.

Установка контуров заземления.

Показатели сопротивления

Показатели сопротивления очень важны, когда идет речь о сетях с разным напряжением. Это четко зафиксировано в ПУЭ.

  • В электрических установках до 1000 вольт сопротивление должно составлять не больше 4 Ом.
  • Выше 1000 вольт – сопротивление не более 0,5 Ом.
  • Если в сети используются установки и больше и меньше 1000 вольт, то за расчетный показатель берется наименьший.

Правила монтажа

Внимание! Все соединения заземляющей системы производятся только сваркой, где два элемента или участка соединяются внахлест. Качество такого соединения проверятся ударом килограммового молотка. Сварные стыки обязательно надо обработать лаком на основе битума.


Теперь, что касается проводки заземляющих проводников. Их можно проводить по бетонным и кирпичным конструкциям, как в горизонтальной плоскости, так и в вертикальной. Крепление к конструкциям производится дюбелями, между которыми можно оставлять расстояние:

  • на прямолинейных участках в диапазоне 600-1000 мм;
  • на изгибах и поворотах не более 100 мм.

Расстояние от напольного основание до места крепежа должно составлять 400-600 мм. Если заземляющая система проводников будет прокладываться во влажных помещениях, то под них необходимо будет уложить подкладки толщиною не меньше 10 мм.

Монтаж заземления

Правила заземления трубопроводов

Заземление трубопроводов – мероприятие обязательное, закрепленное в ПУЭ. Именно таким образом можно повысить безопасность их эксплуатации, ведь в трубных системах скапливается статическое электричество, плюс всегда есть вероятность попадания молнии в трубы. Требования правил устройства электроустановок обеспечить заземлением не только трубопроводы внешние, но и внутренние (технологические и коммуникационные).

В ПУЭ четко регламентировано, как должно проводиться заземление трубопроводов.

  • Во-первых, система труб должна быть единой непрерывной сетью, соединяемой в единый контур.
  • Во-вторых, к заземляющей системе трубопроводы должны быть подключены минимум в двух точках.

Общий вид электрода заземления

Что касается первой позиции, то это не значит, что сама трубопроводная система должна быть непрерывной. Здесь будет достаточно обеспечить соединение участков или отдельных трубопроводов в одну единую сеть, для чего чаще всего используются так называемые межфланцевые перемычки. По сути, это обычный медный провод марки или ПВЗ, или ПуГВ. Крепление перемычек к трубопроводу обеспечивается сваркой, болтовым соединением или устанавливается хомут заземления для труб.

Что касается второй позиции, то специалисты рекомендуют не разбрасываться по всей линии технологической цепочки, просто провести соединение в начале и конце контура.

onlineelektrik.ru

#G0

КОНЦЕРН "ЭЛЕКТРОМОНТАЖ"

ИНСТРУКЦИЯ ПО УСТРОЙСТВУ СЕТЕЙ ЗАЗЕМЛЕНИЯ И МОЛНИЕЗАЩИТЕ

Дата введения

УТВЕРЖДЕНА Техническим директором концерна “Электромонтаж” 21 июля 1992 г.


Авторы-составители:

Рудольф Николаевич Карякин

Лидия Константиновна Коновалова

Валерий Николаевич Солнцев

ВЗАМЕН СН 102-76

Инструкция распространяется на производство работ по устройству сетей заземления и молниезащите в электроустановках переменного и постоянного тока, за исключением специальных установок. Для инженерно-технических работников и квалифицированных рабочих электромонтажных организаций.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Настоящая Инструкция разработана в развитие основных положений #M12ГОСТ 12.1.030-81#S "Электробезопасность, Защитное заземление, зануление"; Правил устройства электроустановок (М.: "Энергоатомиздат", 1985)Заземление металлоконструкций; РД 34.21.122.87 "Инструкция по устройству молниезащиты зданий и сооружений" и #M12СНиП 3.05.06-85#S "Электротехнические устройства".

____________________

Заземление металлоконструкций Настоящую Инструкцию следует применить с учетом изменений, внесенных в #M12 ПУЭ#S письмами Главэнергонадзора Минэнерго СССР N 94-6/34-ЭT от 01.01.01 г. и № 94-58/804 от 01.01.01 г.

Требования Инструкции должны выполняться при производстве работ по устройству сетей заземления и занулении в злектроустановках как переменного, так и постоянного тока, за исключением подземных электроустановок предприятий угольной и горнорудной промышленности, электрифицированного транспорта, медицинских и других специальных электроустановок.


Инструкция предназначена для инженерно-технических работников и квалифицированных рабочих монтажных организаций.

1.2. Для выполнения работ по устройству сетей заземления и зануления в электроустановках монтажной организации должна быть передана проектная документация в объеме, установленном СНиП 1.02.01.85 "Инструкция о составе, порядке разработки, согласования и утверждения проектно-сметной документации на строительство предприятий, зданий и сооружений" и ВСН 381-85 "Инструкция о составе и оформлении электротехнической рабочей документации для промышленных сооружений".

1.3. Заземление или зануление электроустановок в зависимости от напряжений следует выполнять в соответствии с табл. 1

Таблица 1

#G0Электроустановка

Номинальное напряжение, В

Переменный ток

Постоянный ток

Взрывоопасные установки

Все напряжения

Все напряжения

Наружные установки

Выше 42

Выше 110

Электроустановки в помещениях особо опасных и с повышенной опасностью

То же

То же

Электросварочные установки (см. гл. 7.6 ПЭУ)

"

"

Все прочие установки

380 и выше

440 и выше


1.4. В электроустановках выше 1 кВ и в электроустановках до 1 кВ с изолированной нейтралью должно быть выполнено заземление.

1.5. В электроустановках до 1 кВ с заземленной нейтралью должно быть выполнено зануление; заземления при этом выполнять не требуется.

Не допускается применение в таких электроустановках заземления потенциально опасных частей без их зануления, за исключением участков сети, где применено защитное отключение.

1.6. Выравнивание и уравнивание потенциалов следует применять в качестве дополнительной меры с целью снижения напряжения прикосновения в электроустановках, в которых применяется заземление и зануление.

1.7. Части электроустановок, технологических агрегатов, конструкции, подлежащие заземлению и занулению, приведены ниже:

1. Строительные, производственные, технологические конструкции:

а) конструкции строительного и производственного назначения;

б) стационарно проложенные трубопроводы всех назначений;

и) металлические корпуса технологического оборудования;

г) подкрановые рельсовые пути и т. п.

2. Потенциально опасные металлические части электротехнического оборудования и изделий:


a) корпуса электрических машин, трансформаторов, аппаратов, светильников, соединителей штепсельных;

б) приводы электрических аппаратов;

в) вторичные обмотки измерительных трансформаторов;

г) оболочки, каркасы, конструкции комплектных устройств, в том числе съемные и открывающиеся части, если на них установлено электрооборудование напряжением выше 42 В переменного тока или 110 В постоянного тока;

д) оболочки и броня кабелей, проводов (включая трубчатые), в том числе кабелей напряжением 42 В переменного тока и 110 В постоянного тока, если они проложены на общих металлических конструкциях с кабелями более высокого напряжения;

е) кабельные муфты, соединительные коробки и т. п.

3. Потенциально опасные металлические опорные, ограждающие и другие конструкции, находящиеся в непосредственном соприкосновении с частями электротехнического оборудования:

а) рамы электрических машин, трансформаторов;

б) основания комплектных устройств;

в) станины станков, машин, механизмов;

г) кабельные конструкции, лотки, короба;

д) ограждения отдельных частей электроустановок;

е) протяжные и ответвительные коробки, оболочки изоляционных трубок, металлорукава;

ж) опорные конструкции шинопроводов, струны, тросы, стальные полосы, металлические трубы электропроводок и т. п.

4. Потенциально опасные части передвижных и переносных установок.


5. Потенциально опасные части движущихся частей станков, машин и механизмов.

1.8. Части электроустановок, технологических агрегатов и конструкций, не требующие преднамеренного заземления или зануления, приведены ниже:

1. Корпуса электрооборудования, в том числе корпуса электродвигателей, установленных на заземленных (зануленных) основаниях, при условии обеспечения надежного электрического контакта с заземленными или зануленными основаниями.

2. Корпуса аппаратов и электромонтажных конструкций, установленных на заземленных (зануленных) металлических конструкциях, распределительных устройствах, щитах, шкафах, щитках, станинах станков, машин и механизмов, если они не находятся во взрывоопасных зонах и помещениях особо сырых и с химически активной средойЗаземление металлоконструкций.

____________________

Заземление металлоконструкцийУказанные конструкции не могут быть использованы для заземления или зануления установленного на них другого электрооборудования.

3. Арматура изоляторов всех типов, оттяжки, кронштейны и осветительная арматура, установленные на деревянных конструкциях (опорах) при отсутствии на этих конструкциях заземленных или зануленных металлических оболочек кабелей, неизолированных защитных проводников и т. д., если заземление не требуется по условиям защиты от атмосферных перенапряжений.


4. Металлические скобы, закрепы, отрезки труб механической защиты кабелей в местах их прохода через стены и перекрытия; отрезки стальных труб электропроводки; отрезки стальной полосы при прокладке по ним отдельных кабелей; протяжные и ответвительные коробки, а также другие имеющие длину стороны или диаметр основания не более 100 мм подобные детали электропроводок, выполняемых кабелями или изолированными проводами, прокладываемыми по стенам, перекрытиям и другим элементам строений.

5. Съемные и открывающиеся части металлических оболочек, каркасов, конструкций комплектных устройств и т. п., если они не расположены во взрывоопасных зонах, на этих частях не установлено электрооборудование или напряжение установленного оборудования не превышает 42 В переменного тока или 110 В постоянного тока.

6. Корпуса электроприемников с двойной изоляцией.

1.9. С целью уравнивания потенциалов в тех помещениях и наружных установках, в которых применяется заземление и зануление, строительные и производственные конструкции, стационарно проложенные трубопроводы всех назначений, металлические корпуса технологического оборудования, подкрановые и железнодорожные рельсовые пути и т. п. должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочленениях являются достаточными.

2. ЗАЗЕМЛИТЕЛИ

2.1. Естественные заземлители

2.1.1. В качестве естественных заземлителей рекомендуется использовать сооружения, указанные в табл. 2.

Таблица 2

#G0Естественные заземлители

Пояснения, требования к использованию

Железобетонные фундаменты зданий, в том числе имеющие защитные гидроизоляционные покрытия в неагрессивных и слабоагрессивных средах

Для соединения арматуры железобетонных колонн с арматурой фундамента необходимо использовать перемычку диаметром не менее 12 мм (рис. 1).

Соединение металлических колонн с арматурой фундамента следует выполнять по рис. 2.

Необходимость приварки анкерных болтов стальных колонн (арматурных стержней железобетонных колонн) к арматурным стержням железобетонных фундаментов определяется допустимой плотностью тока в приарматурном слое бетона в соответствии с ПЭУ

Железобетонные фундаменты технологических, кабельных, совмещенных эстакад в неагрессивных и слабоагрессивных грунтах во всех климатических зонах СССР

Металлическое соединение арматуры железобетонных опор и фундаментов не является обязательным

Кабельные тоннели из сборного железобетона при условии установки в них закладных деталей, приваренных к арматуре тоннеля, и последующего соединения закладных деталей стальными перемычками

Допускается использовать в качестве дополнительных естественных заземлителей, если сопротивление растеканию железобетонных фундаментов производственного здания или напряжение прикосновения превышает нормы, установленные ПЭУ

Рельсы электрифицированных железных дорог на станциях и перегонах, а также рельсы подъездных путей тяговых подстанций переменного тока

Заземляющие проводники должны присоединяться к рельсам только механическим способом без применения сварки (рис. 3).

Рельсы кранового пути при установке крана на открытом воздухе. Стыки рельсов должны быть надежно соединены сваркой, приваркой перемычек

Рельсы должны быть присоединены к дополнительному заземлителю, располагаемому вблизи крана

Обсадные трубы скважин

Заземлители опор воздушных линий электропередачи, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса линии, если трос не изолирован от опор линии

Металлические шпунты гидротехнических сооружений, водоводы, затворы и т. п.

Заземлители повторных заземлений нулевых проводников воздушных линий напряжением до 1 кВ в случае использования не менее двух воздушных линий

Проложенные в земле металлические трубопроводы, кроме трубопроводов канализации и центрального отопления.

Запрещается применять в качестве естественных заземлителей чугунные трубопроводы и временные трубопроводы строительных площадок

Если на трубопроводах, используемых в качестве протяженных заземлителей, установлены задвижки, водомеры или болтовые фланцевые соединения, то в этих местах следует смонтировать обходные перемычки из полосовой стали сечением не менее 100 ммЗаземление металлоконструкций. Перемычки приваривают непосредственно к трубам или хомутам, установленным на трубопроводе.

Свинцовые оболочки кабелей, проложенных в земле.

Алюминиевые оболочки кабелей не допускается использовать в качестве заземлителей

Оболочки кабелей могут служить единственными заземлителями при числе кабелей не менее двух

Заземление металлоконструкций

Рис. 1. Соединение арматуры железобетонных конструкций:

1 — молниеприемная сетка; 2 — токоотвод; 3 — арматура колонны;

4 — заземляющая перемычка; 5 — арматура фундамента

Заземление металлоконструкций

Рис. 2. Соединение металлической колонны с арматурой железобетонного фундамента:

1 — арматура подошвы; 2 — арматура фундамента; 3 — фундамент; 4 — фундаментные болты (не менее двух), соединенные с арматурой фундамента; 5 — пластины для приварки проводников заземления; 6 — стальная колонна

* При соединении металлической колонны с арматурой железобетонного фундамента необходимо учитывать следующее:

а) фундаментные болты (не менее двух) должны быть соединены с арматурой подколонника сваркой;

б) соединение арматуры подколонника с арматурой подошвы должно быть выполнено сваркой;

в) если пространственный каркас подколонника не пересекается с арматурными сетками подошвы фундамента, то его следует нарастить в двух местах с помощью отдельных арматурных стержней и соединить их сваркой с арматурными сетками;

г) если подошва фундамента не армируется, то достаточно соединить сваркой арматуру подколонника и фундаментные болты;

д) все стержни каркаса арматуры фундамента должны быть соединены между собой сваркой;

е) пластины размером 50х100 должны иметь толщину более 5 мм для приварки проводников заземления. Расстояние от пластины до уровня чистого пола должно быть не более 500 мм. Сварной шов выполняют по ширине пластины с двух сторон.

Заземление металлоконструкций

Рис. 3. Присоединение к тяговому рельсу проводников защитного заземления:

1 — провод заземления; 2 — зажим заземления; 3 — крюковой болт

2.1.2. Естественные заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры воздушных линий электропередачи (ВЛ), повторное заземление нулевого проводника и металлические оболочки кабелей.

2.1.3. В случае использования естественных заземлителей (особенно протяженных) при выборе мест присоединения к ним защитных проводников необходимо учитывать возможность разъединения заземлителя, например, при ремонтных работах.

2.2. Искусствениые заземлители

2.2.1. При невозможности использования естественных заземлителей, а также в случаях, когда токовые нагрузки на естественные заземлители превышают допустимые (см. гл. 1.7 #M12 ПУЭ#S) или естественные заземлители не обеспечивают безопасных значений напряжения прикосновения по #M12ГОСТ 12.1.038-82#S, в дополнение к естественным заземлителям необходимо сооружать искусственные стальные вертикальные и горизонтальные заземлители. Искуственные заземлители не должны иметь окраски.

2.2.2. Вертикальные заземлители приведены на рис.4. Длина вертикальных электродов определяется проектом, но не должка быть менее 1 м; верхний конец вертикальных заземлителей должен быть заглублен, как правило, на 0,5 — 0,7 м.

2.2.3. Горизонтальные заземлители используют для связи вертикальных заземлителей или в качестве самостоятельных заземлителей. Глубина прокладки горизонтальных заземлителей — не менее 0,5 — 0,7 м. Меньшая глубина прокладки допускается в местах их присоединений к оборудованию, при вводе в здания, при пересечении с подземными сооружениями и в зонах многолетнемерзлых и скальных грунтов. Горизонтальные заземлители из полосовой стали следует укладывать на дно траншеи на ребро (рис. 5).

Заземление металлоконструкций

Рис. 4. Установка вертикальных заземлителей

2.2.4. Горизонтальные заземлители в местax пересечения с подземными сооружениями, железнодорожными путями и дорогами, а также в других местах возможных механических повреждений следует защищать металлическими или асбоцементными трубами.

Заземление металлоконструкций

Рис. 5. Прокладка горизонтальных заземлителей в траншее (а) и совместно с кабелем (б):

1 — полоса; 2 — мягкий грунт; 3 — грунт; 4 — силовые кабели; 5 — контрольные кабели

Прокладку заземлителей параллельно кабелям или трубопроводам следует выполнять на расстоянии не менее 0,3 м, а при пересечениях — не менее 0,1 м.

Траншеи для горизонтальных заземлителей должны быть заполнены сначала однородным грунтом, не содержащим щебня и строительного мусора, с утрамбовкой на глубину 200 мм, а затем — местным грунтом.

2.2.5. По условиям механической прочности размеры заземлителей должны быть следующие (не менее):

Диаметр круглых заземлителей, мм:

неоцинкованных……………………++++++.. 10

оцинкованных………………………+++++++. 6

Сечение прямоугольных заземлителей, ммЗаземление металлоконструкций

Толщина прямоугольных заземлителей, мм +…. 4

Толщина полок угловой стали, мм.++++…… 4

Толщина стенки труб, мм………..++++++. 3,5

2.2.6. В случае повышенной коррозионной опасности необходимы следующие мероприятия или их сочетания: использование стали круглого сечения; применение оцинкованных заземлителей; заполнение траншеи влажной утрамбованной глиной; увеличение сечения заземлителя; применение электротехнической защиты.

2.2.7. Сечение заземлителей с учетом коррозионной активности грунта следует выбирать по табл. 3.

2.2.8. Если диаметр горизонтального стального заземлителя меньше 12 мм, то необходимо при расположении этого заземлителя ближе, чем 0,3 м от железобетонного фундамента изолировать часть заземлителя на расстоянии в обе стороны от фундамента до 0,5 м.

2.2.9. Места входа в грунт заземлителей и места пересечения ими грунтов с различной воздухопроницаемостью рекомендуется гидроизолировать.

При пересечении трасс кабелей, имеющих свинцовую или алюминиевую оболочку, с трассой горизонтального стального заземлителя, если оба элемента прокладывают непосредственно в грунте, расстояние между заземлителем и кабелем в местах пересечения должно быть выбрано не менее 1 м.

При невозможности выполнения этого требования кабель, наоборот, рекомендуется прокладывать максимально близко к заземлителю, и его оболочку следует дополнительно соединить с заземлителем. Место соединения необходимо гидроизолировать (см. также п. 2.9).

Гидроизоляцию можно выполнить при помощи специальных коррозионных лент, полихлорвиниловых обмоток и тафтяных лент с пропиткой их горячим битумом. Верхняя точка наложения изоляции должна находиться на 10-15 см выше поверхности грунта, нижняя — на том же расстоянии ниже уровня поверхности или под слоем раздела грунтов в случае их неоднородности.

2.2.10. Общие требования к конструктивному выполнению заземлителей промышленных электроустановок в зависимости от принципа нормирования заземляющего устройства в соответствии с требованиями гл. 1.7 #MПУЭ#S изложены в приложении 1, условия выравнивания потенциалов вокруг промышленной установки или здания, в котором она размещена — в приложении 2, а условия заземления внешней ограды электроустановок — в приложении 3.

Таблица 3

#G0Вид заземлителя

Коррозионная активность грунта

Материал, рекомендуемый для изготовления заземлителя

Допустимые к применению заземлители

Стальные вертикальные заземлители

Весьма высокая

Заземление металлоконструкций

Сталь круглая диаметром 16 мм

Высокая

Заземление металлоконструкций

То же

Повышенная

Заземление металлоконструкций

Сталь круглая диаметром 12 мм для мягких грунтов и диаметром 16 мм для грунтов средней твердости

Уголок размером 63х63х6 мм

Средняя

Заземление металлоконструкций

То же

То же

Низкая

Заземление металлоконструкций

То же

Уголок размером 50х50х5 мм для мягких грунтов и 63х63х6 мм для грунтов средней твердости

Стальные горизонтальные заземлители

Весьма высокая

Заземление металлоконструкций

Сталь круглая диаметром 16 мм

Полоса 20х10, 30х10, 40х10 мм

Высокая

Заземление металлоконструкций

Сталь круглая диаметром 14 мм

Полоса 20х8, 30х8, 40х8 мм

Повышенная

Заземление металлоконструкций

Сталь круглая диаметром 12 мм

Полоса 20х6, 30х6, 40х6 мм

Средняя

Заземление металлоконструкций

Низкая

Заземление металлоконструкций

Сталь круглая диаметром 10 мм

Полоса 20х4, 30х4, 40х4 мм

2.2.11. При сооружении искусственных заземлителей в зонах с большим удельным сопротивлением земли Заземление металлоконструкцийнеобходимы следующие мероприятия:

1) установка вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление грунта снижается, а естественные углубленные заземлители, например скважины с металлическими обсадными трубами, отсутствуют;

Заземление металлоконструкций

Рис. 6. Соединение заземляющих проводников с вертикальными заземлителями;

1 — стержневой заземлитель; 2 — заземляющий проводник из круглой стали;

3 — заземляющий проводник из полосовой стали; 4 — заземлитель из угловой стали

2) установка выносных заземлителей, если вблизи от электроустановок есть участки с меньшим удельным сопротивлением грунта;

3) укладка в траншеи вокруг горизонтальных заземлителей в скальных грунтах влажного глинистого грунта или другого электропроводящего материала с последующей трамбовкой и засыпкой обратным грунтом до верха траншеи;

4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта;

Заземление металлоконструкций

Рис. 7. Соединение заземляющих проводников с горизонтальными заземлителями:

а) продольное соединение проводников из полосовой стали, б) — ответвление проводника из полосовой стали; в) — ответвление проводника из круглой стали; г) — продольное соединение проводников из полосовой и круглой стали; д) — продольное соединение проводников из круглой стали; е) — ответвление проводника из круглой стали; 1 — стальная полоса; 2 — сталь круглая

5) помещение заземлителей в непромерзающие водоемы и талые зоны;

6) использование обсадных труб скважин;

7) применение в дополнение к углубленным заземлителям горизонтальных заземлителей на глубине не менее 0,3 м, предназначенных для работы в летнее время при оттаивании поверхностного слоя земли;

8) создание искусственных талых зон путем покрытия грунта над заземлителем слоем торфа или другого теплоизоляционного материала на зимний период и раскрытия его на летний период, а также использование электроподогрева.

Мероприятия, изложенные в пп, относятся к районам многолетнемерзлых пород.

2.3. Монтаж заземлителей

2.3.1. До начала электромонтажных работ строительная организация должна закончить работы по планировке, рытью траншей или котлована.

Работы по соединению арматуры фундаментов с арматурой колонн должна выполнять строительная организация по строительному заданию к проекту, выданному проектировщиками-злектриками. Замоноличиваемые соединения внутри арматуры железобетонных изделий должны быть переданы строителями по акту скрытых работ заказчику.

2.3.2. Конструктивные узлы и транспортабельные части заземлителей должны быть изготовлены в мастерских электрозаготовок (МЭЗ).

2.3.3. Заземлители должны быть очищены от ржавчины, следов масла, и т. д. Погружение электродов в грунт следует выполнять с помощью специальных приспособлений.

2.3.4. Соединение частей заземлителя, а также соединение заземлителей с заземляющими проводниками следует выполнять при помощи сварки (рис. 6, 7).

Сварные швы, расположенные в земле, следует покрывать битумным лаком.

2.3.5. Присоединение заземляющих проводников к трубопроводам должно осуществляться либо сваркой, либо с помощью хомута (рис. 8).

Присоединение к трубопроводу заземляющего проводника с помощью хомута следует применять только в случае невозможности присоединения заземляющих проводников сваркой.

Заземление металлоконструкций

Рис. 8. Присоединение заземляющего проводника к трубопроводу сваркой (а-в) и с помощью хомута (г):

1 — заземляющий проводник из полосовой стали; 2 — трубопровод; 3 — заземляющий проводник на круглой стали; 4 — хомут

При установке хомутов контактная поверхность трубопровода должна быть зачищена до металлического блеска, а контактная поверхность хомутов — облужена. Хомуты должны быть изготовлены из полосовой стали шириной не менее 40 мм и толщиной 4 мм.; Присоединение заземляющего проводника к хомуту следует выполнять сваркой.

2.3.6. При работе на отдаленных объектах и линиях электропередачи рекомендуется соединение частей заземлителей с заземляющими проводниками выполнять термитной сваркой (рис. 9, 10).

2.3.7. После монтажа заземляющих устройств перед засыпкой траншеи должен быть составлен акт на скрытие работы по форме № 24 ВСН 123-90/MMCC СССР.

Заземление металлоконструкций

Рис. 9. Соединения стальных полос и стержней, выполненные термитной сваркой

Заземление металлоконструкций

Рис. 10. Ответвления стальных заземляющих проводников, выполненные термитной сваркой

3. ЗАЗЕМЛЯЮЩИЕ И НУЛЕВЫЕ ЗАЩИТНЫЕ ПРОВОДНИКИ

3.1. Общие требования

3.1.1. Защитные проводники могут быть естественными и искусственными, изолированными и неизолированными. Для защитных проводников следует применять сталь, алюминий и в обоснованных случаях медь.

Защитные проводники должны представлять собой непрерывную электрическую цепь на всем протяжении их использования.

В цепи защитных проводников не должно быть разъединяющих приспособлений и предохранителей, кроме случаев, предусмотренных в разд. 5.

В цепи нулевых рабочих проводников, если они одновременно служат для зануления, допускается применение выключателей, которые одновременно с нулевыми рабочими проводниками отключают все провода, находящиеся под напряжением.

Однополюсные выключатели следует устанавливать в фазных проводниках, а не в нулевом рабочем проводнике.

3.1.2. Неизолированные защитные проводники должны быть защищены от коррозии и химических воздействий. Если они проложены непосредственно в земле, их размеры, материал и условия защиты от коррозии должны отвечать требованиям, предъявляемым к заземлителям.

3.1.3. В качестве естественных заземляющих и нулевых защитных проводников рекомендуется применить проводники, конструкции и другие элементы, приведенные в табл. 4.

Таблица 4

#G0

№№

Естественные заземляющие и нулевые защитные проводники

Пояснения, требования к использованию

1

Стальные каркасы производственных зданий и сооружений (фермы, колонны и т. п.)

Для создания непрерывной цепи могут быть использованы сварные, болтовые и заклепочные соединения, обеспечивающие строительные требования. В тех местах, где такие соединения отсутствуют, должны быть предусмотрены стальные перемычки сечением не менее 100 ммЗаземление металлоконструкций, привариваемые к соединяемым конструкциям швом, общее сечение которого должно быть не менее 100 мЗаземление металлоконструкций. Соединение металлических колонн с арматурой фундамента показано на рис. 1

2

Железобетонные каркасы производственных зданий и сооружений (арматура колонн, ригелей, плит перекрытий и т. п.)

Не допускается использование железобетонных конструкций с предварительно напряженной проволочной и прядевой (канатной) арматурой, а также железобетонных конструкций с предварительно напряженной стержневой арматурой диаметром не менее 12 мм

Непрерывная электрическая цепь создается сваркой непосредственно закладных изделий примыкающих друг к другу железобетонных злементов либо при помощи перемычек сечением не менее 100 мЗаземление металлоконструкций, которые привариваются к закладным изделиям соединяемых железобетонных элементов. Закладные изделия должны быть приварены к арматуре так, чтобы общее сечение сварного шва было не менее 100 ммЗаземление металлоконструкций.

Соединение арматуры колонн с арматурой фундаментов должно выполняться перемычкой диаметром не менее 12 мм

3

Металлические конструкции производственного назначения (подкрановые пути, каркасы распределительных устройств, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т. п.).

Каркасы комплектных устройств можно использовать в качестве защитных проводников для электроприемников, которые получают питание от этих устройств

4

Стальные трубы электропроводок

В случае алюминиевых проводников и относительно небольших расстояний от подстанций до электроприемников могут быть использованы трубы всех диаметров.

В случае медных проводников, проложенных в тpy6ax, могут быть использованы водогазопроводные трубы диаметром не менее51 мм и злектрогазосварные трубы диаметром до 47 мм (из условия 50% проводимости)

5

Алюминиевые оболочки кабелей (только для тех электроприемников, которые получают питание по этим кабелям)

Разрешается использовать броню или металлическую оболочку кабеля для заземления или зануления струн, тросов и полос, по которым проложен этот кабель. Запрещается использовать для заземления или зануления кабельных конструкций, по которым проложены эти кабели

6

Металлические кожухи и опорные конструкции шинопроводов, металлические короба и лотки электропроводок

7

Металлические стационарные открыто проложенные трубопроводы всех назначений

Кроме трубопроводов горючих и взрывоопасных веществ и смесей, если они отделены от заземляемого оборудования

Примечания: 1. Приведенные проводники, конструкции и элементы по проводимости должны удовлетворять требованиям гл. 1.7 #M12 ПУЭ#S (кроме проводников, конструкций и элементов, расположенных во взрывоопасных установках, см. п. 4.8).

2. Использование металлических оболочек трубчатых проводов и изоляционных трубок, несущих тросов тросовой электропроводки, металлорукавов, ленточной брони и свинцовых оболочек проводов и кабелей в качестве заземляющих и нулевых защитных проводников запрещается. Использование свинцовых оболочек кабелей допускается в реконструируемых сетях в соответствии с требованиями гл. 1.7 #M12 ПУЭ#S.

3. Магистрали заземления и зануления, а также ответвления от них в закрытых помещениях и в наружных установках должны быть доступны для осмотра. Требование о доступности для осмотра не распространяется на нулевые жилы и оболочки кабелей, на арматуру железобетонных конструкций, на защитные проводники, проложенные в трубах и коробах, а также непосредственно в теле строительных конструкций (замоноличиваемые).

4. При использовании естественных защитных проводников следует учитывать возможность их отсоединения и демонтажа. При этом должна обеспечиваться целостность цепей заземления, зануления или уравнивания потенциалов оставшихся в работе потенциально опасных частей.

3.1.4. Неизолированные защитные проводники в электроустановках должны иметь размеры, приведенные в табл. 5 (не менее).

3.1.5. В производственных помещениях стальные заземляющие и нулевые защитные проводники следует выбирать по табл. 6.

3.1.6. Каждая часть электроустановки, подлежащей заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки не допускается (рис. 11).

Таблица 5

#G0Наименование

В зданиях

В наружных установках

Медь, сечение, ммЗаземление металлоконструкций

4

Алюминий, сечение, ммЗаземление металлоконструкций

6

Сталь:

круглая, диаметр, мм

5

6

полосовая, толщина, мм, сечение, ммЗаземление металлоконструкций

3/24

4/48

угловая, толщина полки, мм

2

2,5

трубы, толщина стенки, мм

1,5

2,5

Для зануления (заземления) струн, лент и т. п. не требуется применять защитные проводники сечением, превышающим сечение зануляемых струн, лент и т. п.

Заземление металлоконструкций Из за большого объема этот материал размещен на нескольких страницах:
1 2 3

pandia.ru

Что такое заземлитель? Общее описание

Заземлитель — металлический проводник или армированный штырь, вкопанный на нужную глубину в грунт. Он может работать одиночно или в комплексе с другими электродами, например, в треугольном контуре. Перед этим элементом стоит основная функция контактировать с высоковольтным электричеством, однако нельзя судить о его оптимальной функциональности, если не определено сопротивление.

Обратите внимание! Сопротивление заземлителя должно быть очень низким. Только так можно рассчитывать на полноценную защиту домашней электрической цепи.

Определившись с вопросом, что называется заземлителем перейдем к изучению его видов.

Виды заземлителей: тонкости их использования

Каждый вид электрода имеет конкретное назначение, которое мы и рассмотрим:

  • Глубинный заземлитель — конструкция, предусматривающая сложный монтаж, но имеющая массу преимуществ. Из особенностей такого вида электродов, можно выделить, что их монтаж занимает значительно меньше места, чем стандартный контур заземления. Доказана эффективность этого проводника в местах с наименьшим удельным сопротивлением почвы. На сегодняшний день, в нормативных актах прописывается, что можно применять подобный элемент в подвале и цокольном этаже.

Важно! Проводить монтаж глубинного заземлителя стоит исключительно при помощи буровых установок.

  • Искусственный заземлитель — очередная конструкция из металла, предназначенная специально для устройства заземления дома. Зачастую такие материалы изготавливают на производстве и реализуют в специализированных торговых точках. Сюда включаются оцинкованные изделия или материалы, покрытые медным опылением. Отличным примером искусственного электрода выступает модульное заземление.
  • Естественный заземлитель — это металлическая конструкция, выступающая с любым внешним видом. Обычно в качестве электродов используются конструкции из металла или стали. Важно соблюдение структуры материала. Идеально, если на нем нет рифлений и засечек, так как эти нюансы увеличивают показатель сопротивления. Такой вид заземлителя обязательно соединяется с общей системой защиты не менее, чем двумя проводниками.

Для домашних условий идеальным решением остается использование вертикальных заземлителей, чего не скажешь о промышленном направлении. Здесь, наоборот целесообразна установка анодного электрода. Его применяют для защиты трубопроводов и подземных сооружений. По сути материал достаточно надёжный и устойчив к воздействию коррозии.

Особенности электролитического заземления

Данная разновидность заземления эффективно используется в местах песчаной, вечномерзлой и каменистой почвы. Также в условиях, где грунт имеет высокое удельное сопротивление и требуется специальное оборудование для установки обычных электродов.

Важно! Используя стандартные электроды для устройства контура заземления в песчаной и других типах почвы с высоким сопротивлением, вам придется установить их множество (порядка 100).

Немного о достоинствах электролитического заземления

На самом деле, как и штыревое заземление, электролитическое обладает некоторыми весьма важными достоинствами.

  1. Этот тип электродов обеспечивает минимальное сопротивление грунту, примерно до 10 раз меньше в отличие от традиционных заземлителей.
  2. Выполняется из специальной смеси, предшествующей образованию коррозии.
  3. Имеет длительный срок службы. Если стальной электрод заземления служит около 5-7 лет, то электролитический порядка 50.
  4. Не требует большой глубины для установки, достаточно вмонтировать заземлитель на полметра.

Принцип работы электрода

Главным элементом данного типа заземления считается труба Г-образной формы. Она вбивается на определенную глубину, которая предварительно заполняется смесью из минеральных солей. Вещество впитывает воду из окружающего грунта, создавая при этом выщелачивание, вследствие чего образуется электролит. Затем этот же электрод проникает в почву, увеличивая ее токопроводимые свойства. Удельное сопротивление снижается, и как следствие уменьшается промерзание почвенного слоя.

Часто после окончания изготовления проекта, происходит подтаивание грунта рядом с строением. К сожалению, это очень опасно для фундамента и грозит осадкой дома. Поэтому электрики рекомендуют при проектировании электролитического заземления учитывать фактор повреждения зданий, а, следовательно, требуют отдалятся от мест застройки.

В условиях сильного промерзания почвы принято использовать горизонтальные электроды. Они являются доступными и простыми в монтаже. Однако, при любой возможности работать буровым оборудованием, лучше всего установить вертикальный заземлитель.

Как проверить электрод?

Заземлители электролитического типа требуют регулярной проверки на работоспособность. Проводят его обслуживание однажды в 2-3 года. Здесь важно определить превратилась ли смесь в электролит. Если электролит образовался, проводят замену смеси, то есть добавляют новый состав солей. Аналогично проверяется каждый электрод, если он не один. Таким образом, установка будет служить еще несколько лет.

Важно! Достаточно заправить электрод минеральными солями высокого качества, и он прослужит порядка 10-15 лет. Но пренебрегать регулярным обслуживанием нельзя.

Групповой и одиночный заземлитель: характеристики

Каждый отдельный тип заземлителя либо электрода имеет свои характеристики, которые важно учитывать при проектировании контура заземления. Рассмотрим каждый из них с подобранностями:

  • лидирующее место в использовании занимает групповой заземлитель. Считается, что его применение зарегистрировано гораздо чаще, чем использование одиночного. Однако, оба типа имеют схожие характеристики. Тем не менее количественная характеристика приспособлений имеет несколько иные закономерности. Ответим вопрос, почему так часто используют сложные (групповые) заземлители. Мы выяснили, что перед непосредственной реализацией проекта находится сопротивление материалов контура. Считается, чем больше будет установленных электродов, тем ниже будет сопротивление уравнителей потенциала.
  • Одиночный электрод несколько уступает групповому, несмотря на аналогичные черты. Характеристики устройства должны учитываться для того, чтобы работа контура по обеспечению защиты человека от поражения электрическим током была оптимальной для конкретных условий. Течение тока через одиночный заземлитель сопровождается возникновением электрических потенциалов.

Смотрите схемы заземлителей с условными обозначениями ниже.

prokommunikacii.ru

Техническое задание

В соответствии с требованиями нормативов на любом энергозависимом объекте перед монтажом заземляющего контура подготавливается техническое задание (ТЗ). В нем обязательно учитываются следующие рабочие моменты:

  • тип используемого заземления (одно- или двухконтурное, стационарное или переносное);
  • схема и способ прокладки заземляющих шин;
  • геометрические размеры и форма погружаемой в грунт части конструкции;
  • материал, используемый для изготовления заземляющих проводников и заземлителя (сталь, медь или алюминий);
  • способ их соединения (сварка или ботовое сочленение).

Это позволяет в дальнейшем быстро и своевременно выполнить работы по монтажу заземления, а также подготовить документацию.

Одноконтурная и двухконтурная схема

Независимо от способа организации электроснабжения на промышленном или гражданском объекте, установка заземлителей и монтаж защитного заземления осуществляется либо по одноконтурной, либо по 2-х контурной схеме.

Заземление металлоконструкций

В первом случае заземляющий контур прокладывается только внутри строения, что позволяет подключать к нему соединительные шины, проложенные от металлических частей действующих установок и другого электротехнического оборудования.

Обратите внимание! В простейшей ситуации (в бытовых условиях, например) может вообще не делаться. В этом случае его функцию выполняет расположенная во вводном устройстве или электрическом шкафу главная заземляющая шина (ГЗШ).

При использовании двухконтурной системы заземления к внутренней шинной обвязке добавляется ещё один контур, монтаж которого происходит снаружи объекта. Как правило, он выполняется в виде распределённого по периметру набора одиночных заземлителей (вбитых в землю металлических прутьев или отрезков арматуры, соединённых между собой стальной шиной). Образующаяся при этом замкнутая система позволяет увеличить площадь соприкосновения с грунтом и обеспечивает лучшие условия для стекания тока в почву.

Заземление металлоконструкций

Наружными контурами, дополняющими внутреннюю распределительную шину, обычно оснащаются трансформаторные подстанции, где требования к качеству заземления особенно высоки. В соответствии с требованиями нормативов электромонтажные работы на подстанциях проводятся с тем расчётом, чтобы элементы наружной обвязки отстояли от края строения более чем на один метр. Металлические штыри или отрезки арматуры вбиваются в землю на глубину не менее 0,7 метра. При этом соединяющая их стальная полоса должна располагаться строго вертикально (то есть ставиться на «ребро»).

Правила работы с переносными видами

Перечисленные схемные решения относятся к разряду стационарных заземлений, привязанных к конкретному месту. Однако в ряде случаев (для проведения ремонтных работ на отключённых сетях, например) может потребоваться монтаж временных или переносных приспособлений, в основу работы с которыми заложен принцип наложения заземления.

Переносные конструкции изготавливаются в виде оголённой медной жилы, имеющей на одном из своих концов забиваемый в землю металлический штырь, а с другой – специальную медную струбцину, служащую для подсоединения к заземляемой шине.

Некоторые модели переносных или временных устройств защиты вместо штыря имеют ещё одну струбцину, обеспечивающую надёжный контакт с заземляющей конструкцией (заземлителем).

Потребность в переносном заземлении этого класса объясняется необходимостью предупредить появление на обслуживаемом участке питающей цепи опасного напряжения, включённого по ошибке или случайно.

Правила монтажа этих накладных конструкций строго регламентированы действующими руководствами по обустройству заземлений. Ниже приведён перечень основных моментов, на которые следует обратить внимание в процессе работы с ними:

Снятие или разборка конструкции временного заземления осуществляется в обратной последовательности.

Пример на железнодорожном транспорте

Рассмотрим требования к монтажу заземления на железнодорожном транспорте (стационарные или тяговые электроустановки), указания по которым приводятся в инструкции ЦЭ-191. Согласно этому документу всё действующее электрооборудование должно быть надёжно защищено путём подключения заземляющего проводника к специальной шине.

Заземление металлоконструкций

Той же инструкцией оговаривается величина максимального сопротивления шины заземления, при которой токи утечки достаточны для того, чтобы защитные устройства успевали сработать и своевременно отключить аварийный участок контактной сети.

Отключение повреждённой линии производится с помощью специальных фидерных выключателей, размещённых на тяговой подстанции и настроенных на требуемый ток отсечки (смотрите ПУЭ).

Особые требования предъявляются к конструкциям или агрегатам с повышенным риском попадания на них напряжения контактной сети (из-за пробоя изоляции или при случайном соприкосновении). Всё это оборудование должно иметь надёжное электрическое соединение с основной тяговой или рельсовой сетью.

Такому заземлению подлежат и все металлические конструкции, включая опоры контактной линии с закреплёнными на изоляторах проводами.

Особенности подключения

При проектировании и монтаже любой заземляющей системы основное внимание должно уделяться обеспечению высокой надежности болтовых сочленений и сварных контактов между отдельными её составляющими. Поскольку такие конструкции рассчитаны на длительную эксплуатацию – необходимо минимизировать возможные механические нагрузки на них, а также обеспечить надёжную защиту металлических поверхностей от коррозии.

Заземление металлоконструкцийПри монтаже защитного заземления в условиях домашней разводки, прежде всего, необходимо определиться с устройством подводящих питающих линий.

Дело в том, что в домах старой застройки, построенных до 2003 года, нормативными требованиями не предусматривалось наличие в питающей цепи отдельной заземляющей жилы. В таких домах на стороне потребителя (у распределительного щитка) в подводящей проводке имеется всего лишь 2 провода – «фазный» и «нулевой».

Заземление металлоконструкцийПричём последний представляет собой совмещённую нулевую рабочую (PE) и нулевую защитную (N) жилы и согласно международному стандарту обозначается как PEN. Для монтажа заземления в таких домах проводник PEN намеренно расщепляется на две составляющие, после чего отдельная жила N используется в качестве шины заземления. Понятно, что созданная таким образом искусственная конструкция лишь частично соответствует требованиям нормативов, поскольку в многоквартирном доме не удаётся организовать повторное заземление.

В домах современной застройки в подводящей проводке должна иметься ещё одна (третья) жила, предназначенная специально для подключения заземляющего провода электрооборудования и бытовых приборов. При этом общий проводник PEN уже разделён на две отдельные жилы PE и N.

levevg.ru

Понятие заземления

Это система из металлоконструкций, обеспечивающая электрический контакт корпуса электроустановок с землей. Основным элементом является заземлитель, который может быть цельный или из соединяющихся между собой отдельных токопроводящих частей, на конечном этапе уходящих в грунт. Правила требуют, чтобы монтаж металлоконструкций выполнялся из стали или меди. На каждый вариант существует свой ГОСТ и требования ПУЭ.

На эффективность работы заземляющего устройства существенно влияет электрическое сопротивление.

Чтобы выполнить эти правила, величину сопротивления системы заземления можно регулировать. Для повышения проводимости заземляющего устройства  используют несколько способов:

  • увеличивают площадь соприкосновения металлоконструкций с грунтом, вбивая дополнительные колья;
  • повышают проводимость самого грунта на участке, где размещен контур заземления, поливая его соляными растворами;
  • меняют провод от щита к контуру на медный, который имеет более высокую проводимость.

Проводимость системы заземления зависит от многих факторов:

  • состава грунта;
  • влажности грунта;
  • количества и глубины залегания электродов;
  • материала металлоконструкций.

Практика показывает, что идеальные условия для эффективной работы защитного заземления создают следующие грунты:

  • глина;
  • суглинок;
  • торф.

Особенно если этот грунт имеет высокую влажность.

Правила определяют, что провода и шины защитного заземления для электроустановок до 1 кВ с глухозаземленной нейтралью обозначают маркировкой (РЕ), добавляя штрихованный знак с чередованием желтых и зеленых полос на концах проводов. Проводники рабочего нуля имеют голубой цвет изоляции и маркируются буквой (N). В схемах электроустановок, где рабочие нулевые провода используются как элемент защитного заземления, подключены на заземляющий контур, они имеют голубую окраску, маркировку (РЕN) с желтыми и зелеными штрихами на концах. Этот порядок цветов и маркировки определяет ГОСТ Р 50462. При монтаже конструкций используют правила для разных видов подключения защитного заземления электроустановок.

Виды и правила заземления электроустановок

ТNCтакая конструкция заземления электроустановок была принята в Германии с 1913 года, эти правила остаются действующими на многих старых сооружениях. В этой схеме рабочий нулевой провод сети одновременно используется как РЕ-проводник. Недостатком этой системы оказалось высокое напряжение на корпусах электроустановок в случае обрыва РЕ-провода. Оно в 1,7 раза превышало фазное, что увеличивало угрозу поражения электрическим током обслуживающего персонала. Подобные схемы защитного заземления электроустановок часто встречаются в старых зданиях Европы и государств постсоветского пространства.

TNS новое устройство защиты электроустановок. Эти правила монтажа электропроводки были приняты в 1930 году. Они учитывали недостатки старой системы ТN-C. TN-S отличается тем, что от подстанции до корпуса электрооборудования прокладывался отдельный защитный нулевой провод. Здания оборудовались отдельным контуром заземления, к которому подключались все металлические корпуса бытовых электроприборов.

Защитное заземление этого вида способствовало созданию автоматов отключения цепи. В основу работы дифференциальных автоматических устройств заложены законы Киргофа. Его правила определяют: «ток, протекающий по фазному проводу, имеет равную величину току, который протекает по нулевому проводу». При обрыве нуля, даже незначительная разница токов управляет отключением автоматических устройств, исключая возникновения линейного напряжения на корпусах электроустановок.

Комбинированная система ТN — C – S разделяет рабочий нулевой провод и заземляющий не на подстанции, а на участке цепи в зданиях, где эксплуатируются электроустановки. Правила этой системы имеют существенный недостаток. При коротком замыкании или обрыве нуля на корпусе электроустановок возникает линейное напряжение.

В большинстве случаев в жилых, производственных и офисных зданиях, сооружениях используется защитное заземление с глухозаземленной нейтралью. Это означает, что рабочий нулевой провод подключается к заземлению. В пункте 1.7.4 ПУЭ определено: «Нейтральные (нулевые) провода трансформаторов или генераторов подключаются к заземляющему контуру».

Защитное заземление в групповых сетях

В частных, многоквартирных и многоэтажных офисных зданиях потребители имеют дело с электроснабжением от распределительных устройств, с которых электроэнергия поступает на розетки, осветительные приборы и другие приемники тока. В подъездах на каждой лестничной площадке установлено ВРУ (вводное распределительное устройство), от которого сеть разделяется на группы по квартирам и функциональному назначению:

  • группа освещения;
  • розеточная группа;
  • группа для питания нагревательных приборов (бойлера, сплит системы или кухонной плиты).

Распределительное устройство разделяет группы по функциональному назначению или для электроснабжения отдельных помещений. Все они подключаются через защитные автоматические выключатели.

На основании требования ПУЭ (пункт 1.7.36) групповые линии выполняются трехпроводным кабелем с медными проводами:

  • фазный провод с обозначением – L;
  • провод рабочего ноля обозначается буквой – N, при монтаже используется проводник с синей или голубой изоляцией в кабеле;
  • нулевой провод, защитное заземление обозначается – РЕ желто-зеленой окраски.

Для монтажа используются трехпроводные кабели, соответствующие требованиям, определяющим состав полихлорвинилового пластика изоляции на проводах:

  • ГОСТ – 6323-79;
  • ГОСТ – 53768 -2010.

Насыщенность цвета определяют ГОСТ – 20.57.406 и ГОСТ – 25018, но эти параметры не являются критичными, так как не влияют на качество изоляции.

В старых зданиях советской постройки проводка выполнена двухпроводным проводом с алюминиевой проволокой. Для надежной и безопасной эксплуатации современной бытовой техники от корпуса ВРУ до розеток, через распределительные коробки, прокладывается третий заземляющий провод. Рекомендуется при капитальном ремонте заменить всю старую проводку и установить новые розетки с контактом на защитный провод.

В щитке все провода, согласно своему назначению, крепятся на отдельные контактно-зажимные планки. Запрещается подключение проводов N на контактные шины РЕ другой группы и наоборот. Также не допускается подключение РЕ и N отдельных групп на общие контакты линий РЕ или N. В сущности, при контактах нулевого провода и провода защитного заземления работа цепи электроснабжения не нарушится. В конечном итоге через подстанцию и заземляющий контур они замыкаются, но может нарушиться расчетный баланс токовых нагрузок на защитные автоматы. Несоблюдение этого баланса приведет к незапланированному отключению на отдельных группах.

Практически, исходя из пункта 7.1.68 ПУЭ, все корпуса электроприборов в здании подлежат заземлению:

  • токопроводящие металлические элементы светильников;
  • корпуса кондиционеров, стиральных машин;
  • утюги, электрические плиты и многие другие бытовые приборы.

Все современные производители электрооборудования учитывают эти требования. Любое современное устройство, потребляющее электроэнергию от стандартных промышленных сетей, производится со схемой подключения к трехпроводным розеткам. Одним проводом является защитное заземление (провод, который присоединяет корпус электроустановок к контуру заземления).

Контур для частного дома

Устройство металлоконструкций заземляющего контура собирается из различных элементов, это могут быть:

  • стальной уголок;
  • стальные полосы;
  • металлические трубы.
  • медные стержни и провод.

Наиболее подходящим материалом для монтажа считаются стальные оцинкованные полосы, трубы и уголки, соответствующие ГОСТ – 103-76. Производители изготавливают их разных размеров.

Размеры стальных оцинкованных шин

Изделие ГОСТ Ширина Толщина
Стальная оцинкованная шина ГОСТ — 103-76 20 мм 4 мм
Стальная оцинкованная шина ГОСТ — 103-76 25 мм 4 мм
Стальная оцинкованная шина ГОСТ — 103-76 30 мм 4 мм

Такие полосы удобно прокладывать по стенам здания, соединяя контур и корпус распределительного щита. Полоса гибкая, устойчивая к коррозии и имеет хорошую проводимость. Это гарантирует, что устройство защиты будет работать эффективно.

Наиболее распространенная конструкция, когда контур на защитное устройство заземления имеет по периметру форму равнобедренного треугольника, стороны которого 1.2 м. В качестве вертикальных заземлителей применяют стальной уголок 40х40 или 45Х45 мм, толщиной не менее 4-5 мм, металлические трубы диаметром не менее 45 мм с толщиной стенок 4 мм и более. Можно использовать элементы трубопроводов, бывшие в употреблении, если металл еще не проржавел.  Для того чтобы было удобно забивать уголок в грунт, нижний край обрезается болгаркой под конус. Длина вертикального заземлителя составляет от 2 до 3м. Допустимые размеры в зависимости от материала и формы элементов указаны в таблице 1.7.4 ПУЭ.

Забиваются уголки так, чтобы над поверхностью грунта осталось 15-20 см. На глубине 0.5 метра вертикальные заземлители по периметру соединяются стальной полосой 30-40 мм шириной и 5мм толщиной.

Контур размещается не далее чем на 10 метров от здания. Защитное устройство заземления соединяется с корпусом распределительного щита стальной пластиной 30 мм в ширину и не менее 2 мм толщиной, стальной круглой катанкой 5-8 мм в диаметре или медным проводом, сечение которого не мене 16 мм2. Такой провод крепится клеммой на заранее приваренный к контуру болт, и затягивается гайкой.

Требования ПУЭ (пункт 1.7.111) – защитное заземление может быть выполнено из медных элементов, это надежно. Продаются специальные наборы, «устройство медных заземляющих конструкций», но это дорогое удовольствие. Для большинства потребителей дешевле и проще выполнить требования, используя стальные детали.

Это могут быть:

  • элементы металлических трубопроводов, проложенных под землей;
  • экраны бронированных кабелей, кроме алюминиевых оболочек;
  • рельсы железнодорожных неэлектрифицированных путей;
  • железные конструкции арматуры фундаментов высотных железобетонных зданий и многие другие подземные металлические сооружения.

Неудобство этого варианта состоит в том, что для использования этих объектов (рельсов или трубопроводов) как защитное заземление, необходимо согласовать возможность подключения с владельцем конструкции. Иногда проще бывает установить собственный контур заземления, соблюдая все требования.

Молниезащита частного дома

ПУЭ и другие руководящие документы не обязывают владельца частного дома, чтобы у него стояла молниезащита. Мудрые владельцы в целях безопасности устанавливают эту конструкцию самостоятельно, руководствуясь требованиями ГОСТ — Р МЭК 62561.2-2014. Молниезащита включает в себя три основных элемента:

  1. Мониеприемник устанавливается на верхней точке крыши здания, принимает на себя электрический разряд молнии. Выполняется из стальной трубы Ø 30-50 мм, высотой до 2м. На верхнюю часть приваривается стальной наконечник круглого проката Ø 8мм.
  2. Заземляющее устройство обеспечивает растекание токов в грунте;
  3. Токопровод выполняется из того же материала, что и наконечник, он направляет ток электрического разряда от молниеприемника к контуру заземления.

elquanta.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.