Заземлитель определение


Важнейшей функцией заземления является электробезопасность. Перед его установкой в частном доме, на подстанции и в других местах необходимо произвести расчёт заземления.

Места соединения с ЗУ проводника, защитного провода или экрана кабеля называются точками заземления. На рисунке ниже изображено заземление из одного вертикального металлического проводника длиной 2500 мм, вкопанного в землю. Его верхняя часть размещается на глубине 750 мм в траншее, ширина которой в нижней части составляет 500 мм и в верхней – 800 мм. Проводник может быть связан сваркой с другими такими же заземлителями в контур горизонтальными пластинами.

После монтажа заземлителя траншея засыпается грунтом, а один из электродов должен выходить наружу. К нему подключается провод над поверхностью земли, который идет к шине заземления в электрощите управления.

При возникновении в заземлённой точке потенциала, должно произойти его зануление. Если рассмотреть любой пример расчёта, можно увидеть, что ток короткого замыкания Iз имеет определенную величину и не может быть бесконечно большим. Грунт обладает сопротивлением растекания тока Rз от точек с нулевым потенциалом до заземлителя:


Rз = Uз/ Iз, где Uз – напряжение на заземлителе.

Величина Rз определяется характеристиками окружающего грунта: влажностью, плотностью, содержанием солей. Здесь также важными параметрами являются конструкции заземлителей, глубина погружения и диаметр подключённого провода, который должен быть таким же, как у жил электропроводки. Минимальное поперечное сечение голого медного провода составляет 4 мм2, а изолированного – 1,5 мм2.

Если фазный провод коснётся корпуса электроприбора, падение напряжения на нём определяется величинами Rз и максимально возможного тока. Напряжение прикосновения Uпр всегда будет меньше, чем Uз, поскольку его снижают обувь и одежда человека, а также расстояние до заземлителей.

На поверхности земли, где растекается ток, также существует разность потенциалов. Если она высокая, человек может попасть под шаговое напряжение Uш опасное для жизни. Чем дальше от заземлителей, тем оно меньше.

Снизить величины Uпр и Uш можно, если уменьшить Rз, за счёт чего также уменьшится ток, протекающий через тело человека.


Если напряжение электроустановки превышает 1 кВ (пример – подстанции на промышленных предприятиях), создаётся подземное сооружение из замкнутого контура в виде рядов металлических стержней, забитых в землю и соединённых сваркой между собой при помощи стальных полос. За счёт этого производится выравнивание потенциалов между смежными точками поверхности.

Безопасная работа с электросетями обеспечивается не только за счёт наличия заземления электроприборов. Для этого ещё необходимы предохранители, автоматические выключатели и УЗО.

Соединять с заземлителем каждый электроприбор нецелесообразно. Подключения производят через шину, расположенную в квартирном щитке. Вводом для неё служит провод заземления или провод РЕ, проложенный от подстанции к потребителю, например, через систему TN-S.

Расчёт заземляющего устройства

Расчёт заключается в определении Rз. Для этого необходимо знать удельное сопротивление грунта ρ, измеряемое в Ом*м. За основу принимают его средние значения, которые сводят в таблицу.

Определение удельного сопротивления грунта


Грунт Удельное сопротивление р, Ом*м Грунт Удельное сопротивление р, Ом*м
Песок при глубине залегания вод менее 5 м 500 Садовая земля 40
Песок при глубине залегания вод менее 6 и 10 м 1000 Чернозем 50
Супесь водонасыщенная (текучая) 40 Кокс 3
Супесь водонасыщенная влажная (пластинчатая) 150 Гранит 1100
Супесь водонасыщенная слабовлажная (твердая) 300 Каменный уголь 130
Глина пластичная 20 Мел 60
Глина полутвердая 60 Суглинок влажный 30
Суглинок 100 Мергель глинистый 50
Торф 20 Известняк пористый 180

Из приведённых в таблице значений видно, что значение ρ зависит не только от состава грунта, но и от влажности.

Кроме того, табличные величины удельных сопротивлений умножают на коэффициент сезонности Kм, учитывающий промерзание грунта. В зависимости от низшей температуры (0С) его значения могут быть следующими:

  • от 0 до +5 — Kм =1,3/1,8;
  • от -10 до 0 — Kм =1,5/2,3;
  • от -15 до -10 — Kм =1,7/4,0;
  • от -20 до -15 — Kм =1,9/5,8.

Значения коэффициента Kм зависят от способа заложения заземлителей. В числителе приведены его значения при вертикальном погружении заземлителей (с заложением вершин на глубине 0,5-0,7 м), а в знаменателе – при горизонтальном расположении (на глубине 0,3-0,8 м).

Когда проводятся ориентировочные расчёты, для одиночного вертикально заземлителя Rз ≈ 0,3∙ρ∙ Kм.

Точный расчёт защитного заземления производят по формуле:

Rз = ρ/2πl∙ (ln(2l/d)+0.5ln((4h+l)/(4h-l)), где:

  • l – длина электрода;
  • d – диаметр прута;
  • h – глубина залегания средней точки заземлителей.

Для n вертикальных электродов, соединённых сверху сваркой Rn = Rз/(n∙ Kисп), где Kисп – коэффициент использования электрода, учитывающий экранирующее влияние соседних (определяется по таблице).

Расположение заземляющих электродов

Формул расчёта заземления существует много. Целесообразно применять метод для искусственных заземлителей с геометрическими характеристиками в соответствии с ПУЭ. Напряжение питания составляет 380 В для трёхфазного источника тока или 220 В однофазного.

Нормированное сопротивление заземлителя, на которое следует ориентироваться, составляет не более 30 Ом для частных домов, 4 Ом – для источника тока при напряжении 380 В, а для подстанции 110 кВ – 0,5 Ом.

Для группового ЗУ выбирается горячекатаный уголок с полкой не менее 50 мм. В качестве горизонтальных соединительных перемычек используется полоса сечением 40х4 мм.

Определившись с составом грунта, по таблице выбирается его удельное сопротивление. В соответствии с регионом, подбирается повышающий коэффициент сезонности Kм.

Выбирается количество и способ расположения электродов ЗУ. Они могут быть установлены в ряд или в виде замкнутого контура.

При этом возникает их экранирующее влияние друг на друга. Оно тем больше, чем ближе расположены заземлители. Значения коэффициентов использования заземлителей Kисп для контура или расположенных в ряд, отличаются.

Значения коэффициента Kисп при разных расположениях электродов



Расположение электродов в ряд
Количество заземлит. n (шт.) Отношение расстояния между заземлителями к их длине
1 2 3
2 0.85 0.91 0.94
4 0.73 0.83 0.89
6 0.65 0.77 0.85
10 0.59 0.74 0.81
20 0.48 0.67 0.76
Расположение электродов в ряд
Количество заземлит. n (шт.) Отношение расстояния между заземлителями к их длине
4 0.69 0.78 0.85
6 0.61 0.73 0.8
10 0.56 0.68 0.76
20 0.47 0.63 0.71

Примеры расчёта контура заземления

Для лучшего освоения методов расчёта заземления лучше рассмотреть пример, а лучше – несколько.

Пример 1

Заземлители часто делают своими руками из стального уголка 50х50 мм длиной 2,5 м. Расстояние между ними выбирается равным длине – h=2.5м. Для глинистого грунта ρ = 60 Ом∙м. Коэффициент сезонности для средней полосы, выбранный по таблицам, равен 1,45. С его учётом ρ = 60∙1,45 = 87 Ом∙м.

Для заземления по контуру роется траншея глубиной 0,5 м и в дно забивается уголок.


Размер полки уголка приводится к условному диаметру электрода:

d = 0.95∙p = 0.995∙0.05 = 87 Ом∙м.

Глубина залегания средней точки уголка составит:

h = 0,5l+t = 0.5∙2.5+0.5 = 1.75 м.

Подставив значения в ранее приведённую формулу, можно определить сопротивление одного заземлителя: R = 27.58 Ом.

По приближенной формуле R = 0.3∙87 = 26.1 Ом. Из расчёта следует, что одного стержня будет явно недостаточно, поскольку по требованиям ПУЭ величина нормированного сопротивления составляет Rнорм = 4 Ом (для напряжения сети 220 В).

Количество электродов определяется методом приближения по формуле:

n = R1/(kиспRнорм) = 27,58/(1∙4) = 7 шт.

Здесь вначале принимается kисп = 1. По таблицам находим для 7 заземлителей kисп = 0,59. Если подставить это значение в предыдущую формулу и снова пересчитать, получится количество электродов n = 12 шт. Затем производится новый перерасчёт для 12 электродов, где опять по таблице находится kисп = 0,54. Подставив это значение в ту же формулу, получим n = 13.

Таким образом, для 13 уголков Rn = Rз/(n*η) = 27,58/(13∙0,53) = 4 Ом.

Пример 2

Нужно изготовить искусственное заземление с сопротивлением Rнорм = 4 Ом, если ρ = 110 Ом∙м.

Заземлитель изготавливается из стержней диаметром 12 мм и длиной 5 м. Коэффициент сезонности по таблице равен 1,35. Ещё можно учесть состояние грунта kг. Измерения его сопротивления производились в засушливый период. Поэтому коэффициент составил kг =0,95.


На основе полученных данных за расчётное значение удельного сопротивления земли принимается следующая величина:

ρ = 1,35∙0,95∙110 = 141 Ом∙м.

Для одиночного стержня R = ρ/l = 141/5 = 28,2 Ом.

Электроды располагаются в ряд. Расстояние между ними должно быть не меньше длины. Тогда коэффициент использования составит по таблицам: kисп = 0,56.

Находим число стержней для получения Rнорм = 4 Ом:

n = R1/(kиспRнорм) = 28,2/(0,56∙4) = 12 шт.

После монтажа заземления производятся измерения электрических параметров на месте. Если фактическое значение R получается выше, ещё добавляются электроды.

Особенно часто это делается на подстанции, где требуется самая низкая величина R. Оборудование здесь используется максимально: подземные трубопроводы, опоры линий электропередач и др. Если этого недостаточно, добавляется искусственное заземление.

Устройство размещается внутри фундамента, где шина для подключения выводится наружу.

elquanta.ru

Заземление

Начало формы

Конец формы

Предупреждение: статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться Правилами устройства электроустановок (ПУЭ).
Заземлитель определение

Определения

Заземление — это преднамеренное соединение нетоковедущих элементов оборудования, которые в результате пробоя изоляции могут оказаться под напряжением, с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т.д. Как правило, электрическое сопротивление заземления нормируется. Главный заземляющий зажим. Для сведения к минимуму электромагнитных помех и обеспечения электробезопасности заземление следует выполнять с минимальным количеством замкнутых контуров. Обеспечение этого условия возможно при выполнении так называемого главного заземляющего зажима (ГЗЗ), или шины. Главный заземляющий зажим должен быть расположен как можно ближе к входным кабелям питания и связи и соединен с заземлителем (заземлителями) проводником наименьшей длины. Такое расположение ГЗЗ обеспечивает наилучшее выравнивание потенциалов и ограничивает наведенное напряжение от индустриальных помех, грозовых и коммутационных перенапряжений, приходящее извне по экранам кабелей связи, броне силовых кабелей, трубопроводам и антенным вводам. К ГЗЗ (шине) должны быть присоединены:Заземлитель определение

  • заземляющие проводники;

  • защитные проводники;

  • проводники главной системы уравнивания потенциалов;

  • проводники рабочего заземления (если оно необходимо).

С главным заземляющим зажимом (шиной) должны быть соединены заземлители защитного и рабочего (технологического, логического и т. п.) заземления, заземлители молниезащиты и др. Подробно правила и требования устройства ГЗЗ изложены в ПУЭ. Открытая токопроводящая часть – доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции. К открытым проводящим частям относятся металлические корпуса электрооборудования. Токоведущая часть – электропроводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением. Косвенное прикосновение – электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.

Обозначения

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.[1] Графические символы, используемые для обозначения проводников на схемах:

Заземлитель определение

Обозначение заземления:

Заземлитель определение

Буквенные обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания: T – непосредственное соединения нейтрали источника питания с землёй; I – все токоведущие части изолированы от земли. Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания: T – непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй; N – непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания. Буквы, следующие через чёрточку за N, определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников: S – функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками; C – функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Ошибки в устройстве заземления

Неправильные PE-проводники Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника.[2] В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.

Заземлитель определение

Объединение рабочего нуля и PE-проводника Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии.[3] Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токоведущим в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено).

Заземлитель определение

Неправильное разделение PEN-проводника Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем. Опасность данной схемы в том, что на заземляющем контакте розетки, а, следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:

  • Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);

  • Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Заземлитель определение

Защитная функция заземления

Принцип защитного действия Защитное действие заземления основано на двух принципах:

  • Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

  • Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием УЗО. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые-сотые доли секунды — время срабатывания УЗО). Работа заземления при неисправностях электрооборудования Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции[4]. Следует отметить, что современные электроприборы, имеющие импульсный источник вторичного электропитания, и снабжённые трёх-полюсной вилкой (такие как системный блок ПЭВМ), при отсутствии заземления имеют опасный потенциал на корпусе, даже когда они полностью исправны.[5] В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

  • Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

  • Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RG•IF, где RG − сопротивление заземлителя, IF − ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.

  • Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,01÷0,3 секунды — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.

  • Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,01÷0,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.

Заземлитель определение

Разновидности систем заземления

В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ). Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2 рассматривает следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT.

Заземлитель определение

Система TN Нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу. Режим TN может быть трех видов: TN-C, TN-S, TN-C-S. Система TN-C Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitäts-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР. Система TN-S На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току. Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании. Система TN-C-S В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция – электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи – отдельный нулевой защитный проводник (PE).

Заземлитель определение

Система TT В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции. Система IT Нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения.

ВЫВОДЫ

В качестве общих рекомендаций для выбора той или иной сети можно указать следующее: 1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений. 2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда». 3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок. 4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой. Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT. Резюмируя изложенное выше, отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.

ПРИМЕЧАНИЯ

[1] пункт 1.1.29 ПУЭ [2] пункты 1.7.122 и 1.7.123 ПУЭ [3] 1.7.135 ПУЭ [4] При других типах неисправностей заземление менее эффективно, поэтому они здесь не рассматриваются [5] В схеме импульсного источника вторичного электропитания присутствуют входные проходные или обычные конденсаторы, включенные как между питающими проводниками, так и (в случае наличия металлического корпуса и трёхполюсной вилки) между каждым питающим проводником и корпусом прибора, в этом случае они представляют делитель напряжения, сообщающий корпусу потенциал, примерно равный половине напряжения питания. Этот потенциал обычно присутствует, даже когда прибор выключен имеющимися у него средствами. В наличии потенциала на корпусе можно убедиться с помощью неонового пробника.

В статье использованы материалы из Википедии, и сайта журнала «Новости Электротехники».

studfiles.net

Доброе время суток, дорогие друзья!

Судя по интересу к теме «Зазмляющих устройств», я решил опубликовать целый ряд статей по данной теме. Сегодня первая из большого цикла. Назовем ее: ВВОДНАЯ. Я в ней раскрою смысл понятий используемых профессионалами. Напоминаю, что если у Вас имеются какие-то вопросы, Вы всегда их можете мне задать или на сайте или по электронной почте. 

Электроустановки в отношении мер электробезопасности разделяются на:

1. электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью;

2. электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

3. электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

4. электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

В этой статье и последующих будем рассматривать только установки из пункта 3 как наиболее часто встречаемые как на производстве так и в бытовых условиях.

Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

clip_image002

а                                                                                       б

Рис. 1. Система TNC переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:

1 — заземлитель нейтрали (средней точки) источника питания;

2 — открытые проводящие части; 3 — источник питания постоянного тока

система TN — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1.);

система TNS — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 2);

система TNCS — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 3);

система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены ;

система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Первая буква — состояние нейтрали источника питания относительно земли:

Т — заземленная нейтраль;

I — изолированная нейтраль.

Вторая-буква — состояние открытых проводящих частей относительно земли:

Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);

Nclip_image004 — нулевой рабочий (нейтральный) проводник;

РЕclip_image006— защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PENclip_image008 — совмещенный нулевой защитный и нулевой рабочий проводники.

clip_image010

а

clip_image012

б

Рис. 2. Система TNS переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники разделены:

1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — источник питания

clip_image014

а

clip_image016

б

Рис. 3. Система TNCS переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:

1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части, 3 — источник питания

Далее я приведу основные определения используемые специалистами;

Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.

Проводящая часть — часть, которая может проводить электрический ток.

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.

Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.

Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

Зона нулевого потенциала (относительная земля) — часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.

Зона растекания (локальная земля) — зона земли между заземлителем и зоной нулевого потенциала.

Термин земля, следует понимать как земля в зоне растекания.

Замыкание на землю — случайный электрический контакт между токоведущими частями, находящимися под напряжением, и землей.

Напряжение на заземляющем устройстве — напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

Сопротивление заземляющего устройства — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

Эквивалентное удельное сопротивление земли с неоднородной структурой — удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Защитное заземление — заземление, выполняемое в целях электробезопасности.

Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

Защитное зануление в электроустановках напряжением до 1 кВ — преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов.

Защитное уравнивание потенциалов — уравнивание потенциалов, выполняемое в целях электробезопасности.

Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.

Защитный (РЕ) проводник — проводник, предназначенный для целей электробезопасности.

Защитный заземляющий проводник— защитный проводник, предназначенный для защитного заземления.

Защитный проводник уравнивания потенциалов — защитный проводник, предназначенный для защитного уравнивания потенциалов.

Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

Нулевой рабочий (нейтральный) проводник (N) — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

Совмещенные нулевой защитный и нулевой рабочий (PEN) проводники — проводники в электроустановках напряжением до 1 кВ, совмещающие функции нулевого защитного и нулевого рабочего проводников.

Главная заземляющая шина (ГЗШ) — шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.

Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

На этом на сегодня все. Надеюсь, информация в статье оказалась Вам полезной. Напоминаю, что Вы можете задавать мне свои вопросы. На основании их будут мною писаться статьи, т.к. сайт создан не для того чтобы просто быть, а для того чтобы быть полезным читателям, т.е. Вам.

elektrolaboratoriy.ru

Далее привариваем соединительную полосу 40х4 или 50х5. Места сварки промазываем битумом (для защиты от коррозии).
Часть написанного увидите в 19-минутном ролике:
 

 
 
Усовершенствование описанного метода:

  • применение оцинкованных или омеднённых стержней для увеличения срока службы (такое есть в методе 3);
  • рытьё 2-3 метровой скважины для каждого штыря, засыпка покупного грунта, чтобы снизить удельное сопротивление почвы и тем самым общее сопротивление заземляющего устройства (например, коксовая мелочь имеет ρср = 2.5 Ом·м в отличии от повсеместного суглинка с ρср = 80 Ом·м, сопротивление снизится в 80/2.5 = 32 раза);
  • насыщение почвы обычной солью (не более 5%), но эту операцию нужно повторять каждые 2-4 года, так как из-за талых вод и дождей она (NaCl) вымывается (такое есть в методе 4).

 
  

Второй метод «скважина» (дороже, но 1 электрод)

Буровая установка на базе грузового автомобиляРоем траншею глубиной 0.5-0.8 метра перпендикулярно стене здания к месту, где запланировано бурить скважину (не менее трёх метров для подъезда машины).
Заказываем буровую установку, закладываем одну стальную трубу диаметром 0.1-0.2 метра, которая будет являться вертикальным и единственным электродом длиной 30-40 метров.
В этом методе низкое сопротивление обеспечивается:
— большой площадью контакта за счёт глубокого проникновения;
— низким удельным сопротивлением земли на глубине более 5 метров за счёт повышенной влажности и плотности (более 80% трубы в таких условиях).
По траншее прокладываем стальную полосу 40х4 или 50х5 и привариваем её к трубе. Место сварного шва защищаем о коррозии битумом.
Толщина стенки трубы влияет на ресурс, выбирают из диапазона 3.5-6.0 мм.
 
Усовершенствование описанного метода:

  • чтобы снизить цену – убейте «двух зайцев»: заземление и одновременно скважина для забора воды с обсадной трубой (допускается пунктами 1.7.54 и 1.7.109 ПУЭ-7 или источника 1);
  • применение оцинкованной трубы для увеличения срока службы.

 

Третий метод «конструктор» (упрощённый монтаж)

Для модульного штыревого заземления выбрали одиночный глубинный (до 40 метров) электрод, но закладывают не цельную трубу, а по очереди забивают 1.5-2.0 метровые стержни диаметром до 0.02 метра (это всего 20 мм). После заглубления первого стержня, на нём с помощью соединительной муфты фиксируют второй и так далее (на штырях и муфте нарезана резьба). До тех пор, пока измеренное сопротивление заземляющего устройства не окажется удовлетворительным.
Чтобы забитые штыри не превратились в «труху» за 2-3 года их нужно защитить от коррозии:

  • наносят цинковое покрытие толщиной до 30 мкм (его хватает на 15-25 лет) – в паре железо-цинк в первую очередь окисляется последний (то есть пока вся масса Zn не окислится, сталь не корродирует);
  • наносят покрытие их меди толщиной до 250 мкм (его хватает на 30-100 лет в зависимости от агрессивности грунта) – в паре медь-железо в первую очередь должно окисляться железо, но медь создаёт герметичный слой, который не допускает к железу воду (следовательно, реакции окисления не происходит);
  • производят из нержавеющей стали (её хватает на 50-100 лет).

Здесь и кроется минус: если при заглублении омеднённого штыря встретится прочный камень, то стержень пытаясь «обойти» препятствие изогнётся и слой меди начнёт «слизываться». Если таких камней окажется несколько, то может нарушится герметичность покрытия и после разрушении стержня от коррозии, вся глубинная часть заземлителя выйдет из строя. Поэтому такой метод не подходит для каменистых почв.
 
Для заглубления применяют:

  • тяжёлый перфоратор (при глубине до 6 метров);
  • отбойный молоток (при глубине до 30 метров).

Соединительная муфта в большинстве случаях латунная (сплав меди и цинка), чтобы обеспечить надёжный электрический контакт. Правильное соединение – стержни впритык друг к другу, муфта работает только на удержание осей в вертикальном положении. То есть ударные нагрузки от отбойного молотка передаются от стержня к стержню, муфта не участвует. Чем больше глубина, тем большие ударные нагрузки испытывают стержни. В случае не верного соединения рискуете поломать муфту, потерять электрический контакт и безвозвратно вывести из строя забитые штыри.
 
Хитрость: в муфту заливается антикоррозионная токопроводящая паста или закладываются кусочки цинка (можно изъять из батареек), свинца.

www.avtomats.com.ua

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Для чего нужно заземление

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

Устройство заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

electry.ru

Естественное заземление

Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:

  • неизолированные металлические трубы;
  • обсадка водяных скважин;
  • элементы металлических заборов, уличные фонари;
  • оплетка кабельных сетей;
  • стальные элементы фундаментов, колонн.

Использование обсадной скважины в качестве естественного заземлителя

Лучший вариант естественного заземления — водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.

Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:

  • имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
  • при строительстве фундамента арматура на двух или более участках была выведена наружу;
  • металлические элементы имеют сварные соединения;
  • сопротивление арматуры соответствует регламенту ПУЭ;
  • имеется электросвязь с шиной заземления.

Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.

Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.

Железобетонный фундамент в качестве естественного заземлителя

Расчеты для устройства искусственного заземления

Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.

Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.

Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:

  • отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы;
  • подобрать наиболее подходящую конфигурацию заземлительной системы;
  • выбрать правильный план действий.

Расчет контура заземления для защиты электрооборудования

Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.

Компоненты защиты

Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.

В системе имеются такие элементы:

  1. Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
  2. Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
  3. Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.

Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.

Устройство треугольного контура заземления

Принципы и правила вычислений

Грунт — один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.

При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.

Определение подходящего контура

Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.

Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.

Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.

Выбор схемы заземляющего контура

Расчет параметров проводников

Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.

Сопротивление вертикальных электродов определяется их длиной. Другой параметр — поперечные размеры — не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).

При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.

Расчет количества вертикальных заземлителей

Что выбрать: количество электродов или их длину — решать организатору работ. Однако на этот счет есть определенные правила:

  1. Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
  2. Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.

Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.

Экономное расходование материала

Выбор оптимальной схемы заземлителя

Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:

  • трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
  • уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров);
  • круглая сталь (диаметр от 12 до 16 миллиметров).

В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.

Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.

Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).

Экономичный вариант устройства заземляющего контура

Формулы для расчетов

Далее расскажем о том, как рассчитать заземление по формулам, и приведем пример расчетов. Выбираем формулу, исходя из типа заземлителей.

Формула для расчета сопротивления системы заземления току растекания

Подойдет универсальная формула, с помощью которой рассчитывают сопротивление вертикального электрода.

Формула расчета вертикального заземлителя

При проведении вычислений не обойтись без справочных таблиц, где указаны примерные значения. Данные параметры определяются составом грунта, его средней плотностью, способностью задерживать воду, климатическим поясом.

Устанавливаем нужное количество стержней, не принимая во внимание показатель сопротивления горизонтального проводника.

Формула для расчета числа вертикальных электродов

Вычисляем данные по горизонтальной части заземлительной системы.

Вычисление параметров заземляющего проводника

Определяем уровень сопротивления вертикального стержня на основе показателя сопротивления заземлителя горизонтального типа.

Определение уровня сопротивления вертикального электрода

На основании полученных результатов приобретаем нужное количество материала и планируем начало работ по созданию системы заземления.

Заключение

Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.

До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.

220.guru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.