Потребляемая мощность насоса

  • Новости
  •  > 
  • Рћ насосах

ОБЕСПЕЧИВАЕМ ПОЛНЫЙ ЦИКЛ РАБОТ: ВЫБОР ОБОРУДОВАНИЯ-МОНТАЖ-ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ.

Номинальный ток электрического насоса

Информационные таблички центробежных электронасосов содержат техническую информацию о потребляемой мощности, номинальном токе, номинальной мощности электродвигателя и полезной гидравлической мощности насоса, представленной на усмотрение производителя максимальным напором и производительностью или рабочими полями. От корректности выбора электронасоса по мощности напрямую зависит надежность и эффективность его работы.
вайте попробуем разобраться, что в случае электронасоса понимается под понятием мощности. В целом понятие мощности для электронасоса равноправно охватывает как мощность, потребляемую электродвигателем из сети, так и механическую мощность, переданную валу электродвигателя и полученную гидравликой насоса. Одни производители указывают в информационной табличке насоса две мощности – потребляемую электрическую (P1) и номинальную механическую (P2). Другие указывают только потребляемую мощность или только номинальную мощность. Нужно учесть , что номинальная мощность электродвигателя всегда меньше от потребляемой мощности и отличается на величину, определяемую характеристиками двигателя (КПД двигателя).

Потребляемой мощностью электродвигателя насоса называется электрическая мощность, потребляемая из источника питания. Потребляемая (электрическая) мощность обозначается на информационной табличке электронасоса Р1 или Pabs и измеряется в единицах мощности — Вт. В соответствии с международными стандартами мощность двигателей переменного тока принято определяется номинальной мощностью на валу. Номинальными характеристиками производитель оборудования называет значения характеристик, полученные при предусмотренных расчетных параметрах без учета внешних корректирующих факторов.
минальной мощностью электроприбора принято называть мощность, для работы с которой в номинальном режиме оборудование предназначено изготовителем. Номинальная мощность электродвигателя насоса соответствует механической мощности при расчетных значениях температуры, напряжения, частоты, и силы тока, переданной валу и потребленной насосом. Номинальная (механическая) мощность обозначается Р2 или Рном и измеряется в единицах механической мощности — Вт или лошадиных силах (международное обозначение л.с. – НP (horse power), 1 HP ≈ 750 Вт).

Номинальным током Iном электродвигателя называется ток, потребляемый электродвигателем при номинальном напряжении, частоте и механической мощности на валу, потребляемой насосом.

Нужно помнить, что номинальная мощность и номинальный ток характеризуют одну конкретно определенную точку – номинальную рабочую точку электронасоса. Фактическая мощность и ток, потребляемый электродвигателем, напрямую зависят от фактической рабочей точки электронасоса — чем больше производительность центробежного электронасоса, тем больше потребляемая мощность и сила тока. Из условия предотвращения перегрева электродвигателя и развития кавитационных явлений важным требованием есть использование насоса исключительно в пределах рабочего поля и характеристик, рекомендованных производителем. Соблюдение этого фундаментального требования гарантирует надежность работы и длительный срок службы насоса.


Определить полезную гидравлическую мощность, переданную насосом жидкости, можно по формуле:

Рhyd = g x ρ x Q x H, Вт, где

g – ускорение свободного падения, м/с2;

ρ – плотность жидкости, кг/м3;

Q – объемная скорость потока (производительность), м3/с;

Н – напор, м.



Источник: reinolds.com.ua

Источник: www.chem21.info

Напор и мощность насоса

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

Nп = yQH/102

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Nв =Nп / η = yQH / η

где η — коэффициент полезного действия (КПД) насоса

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД – коэффициент полезного действия насоса – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

η = Nп / N

η = ηо * ηг * ηм

ηо — объемный КПД – характеризует объемные потери

ηг — гидравлический КПД – характеризует гидравлические потери

ηм — механический КПД – характеризует механические потери

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части — в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Расчет мощности насоса

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление. Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).
Мощность циркуляционного насоса   для домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
Мощность циркуляционного насоса  для домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
Мощность циркуляционного насоса  если 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P,
где Q — расход теплоносителя через котел, л/мин;
Р — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

мощность насоса

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Для того, чтобы узнать какая мощность насоса отопления потребуется Вам — воспользуйтесь калькулятором, размещенным в статье по подбору мощность насоса для отопления насоса.

Насос для отопления с требуемыми параметрами Вы можете посмотреть в нашем каталоге.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования, Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

Источник: www.nektonnasos.ru

Выделяют несколько мощностей в зависимости от потерь при ее передаче, которые учитываются различными коэффициентами полезного действия. Мощность, идущая непосредственно на передачу энергии перекачиваемой жидкости, рассчитывается по формуле:

NП = ρ·g·Q·H

NП – полезная мощность, Вт

ρ – плотность перекачиваемой среды, кг/м3

g – ускорение свободного падения, м/с2

Q – расход, м3

H – общий напор, м

Мощность, развиваемая на валу насоса, больше полезной, и ее избыток идет на компенсацию потерь мощности в насосе. Взаимосвязь между полезной мощностью и мощностью на валу устанавливается коэффициентом полезного действия насоса. КПД насоса учитывает утечки через уплотнения и зазоры (объемный КПД), потери напора при движении перекачиваемой среды внутри насоса (гидравлический КПД) и потери на трение между подвижными частями насоса, такими как подшипники и сальники (механический КПД).

NВ = NПН

NВ – мощность на валу насоса, Вт

NП – полезная мощность, Вт

ηН – коэффициент полезного действия насоса

В свою очередь мощность, развиваемая двигателем, превышает мощность на валу, что необходимо для компенсации потерь энергии при ее передаче от двигателя к насосу. Мощность электродвигателя и мощность на валу связаны коэффициентами полезного действия передачи и двигателя.

NД = NВ/(ηП·ηД)

NД – потребляемая мощность двигателя, Вт

NВ – мощность на валу, Вт

ηП – коэффициент полезного действия передачи

ηН – коэффициент полезного действия двигателя

Окончательная установочная мощность двигателя высчитывается из мощности двигателя с учетом возможной перегрузки в момент запуска.

NУ = β·NД

NУ – установочная мощность двигателя, Вт

NД – потребляемая мощность двигателя, Вт

β – коэффициент запаса мощности

Коэффициент запаса мощности может быть приближенно выбран из таблицы:

N, кВт Менее 1 От 1до 5 От 5 до 50 Более 50
β 2 – 1,5 1,5 – 1,2 1,2 – 1,15 1,1

Предельная высота всасывания (для центробежного насоса)

Всасывание в центробежном наосе происходит за счет разности давлений в сосуде, откуда происходит забор перекачиваемой среды, и на лопатках рабочего колеса. Чрезмерное увеличение разности давлений может привести к появлению кавитации – процессу, при котором происходит понижение давления до значения, при котором температура кипения жидкости опускается ниже температуры перекачиваемой среды и начинается ее испарение в пространстве потока с образованием множества пузырьков. Пузырьки уносятся потоком дальше по ходу течения, где под действием возрастающего давления они конденсируются, и происходит их “схлопывание”, сопровождаемое многочисленными гидравлическими ударами, негативно сказывающимися на сроке службы насоса. В целях избегания негативного воздействия кавитации необходимо ограничивать высоту всасывания центробежного насоса.

Потребляемая мощность насоса

Геометрическая высота всасывания может быть определена по формуле:

hг = (P0-P1)/(ρ·g) — hсв — w²/(2·g) — σ·H

hГ – геометрическая высота всасывания, м

P0 – давление в заборной емкости, Па

P1 – давление на лопатках рабочего колеса, Па

ρ – плотность перекачиваемой среды, кг/м3

g – ускорение свободного падения, м/с2

hсв – потери на преодоление гидравлических сопротивлений во всасывающем трубопроводе, м

w²/(2·g) – скоростной напор во всасывающем трубопроводе, м

σ·H – потери на добавочное сопротивление, пропорциональное напору, м

где σ – коэффициент кавитации, H – создаваемый насосом напор

 

Коэффициент кавитации может быть рассчитан по эмпирической формуле:

σ = [(n·√Q) / (126H4/3)]4/3

σ – коэффициент кавитации

n – частота вращения рабочего колеса, сек-1

Q – производительность насоса, м3

Н – создаваемый напор, м

Также существует формула для центробежных насосов для расчета запаса напора, обеспечивающего отсутствие кавитации:

Hкв = 0,3·(Q·n²)2/3

Hкв – запас напора, м

Q – производительность центробежного насоса, м3

n – частота вращения рабочего колеса, с-1

Источник: lektsia.com

Расчет методом вычисления и методом измерения.

Насос представляет собой одно из основных механических устройств, которое используется для перемещения жидкости с определенной скоростью. Единицей эффективности любого устройства передающего энергию на расстояние является его мощность. Обычно мощность измеряется в ваттах (Вт) и киловаттах (кВт), но измерение в лошадиных силах (л.с.) по-прежнему широко используется для измерения мощности высокопроизводительных электрических устройств в США. 1 лошадиная сила (л.с.) приравнивается к 746 Вт.

Быстрая формула

• Мощность потока воды (л.с.) (напор) = минимальная мощность, необходимая для запуска водяного насоса

• TDH = полный скоростной напор = перемещение жидкости по вертикали (в футах) + потеря от трения в трубе

• Q = производительность (расход жидкости в галлонах в минуту)

• SG = удельный вес жидкости (удельный вес воды равен 1)

• Мощность потока воды = TDH ∗ Q ∗ SG / 3960

• Фактическая потребляемая мощность = (мощность потока воды (л.с.)) / (эффективность насоса).

Обычно применяется десятичная система записи чисел (50% → 0,5).

Расчет мощности водяного насоса

1. Определите требуемый расход.

Необходимый поточный расход перекачиваемой насосом жидкости зависит от потребности вашего проекта. Определите эту величину в галлонах в минуту (gpm=гал/мин).

Результат вычисления необходим для того чтобы определить какие насосы и трубы вам понадобятся.

Пример: Согласно плану орошения, подготовленного садовником, требуемый поточный расход: 10 галлонов в минуту

Расчет мощности водяного насоса

* Справка: 1 foot (ft) = 1 фут = 0.3048 м ; 50 feet = 50 футов = 15.24 м

2. Измерьте высоту, на которую необходимо перекачивать воду.

Это расстояние по вертикали от верхнего уровня грунтовых вод (или верхнего уровня воды в первом резервуаре) до уровня конечного пункта назначения воды. Не принимайте во внимание расстояние по горизонтали, на которое необходимо перекачивать воду. Если уровень воды изменяется со временем, используйте максимально предолагаемое расстояние. Это «высота подачи воды» (напор), который должен будет создать ваш насос.

Пример: Когда садовый резервуар почти пуст (самый низкий предолагаемый уровень), его уровень воды на 50 футов ниже поверхности сада, который нуждается в поливе

Расчет мощности водяного насоса

3. Оцените потери от трения в трубе.

Помимо минимального давления, необходимого для перекачивания воды на определенное расстояние, вашему насосу также необходимо преодолеть силу трения, создаваемую при перемещении воды по трубам. Общая сила трения зависит от материала, использованного при производстве труб, внутреннего диаметра и длины трубы, а также от наличия изгибов и способа монтажа. Посмотрите на значения потерь от трения в трубах, в таблицах в приложении. Запишите суммарную потерю трения в футах (это означает количество футов, которое вы «теряете» в высоте подачи воды насосом из-за трения)

* Справка: 1’’ (inch) = 1 дюйм = 2,54 см

Пример: Садовник решает использовать пластиковые трубы диаметром 1 дюйм и нуждается в трубе общей длиной 75 футов (включая длину по горизонтали ). Согласно таблице, на трение в трубах при использовании пластиковых труб диаметром 1 » происходит потеря 6,3 футов напора воды на каждые 100 футов общей длины трубы.

75фт ∗ 6,3 фт напора / 100 фт = 4,7 фт напора

Примем во внимание также потерю от трения в каждом монтажном соединении трубы. Для пластиковой трубы диаметром 1 «, одним 90º коленным разъемом и тремя резьбовыми соединениями потеря соответствует 15 футам.

Суммируя все потери вместе получим общую потерю от трения, которая составит:

4,7 + 15 = 19,7 фута или около 20 футов.

Эти диаграммы часто включают в себя оценку скорости воды, также основанную на её расходе и типе используемых труб. Лучше всего поддерживать скорость ниже 5 футов / с, чтобы предотвратить «гидравлический молот», повторяющуюся стучащую вибрацию, которая может повредить ваше оборудование.

Расчет мощности водяного насоса

4. Суммируйте вместе высоту подачи воды и потери от трения.

Вертикальное расстояние, которое должна преодолеть вода и потери от трения в трубе составляют «суммарный скоростной напор» или TDH. Это общая нагрузка, которую должен преодолеть насос.

Пример: TDH = вертикальное расстояние + потеря от трения = 50 футов + 20 футов = 70 футов.

Таблица удельного веса элементов
Таблица удельного веса элементов

5. Обратите внимание на удельный вес, если вы откачиваете жидкость отличную от воды.

В основной формуле расчета мощности насоса предполагается, что вы перекачиваете воду. Если вы перекачиваете другую жидкость, посмотрите ее «удельный вес» в Интернете или в техническом справочнике. Жидкости с более высокой удельной массой более густые и соответственно требуют от насоса большей мощности.

Пример: В нашем примере садовник перекачивает воду, соответственно удельный вес воды равен 1.

Расчет мощности водяного насоса

6. Введите эти значения в формулу мощности потока воды.

Мощность потока воды или минимальная мощность, необходимая для запуска насоса, равна TDH∗Q∗SG / 3960  

где TDH представляет собой полный скоростной напор в футах, Q — расход жидкости в галлонах в минуту (gpm), а SG — удельный вес (1 для воды). Введите все значения, которые вы определили в эту формулу, чтобы рассчитать мощность водяного насоса для вашего проекта.

Пример: садовый насос должен преодолеть TDH 70 футов и произвести расход Q 10 галонов / мин. В случае перекачивания воды, SG равно 1.

Мощность насоса = TDH∗Q∗SG / 3960 = 70∗10∗1 / 3960 = ~0,18 л.с.

Расчет мощности водяного насоса

Источник: krepcom.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector