Принцип работы вихревого насоса


В системах, которых есть необходимость в высоком напоре при небольшой подаче, используются вихревые насосы. Для перекачивания смесей жидкости и газов также применяют вихревые насосы.

Благодаря различным видам перекачиваемых сред, аппараты широко используются в разных отраслях промышленности.

1 Применение

Аппараты вихревого типа используются для перекачивания жидкостей.

Аппараты эксплуатируют для таких целей:

  • водоочистительные системы;
  • подача воды в дома частного назначения;
  • пожаротушение;
  • поливные конструкции;
  • вентиляционные системы;
  • химическая промышленность;
  • теплоконструкции;
  • автомойки;
  • при транспортировке легколетучих растворов;
  • для перекачивания канализационных стоков;
  • транспортировка жидкостно-газовых веществ.

к меню ↑

1.1 Конструктивные особенности

Насос вихревой состоит из таких узлов:

  • корпус в виде спирали;
  • рабочее колесо, состоящее из дисков, в которых встроены лопасти;
  • нагнетательный элемент (электромагнитного или вихревого типа);
  • трубки всасывания и напора;
  • соединительные элементы для фиксации деталей.

к меню ↑

1.2 Принцип действия вихревых насосов

Принцип работы вихревого насоса состоит в следующем:

  • при запуске мотора, крутящий момент передается крыльчатке. Крыльчатка расположена в корпусе устройства;
  • когда лопасти вращаются, жидкость подхватывается и закручивается благодаря центробежным силам;
  • лопасти вращаются со скоростью выше, чем скорость передвижения жидкости. Скорость передается от лопастей к жидкости, благодаря этому в камере образовывается вихревое движение.  Благодаря этому, жидкость многократно проходит через камеру, получая заряд энергии.

Благодаря многократному прохождению через колесо, жидкость получает напор, больше чем в других устройствах. Расход мощности минимальный, при максимальных напорах жидкости.

Но требования к чистоте жидкости очень велики, поскольку вихревой самовсасывающий насос не способен справиться с жидкостями, в которых есть твердые включения. Поскольку частицы деформируют и выводят из строя крыльчатку.
к меню ↑

1.3 УСТРОЙСТВО ВИХРЕВОГО НАСОСА ДЛЯ ХОЛОДНОЙ ВОДЫ (ВИДЕО)


к меню ↑

2 Виды аппаратов

Приборы вихревого вида делятся на два основных типа:


  • открыто-вихревой вид отличается удлиненными лопатками, небольшим диаметром колеса рабочего. С напорным отверстием соединено канальное кольцо;
  • закрыто-вихревой вид отличаются короткими лопатками, которые расположены с противоположным уклоном, рабочий канал и диаметр колеса равны. Кольцевой канал соединен с отверстиями входа и выхода.

При работе первого типа, вода с патрубка в кольцевой канал проходит через камеру с крыльчаткой и отверстие впускное.

Во втором типе, жидкость попадает в канал через впускное отверстие из патрубка всасывания.

По расположению относительно перекачиваемой среды делятся на такие виды:

  • погружной транспортирования жидкостей из емкостей и скважин для дальнейшего использования в питьевых и промышленных целей. Аппараты не перекачивают жидкости с твердыми и волокнистыми включениями;
  • механизмы поверхностного типа используются для оросительных систем, транспортировки чистой воды и систем водоподачи. Поверхностный насос размещается в защищенном от влаги месте.

По совмещенности аппараты делятся на две группы:

  • свободно вихревые насосы, которые применяются для дренажных и фекальных систем. Дренажный аппарат перекачивает массы городские и сточные с плотностью не более 1050 килограмм на кубический метр. Так же применяются в горнодобывающей промышленности, применяя бурение. Свободно-вихревые насосы функционируют с чистой и грязной водой;

  • центробежно вихревой насос применяется для транспортировки жидкости с температурой до ста пяти градусов. Центробежно-вихревой насос отличается двумя рабочими колесами. Одно-центробежное, другое- вихревое. Основное преимущество центробежно-вихревых насосов в большом коэффициенте полезного действия, чем у вихревого типа;
  • вихревые вакуумные насосы используются как воздуходувки. Отличаются низким уровнем шума при работе, не нуждаются в техобслуживании. Используют как тепловой аппарат для подачи распространения горячего воздуха. Используются для сушки стеклотары, аэрации прудов и водоемов, в стоматологических приборах.

к меню ↑

2.1 Преимущества и недостатки аппаратов

К преимуществам относятся:

  • вихревые насосы для скважины имеют самовсасывающие способности;
  • в отличие от центробежного насоса, аппараты вихревого типа образуют напор в семь раз больше при одинаковых условиях использования. Благодаря этому свойству помпы отличаются компактностью при высоком напоре и производительностью до двенадцати литров в секунду. Это свойство способствует применение вихревых помп в химической промышленности, где трубные магистрали отличаются маленьким диаметром, с высоким гидравлическим сопротивлением. Также благодаря своим свойствам, механизмы используются для водоснабжения сельских угодий, с длинным магистральным путем и низким расходом;

  • в отличие от центробежного устройства, самовсасывающий насос вихревого типа работают как с жидкими, так и с газо-жидкостными средами. Отличаются способностью с наличием воздуха создавать напор;
  • аппарат отличается способностью поднимать воду из глубины до двадцати метров;
  • поверхностный насос вихревого типа создает напор не уступающий промышленному оборудованию;
  • эксплуатация прибора без наполнения жидкостью. Центробежные устройства не запускаются, не наполнившись водой, а вихри всасывают воду при опустошенной всасывающей магистралью. Это свойство позволяет транспортировать летучие жидкости такие как бензин и газ. Зона применения аппаратов расширяется от химической промышленности и закачивания воды до автозаправочных станций и заправки самолетов.

Недостатки:

  • коэффициент полезного действия не превышает сорока пяти процентов, что не позволяет применять высокомощные аппараты этого вида из-за невыгодности. Из-за низкого коэффициента полезного действия, аппараты применяются в тех случаях, где помпы центробежного типа использовать невозможно.;
  • насос скважинный может функционировать в условиях чистой жидкости. Поэтому устройства используются как насосы для воды без загрязнений;
  • водяные насосы не могут перекачивать вязкие жидкости.

к меню ↑

2.2 Популярные модели и их описание

Наиболее распространенные модели:

  • насос вихревой Aquatica775121 поверхностного типа применяется для бытовых нужд. Корпус изготовлен из чугуна с алюминиевым кожухом. Рабочее колесо вихревого насоса изготовлено из латуни. Графитокерамическое механическое уплотнение. Диаметр патрубков два с половиной сантиметра. Мощность 380в. Производительность сорок литров в минуту. Напор сорок метров. Насосы aquatica функционируют с температурой жидкости до сорока градусов Цельсия. Глубина всасывания семь метров. Используются для оросительных систем и подачи воды;
  • Акватик 777311 погружного типа используется в скважинах с диаметром от 11 сантиметров. Мощность устройства 0,750 кВт, производительность до 3 кубических метров в час, создает напор до ста десяти метров. Транспортирует воду с температурой не выше 35 градусов по Цельсию с содержанием примесей не больше 50 грамм на кубический метр. Рабочее колесо изготовлено из латуни, корпус из нержавеющей стали, нагнетательный корпус из стали;
  • насос Optima TPS60 используется для транспортировки жидкостей из скважин и емкостей. Рабочее колесо из латуни, вал из нержавеющей стали. Максимальная производительность 2000 литров литров в час, мощность 0,37 кВт. Перекачивает жидкость с температурой жидкости до 40 градусов Цельсия. Изготовлен в Польше;
  • погружной насос Pedrollo перекачивает воду с температурой до 90 градусов Цельсия. Латунные корпус и рабочее колесо. Электронасос имеет керамо-графитовое механическое уплотнение. Pv 55 отличается наличием механического уплотнения;
  • СВН применяется для топливных и пищевых сред. Транспортирует жидкости с температурным режимом от -40 до 50 градусов по Цельсию, с плотностью не превышающей 1000 килограмм на кубический метр. Создает напор до 26 метров, коэффициент полезного действия составляет тридцать восемь процентов.

Реле давления автоматизирует подачу жидкости. Выставив реле давления на необходимые границы, система подачи жидкости  автоматизируется, включая и выключая устройство при достижении показателей.

Аппараты вихревого типа задействованы в различных отраслях промышленности благодаря способности транспортировать легколетучие жидкости и создавай высокие показатели напора.

byreniepro.ru

Вихревой насос – устройство и принцип действия

Вихревой насосВихревой насос высокого давления имеет достаточно простую конструкцию. Основной деталью его устройства является рабочее колесо, оборудованное лопастями. Оно располагается в прочном корпусе и фиксируется на валу. Между корпусом и колесом существует зазор, шириной не более 0,2 мм.

Главное отличие между этими насосами и осевыми агрегатами заключается в методе подачи жидкости внутрь кожуха. В вихревых приборах жидкость подается по линии касания с рабочим колесом. Такое устройство вихревого насоса делает его более простым в эксплуатации и ремонте.


Вихревой насос высокого давленияПринцип работы прибора заключается во вращении колеса вместе с жидкостью. На всасываемую воду воздействует центробежная сила вращения и всасывающая сила, которая образуется в пазах. Благодаря центробежной силе жидкость направляется в сторону периферии лопастей. В результате этого в пазах образуется разрежение, благодаря которому появляется сила всасывания. Когда она подавляет центробежную силу, вода начинает двигаться в сторону колеса.

Такая процедура повторяется до момента, когда силы воздействие не станут равными. В итоге на каждой из лопастей появляется вихрь, который увеличивает давление. Несмотря на довольно сложный принцип действия, конструкция вихревого насоса является предельно простой.

Преимущества и недостатки вихревого оборудования

Вихревые насосы для воды имеют несколько плюсов. К ним относится:

Вихревые насосы для воды

  • Более низкая стоимость по сравнению с оборудованием других типов;
  • Простая конструкция;
  • Способность к самостоятельному всасыванию воды;
  • Возможность использования в жидкостно-газовой смеси.

Агрегаты этого типа имеют и ряд определенных недостатков. Во-первых, они обладают небольшим КПД – в среднем он не превышает 45 %. Данный показатель не дает вихревым насосам работать на стабильно высокой мощности. Во-вторых, насосы не справляются с перекачиванием жидкостей высокой вязкости.

Классификация агрегатов по методу действия

В зависимости от способа действия, вихревые насосы могут быть следующих типов:

Преимущества и недостатки вихревого оборудования

  • Возвратно-поступательными – в таких агрегатах циркуляция жидкости осуществляется посредством перемещения поршня, расположенного в цилиндре. В продаже можно найти возвратно-поступательные вихревые насосы, как с поршнем, так и с мембраной;
  • Роторные – в этих устройства поршень вытесняет воду. По типу рабочего органа такие насосы делятся на роликовые, винтовые, пластинчатые и шестеренчатые;
  • Динамичные – в этих насосах движение жидкости осуществляется в результате передачи к ней кинетической энергии.

Каждый из перечисленных типов агрегатов нашел применения в конкретных областях. Они отличаются между собой по конструкции и габаритам.

Разделение насосов по типу артерий и колеса

В зависимости от размещения водной артерии, в продаже можно найти такие типы вихревых насосов:

  • Агрегаты с открытой артерией:
  • Насосы с закрытой водной артерией.

По типам рабочих колес, насосы делятся на:

  • Оборудование с открытым колесом;
  • Устройства с закрытым колесом.

Отличие вихревого насоса от центробежногоНасосы закрытого типа оборудуются короткими лопастями. Всасывание жидкости осуществляется через специальный патрубок. Такие агрегаты обладают низким показателем кавитации. В связи со стыковкой продольного вихря и жидкой субстанции, темп движения воды на входе немного замедляется. С целью повышения свойств кавитации перед вихревым колесом подключается центробежная ступень. Такое оборудование получило название центробежно-вихревого. У этих агрегатов КПД немного выше, чем у вихревых насосов, и составляет порядка 48 %. Приборы такого рода широко применяются для систем водоснабжения и питания котлов.

Агрегаты с открытым колесом отличаются от приборов предыдущего типа большей длиной лопастей. За счет этого их показатели кавитации на порядок выше, что позволяет использовать их для выкачивания сточных вод в промышленности и коммунальных предприятиях.


В наши дни многие производители сочетают в насосах свойства и преимущества сразу нескольких видов оборудования. Благодаря этому, на современном рынке можно встретить вакуумный, воздушный и тепловой вихревой насос. Основная разница между этими приборами заключается в технических характеристиках и областях применения. Агрегаты первого типа успешно используются в химической промышленности для работы с газообразными веществами. Тепловые устройства нашли применение при обеспечении жидкостью различных паровых электростанций. Воздушные вихревые насосы используются с целью поддержания работы глубоких водяных скважин промышленного значения.

Сферы применения вихревых насосов

Современную промышленность достаточно тяжело представить без насосного оборудования. Не стали исключением и вихревые насосы. В наши дни они используются в таких отраслях:

Технические характеристики вихревого оборудования

  • Для поддержания работы котельных станций;
  • Для перекачивания жидкостей, в состав которых входят газообразные компоненты;
  • Для подачи воды в сельские водные станции;
  • Для работы станций автомобильного обслуживания;
  • В качестве элементов компрессорных установок;
  • С целью перекачивания щелочей и кислот.

Бесперебойная работа во всех этих сферах промышленности требует от насосов устойчивости к механическим повреждениям, агрессивным химическим веществам и износу.

Вихревой или центробежный насос – какой лучше?

С целью понять, что лучше – насос центробежный или вихревой, следует определиться с несколькими факторами – областями применения и характеристиками агрегатов. Центробежные насосы могут использоваться для откачки чистой или содержащей небольшие примеси воды из прудов, глубиной не более 9 метров. При работе такие устройства создают небольшой напор, потребляют значительное количество электроэнергии и имеют достаточно большие габариты.

Вихревой или центробежный насос – какой лучше?Главное отличие вихревого насоса от центробежного заключается в том, что агрегаты первого типа создают больший напор, имея, при этом, такую же мощность. Они отличаются меньшими габаритами и потребляют гораздо меньше электроэнергии. Помимо этого, вихревые насосы могут перекачивать жидкость, содержащую в себе газы.

Для сравнения также важно отметить и недостатки вихревых насосов, которых нет у центробежных приборов. Главный из них заключается в неустойчивости вихревых агрегатов к частым механическим повреждениям. В отличие от них, центробежные насосы изготавливаются из чугуна, который легко переносит удары.

Сравнивая агрегаты обоих типов, достаточно сложно определить лучшего из них. Можно только отметить, что если покупатель не нуждается в большом напоре, и хочет выкачивать грязную воду, то можно приобрести прочный центробежный насос, который, к тому же, будет работать намного тише. Если же необходимо добиться максимального напора, то лучше приобретать вихревый агрегат – он выдает больше шума, но стоит на порядок дешевле.


Не стоит также забывать, что производители постоянно комбинируют свойства насосов разных типов. Сегодня очень легко приобрести центробежный вихревой насос, который будет обладать всеми теми свойствами и преимуществами, что и агрегаты, который мы сравниваем.

sadovij-pomoshnik.ru

Конструкция и принцип работы[править | править код]

Основным элементом вихревого насоса является рабочее колесо, оснащённое лопастями и помещённое в корпус и закреплённое на валу. Между колесом насоса и корпусом имеется минимальный зазор (до 0,2 мм). Принципиальным отличием вихревых моделей от осевых и центробежно-вихревых аналогов является способ подачи перекачиваемой жидкости в кожух. Здесь она подаётся и выходит из кожуха насоса по касательной линии к рабочему колесу. В корпусе агрегата жидкость вращается вместе с колесом. На неё воздействует центробежная сила, которая возникает в результате указанного вращения, и всасывающая сила пазов, расположенных между лопастями колеса. Под влиянием центробежной силы вода двигается к периферии лопастей насоса. Вследствие этого появляется разрежение в пазах и возникает всасывающая сила. Когда всасывающее воздействие превышает центробежное, жидкость двигается к центру колеса. Данная тенденция сохраняется, пока силы не уравняются, после чего цикл повторяется. В результате на каждой лопасти образуется вихрь, что приводит к увеличению давления. Из-за такого принципа действия насосы данного типа были названы вихревыми. Жидкость внутри корпуса совершает сложные движения, но конструкция самого устройства предельно проста.

ru.wikipedia.org

Особенности конструкции

Основной элемент любого вихревого насоса, как уже было сказано выше, – рабочее колесо (крыльчатка), оснащенное лопастями, которые по отношению к оси такого колеса могут располагаться в радиальном или наклонном положении. Вращение крыльчатки происходит во внутренней части цилиндрической камеры, зазоры между стенками которой и торцевыми частями лопаток минимизированы. Жидкая среда сначала всасывается через входное отверстие, затем перемещается под действием лопастей во внутренней камере насосного устройства и выталкивается через выходной патрубок.

Конструктивно крыльчатка вихревого насоса представляет собой большой стальной диск, по окружности которого с помощью фрезерования сделаны выемки, формирующие лопасти. Принимающий и выходной патрубки вихревого насоса находятся в верхней части его корпуса.

Во внутренней части вихревых насосных устройств имеется отливной канал, который концентричен оси вала и направлен от принимающего патрубка к выходному. Разделение всасывающей и напорной полостей рабочей камеры обеспечивает специальная перемычка, которая прижимается к рабочему колесу с минимально существующим зазором (составляющим две десятых миллиметра) и одновременно перекрывает не менее двух лопастей.

Если сравнивать насосы вихревые с устройствами обычного центробежного типа, то при аналогичных размерах и равной частоте вращения крыльчатки первые способны создавать значительно более высокое давление перекачиваемой среды (в семь раз больше). Вихревые насосы за счет особенностей своей конструкции могут не только функционировать в самовсасывающем режиме, но и перекачивать газово-жидкостные среды.

Крыльчатка насоса вихревого типа, вращающаяся внутри его корпуса, располагается в нем эксцентрично. Так создается наименьший зазор между торцевой частью лопаток и внутренними стенками камеры. Наиболее значимое различие центробежных и вихревых насосов состоит в том, что в последних жидкость, попадающая в рабочую камеру, двигается по касательной по отношению к окружности крыльчатки. Продвижение жидкости по специальной канавке, проходящей по всей окружности рабочей камеры, обеспечивается за счет центробежных сил, создаваемых при вращении жидкой среды совместно с крыльчаткой. Канал, по которому жидкость внутри вихревого насосного устройства перемещается от принимающего патрубка к выходному, разделен специальным уплотнительным выступом. Последний необходим для того, чтобы не допустить попадания перекачиваемой жидкой среды из напорной зоны во всасывающую камеру.

Принцип действия

Принцип действия вихревых насосов довольно прост. При совместном вращении перекачиваемой жидкой среды и крыльчатки создаются центробежные силы, под действием которых жидкость выталкивается в выходной патрубок под определенным напором. Если сравнивать центробежный и вихревой насосы по принципу действия, можно выделить ряд отличий.

Так, особенности функционирования вихревого насоса заключаются в следующем.

  • При вращении крыльчатки в принимающий патрубок поступает небольшой объем перекачиваемой жидкости, которая начинает перемещаться по специальным пазам вращающегося элемента устройства.
  • Жидкость, попавшая в пазы крыльчатки, перемещается по ним от периферийной части лопастей к центральной (центробежный самовсасывающий насос работает по-другому).
  • Жидкость внутри насоса под воздействием центробежной силы перемещается по канавкам в лопатках в обратную сторону (к их периферии) и под определенным напором выталкивается в выходной патрубок.
  • В области принимающего патрубка лопатки, вращаясь, создают разрежение воздуха, что и обеспечивает всасывание жидкости во внутреннюю часть насоса.

Конструкция вихревого насоса разработана таким образом, что за один оборот крыльчатки цикл всасывания перекачиваемой жидкости и ее выталкивания в напорный патрубок повторяется много раз, что приводит к увеличению энергии потока жидкой среды и, соответственно, возрастанию значения формируемого напора.

Основные разновидности

Вихревые насосы по своему конструктивному исполнению делятся на две категории:

  1. открыто-вихревые;
  2. закрыто-вихревые.

Насосы первого типа отличаются следующими конструктивными особенностями.

  • Лопасти, которыми оснащена крыльчатка, имеют удлиненную форму.
  • Крыльчатка, если сравнивать ее с просветом рабочего канала, отличается уменьшенным диаметром.
  • Кольцевой канал соединен с напорным патрубком.

Электронасосы закрыто-вихревого типа также обладают определенными конструктивными особенностями.

  • Лопатки насосов данного типа, если сравнивать их с подобными элементами открыто-вихревых устройств, более короткие и располагаются на поверхности рабочего колеса под разными углами.
  • Поперечное сечение внутренней камеры равно диаметру рабочего колеса.
  • Кольцевой канал закрыто-вихревых насосов соединяется и с принимающим патрубком, и с выходным.

Естественно, различия затрагивают не только конструкцию насосного оборудования указанных типов, но и принцип действия таких устройств. Насосы открыто-вихревого типа функционируют следующим образом.

  1. Перекачиваемая жидкость по принимающему патрубку поступает во внутреннюю рабочую камеру.
  2. Захваченная вращающейся крыльчаткой, перекачиваемая среда попадает в кольцевой канал.
  3. Вихревой поток перекачиваемой жидкости, перемещаясь по кольцевому каналу, способствует формированию напорного потока, который и направляется к выходному патрубку.

Поскольку диаметр крыльчатки у насосов закрыто-вихревого типа, как уже говорилось выше, равен поперечному сечению рабочей камеры, жидкость из входного патрубка сразу попадает в кольцевой канал, где и создается напорный поток.

Классифицируют насосы вихревого типа и по их расположению относительно перекачиваемой среды. Так, в зависимости от данного параметра различают:

  • устройства погружного типа, которые, как понятно из их названия, в процессе эксплуатации находятся в толще перекачиваемой среды (используют такие насосы как в бытовых, так и в промышленных целях, перекачивая с их помощью чистые жидкости не слишком высокой вязкости);
  • насосы поверхностного типа, которые располагают в непосредственной близости от резервуара с жидкой средой или скважины, надежно защищая их корпус от попадания жидкости (оборудованием данного типа оснащают оросительные системы и системы подачи воды для бытовых целей).

Кроме вихревых насосов классической конструкции, современная промышленность выпускает совмещенные устройства.

  • Насосы свободно-вихревого типа имеют конструкцию, которая позволяет им перекачивать сильно загрязненные жидкие среды. Данные устройства применяют в качестве дренажных и фекальных насосов, а также для оснащения очистных сооружений и в горнодобывающей промышленности (без помощи такого оборудования не обходится бурение скважин, из которых необходимо откачивать жидкие среды).
  • Насосы центробежно-вихревого типа способны работать с жидкими средами, температура которых доходит до 105°. Конструктивной особенностью таких насосов является то, что они оснащены сразу двумя рабочими колесами: центробежным и вихревым. За счет такой конструктивной особенности данное оборудование отличается значительно более высоким КПД (по сравнению с классическими вихревыми устройствами).
  • Вакуумные насосы вихревые могут использоваться в качестве воздуходувки или для откачивания воздуха – создания неглубокого вакуума. Такие насосы просты в использовании и не нуждаются в сложном техническом обслуживании. Они находят широкое применение в качестве теплового аппарата, при помощи которого обеспечивается подача и распространение требуемого количества теплого или холодного воздуха. В частности, такое оборудование успешно используют для сушки стеклотары, с его помощью осуществляют аэрацию искусственных и естественных водоемов.

Достоинства и недостатки

У вихревого центробежного насоса специалисты отмечают целый ряд достоинств.

  1. Вихревой поверхностный насос, если сравнивать его с обычными центробежными с такими же габаритами, способен создавать в семь раз больший напор перекачиваемой жидкости. Благодаря этому свойству подобный насос высокого давления, способный работать с производительностью до 12 литров перекачиваемой жидкой среды в минуту, отличается компактными габаритами.
  2. Многие модели вихревых насосов обладают самовсасывающей способностью, то есть могут запускаться даже в том случае, если входной трубопровод предварительно не заполнен жидкой средой.
  3. Устройство вихревого насоса позволяет использовать такое оборудование для перекачивания не только жидких сред, но и смесей, содержащих в своем составе газообразные включения. Более того, устройства данного типа способны как перекачивать комбинированные среды, так и обеспечивать их транспортировку по трубопроводам с хорошим напором.
  4. В качестве насоса для скважины устройства вихревого типа способны поднимать перекачиваемую жидкую среду с глубины, доходящей до 20 метров.
  5. Поверхностный насос вихревого типа может создавать напор перекачиваемой жидкой среды, не уступающий по своим показателям напору, формируемому при помощи насосного оборудования промышленного назначения.
  6. За счет особенностей своей конструкции вихревой самовсасывающий насос может успешно использоваться для перекачивания и транспортировки летучих жидких смесей (таких, например, как бензин и сжиженный газ).

Естественно, есть у вихревого насосного оборудования и недостатки. Перечислим наиболее значимые из них.

  1. Значение КПД такого оборудования не превышает 45%. Из-за такого низкого КПД использование высокомощных насосов вихревого типа является экономически нецелесообразным. Как правило, применение вихревых насосов для скважин или перекачивания рабочих сред из резервуаров предпочтительно в тех случаях, когда использовать центробежное или любое другое насосное оборудование не представляется возможным.
  2. Применять такой насос для воды допускается только в том случае, если жидкая среда, которую предстоит перекачивать, чистая и не содержит нерастворимых включений.
  3. Особенности конструкции вихревых насосов не позволяют использовать такие устройства для перекачивания вязких жидкостей.

Сферы применения

Существует множество сфер использования вихревых насосов. Рассмотрим наиболее распространенные из них.

  1. С помощью насосных установок на предприятиях химической промышленности перекачивают кислоты, щелочи и другие агрессивные жидкие среды. Насосы вихревого типа отличаются простотой конструкции, что позволяет использовать для их оснащения детали, изготавливаемые из химически стойких полимеров и металлических сплавов, трудно поддающихся механической обработке и литью.
  2. С помощью вихревых насосов транспортируют летучие жидкости. С последними в насос закачивается и пар, который они выделяют. Эффективно справляется с такими смесями насосное оборудование вихревого типа, в отличие от самовсасывающего центробежного насоса. Данным оборудованием, в частности, оснащают АЗС и топливозаправочную технику, используемую на аэродромах и в аэропортах.
  3. Перекачивание жидкостей, содержащих в своем составе большое количество растворенных газов, также осуществляется с использованием вихревых насосов.
  4. Насосными установками вихревого типа оснащают маленькие насосные станции, работающие в автоматическом режиме. Здесь использование насосного оборудования других типов нецелесообразно: центробежные насосы в таких случаях малопригодны, а устройства поршневого типа слишком дороги и громоздки.
  5. Вихревое насосное оборудование задействовано в коммунальном хозяйстве, где требуется транспортировка жидкой среды с малой подачей и большим напором.
  6. Данные гидромашины используются в качестве вакуум-насосов, компрессоров низкого давления и вместо водокольцевых компрессоров.
  7. Вихревыми устройствами, выступающими в функции питательных насосов, оснащают маломощные котельные установки.

Вообще, если учитывать принцип действия и технические характеристики вихревых насосов, можно сделать вывод о том, что их применение оправдано в тех случаях, когда перекачиваемую жидкую среду необходимо транспортировать с небольшой подачей, но большим напором.

Современная промышленность выпускает насосное оборудование вихревого типа, производительность которого составляет минимум 8 и максимум 60 м3/час, а напор – от 25 до 250 метров.

met-all.org

Устройство

Главный рабочий механизм любого вихревого насоса – рабочее колесо. К нему крепятся лопатки, которые могут находиться в радиальном либо наклонном положении. Это колесо установлено и вращается в цилиндрическом корпусе, в котором торцевые зазоры минимально уменьшены. Водная среда сначала всасывается через входное отверстие, перемещается внутри агрегата и выбрасывается под напором из выходного отверстия.

Рабочее колесо этих агрегатов – это массивный диск из стали с пазами, которые выполнены методом фрезерования по окружности. В итоге эти пазы образуют прямолинейные лопатки. Как правило, напорный и всасывающий патрубок находятся в верхней части корпуса. Это обеспечивает самовсасывание жидкости после залива воды при первом запуске оборудования.

Устройство насоса выполнено так, что расположенный концентрично к оси вала отливной канал идёт по направлению вращения от всасывающего до выходного патрубка. Между этими патрубками установлена специальная перемычка, прижимающаяся к рабочему колесу с минимально возможным зазором в 0,2 мм. При этом эта перемычка перекрывает не менее двух лопаток на рабочем колесе. Она нужна для отделения всасывающей полости от напорной камеры.

Важно: вихревые агрегаты для скважины способны создавать давление в 7 раз, превышающее аналогичный показатель у приборов центробежного типа с такой же частотой вращения рабочего колеса и аналогичными габаритами. Помимо самовсасывающей способности насосы вихревого типа могут работать не только с водной средой, но и с газо-водной смесью.

Схема устройства

Чтобы понять принцип действия вихревого агрегата, необходимо представить его схему, которая выглядит как рабочее колесо, закреплённое на валу. К этому рабочему колесу крепятся лопасти. Поскольку расположение колеса в корпусе является эксцентричным, это способствует минимальному зазору между ним и корпусом агрегата.

Если сравнить принцип действия вихревого насосного оборудования с другими агрегатами самовсасывающей группы для скважины (центробежными и осевыми), то устройство прибора выполнено так, что жидкость, поступающая в кожух, продвигается по касательной оси относительно расположения рабочего колеса. По мере движения воды в корпусе на неё воздействуют центробежные силы, образующиеся в ходе её вращения в паре с рабочим колесом.

Устройство вихревого насосного оборудования хорошо видно на схеме.

Отсюда становится понятно, что рабоче колесо (1) установлено в корпусе (2) с минимальными зазорами. В корпусе насосного оборудования выполнен специальный канал (3), который проходит вдоль всей окружности лопаток рабочего колеса. Этот канал тянется от всасывающего патрубка (5) до напорного патрубка (4). Канал разделён уплотняющим выступом (6), который нужен для того, чтобы жидкость не могла перетекать из напорной зоны во всасывающую камеру. Благодаря лопаткам на рабочем колесе водной среде передаётся энергия, которая позволяет жидкости под воздействием инерционных сил продвигаться от входного отверстия к выходному.

Принцип работы

Принцип действия вихревого насосного оборудования так же, как и в приборах центробежного типа, основан на использовании центробежного усилия, которое возникает при вращении рабочего колеса. Однако в отличие от центробежных аналогов вихревые насосы имеют свои особенности работы, которые состоят в следующем:

  1. Во время вращения рабочего колеса насосного оборудования небольшой объём воды из всасывающего трубопровода попадает в пазы на рабочем колесе.
  2. В результате она продвигается от периферии к центру агрегата, что не похоже на работу центробежного насоса.
  3. После этого этот объём воды под влиянием центробежного усилия начинает продвигаться вдоль лопаток от центральной части к периферии.
  4. В итоге вода получает ускорение и выбрасывается в выходное отверстие.
  5. Здесь скоростная энергия воды переходит в энергию давления.
  6. Под влиянием давления и всасывающего действия лопаток новый объём жидкости снова попадает на лопатки и происходит повторение цикла.

Важно: за один оборот рабочего колеса цикл возникновения давления и подсасывающего действия лопаток повторяется многократно, что способствует приращению энергии и увеличению напора.

Разновидности

Насосное оборудование вихревого типа можно разделить на два вида:

  • открыто-вихревые агрегаты;
  • закрыто-вихревые насосы.

Их принцип работы немного отличается, поскольку насосы первого типа имеют:

  • удлинённые лопатки рабочего колеса;
  • уменьшенный диаметр рабочего колеса в сравнении с просветом рабочего канала;
  • кольцевой канал в приборе соединён с напорным отверстием.

Закрыто-вихревые агрегаты отличаются таким строением:

  • укороченные лопатки, установленные под разным углом наклона (наклон вперёд, загиб назад либо под определённым углом назад или вперёд);
  • диаметр рабочего колеса равен просвету рабочего канала;
  • кольцевой канал имеет непосредственное соединение с входным и выходным отверстием.

Принцип работы у каждой разновидности отличается. Во время работы открыто-вихревого агрегата вода из входного патрубка через впускное отверстие и рабочую камеру с крыльчаткой попадает в кольцевой канал. Здесь рабочий вихревой процесс способствует формированию напорного потока. Этот поток направляется через выходное отверстие в магистральный трубопровод.

В агрегатах закрыто-вихревого типа водная среда из всасывающего патрубка проникает через впускное отверстие в кольцевой канал. Здесь формируется напорный поток и направляется через выходное отверстие в магистральный трубопровод.

Достоинства и недостатки

К преимуществам вихревого насосного оборудования можно отнести следующее:

  • При тех же габаритах и частоте вращения рабочего колеса вихревые насосы могут создавать напор, в 7 раз превышающий эту величину у агрегатов центробежного типа.
  • Многие вихревые агрегаты для скважины обладают способностью к самовсасыванию.
  • В отличие от насосного оборудования центробежного типа, которое не может работать с воздухом во внутренней камере, приборы вихревого типа могут нагнетать давление не только при работе с водой, но и с газожидкостными смесями. При необходимости они даже могут создать нужный напор с воздухом внутри.
  • Поскольку в подобном оборудовании используется не крыльчатка, а импеллер, это устройство создаёт напор наподобие эжекторного устройства. Это способствует тому, что агрегат может поднимать воду со скважины глубиной более 15-20 м, чего нельзя сказать о центробежном насосе без эжектора.
  • Работа насоса создаёт настолько сильный напор воды, что подобное оборудование по мощности можно сравнить с насосными изделиями промышленного назначения.

Однако у данного оборудования есть и свои недостатки, среди которых можно перечислить следующие:

  • КПД вихревого насосного оборудования достаточно низкий и равен 35-45 %. Именно поэтому вихревые агрегаты высокой мощности использовать невыгодно.
  • Такое изделие не может транспортировать рабочую среду с высокой вязкостью.
  • Кроме этого вихревой агрегат очень чувствителен к загрязнённой рабочей среде, то есть воде с большим содержанием примесей. Поэтому такое оборудование можно использовать только для скважины с чистой водой.

Важно: из-за маленького зазора между лопастями рабочего колеса и корпусом перекачивание водной среды с абразивными частицами может привести к быстрому износу механических частей оборудования и его выходу из строя.

Сфера использования

Если учитывать принцип работы, преимущества и недостатки данных агрегатов, то их использование оправдано там, где нужно создать большой напор в комплексе с небольшой подачей воды. К примеру, такая ситуация может потребоваться для небольшой автоматизированной насосной станции для водоснабжения загородного дома.

Вторая область использования такого оборудования связана со способностью насоса перекачивать газожидкостную смесь. Именно поэтому насосы вихревого типа с успехом используются для перекачки летучих жидкостей, а именно керосина и бензина, на автозаправочных станциях.

Стоит знать: вихревые агрегаты выпускаются с производительностью равной 8-60 кубометров в час и напором 25-250 м. Также в продаже есть комбинированные центробежно-вихревые изделия, которые отличаются улучшенным КПД.

vodakanazer.ru

Самовсасывающие насосы: устройство и виды

Самовсасывающие насосы качают воду с глубины 8-9 метров, сами при этом находятся на поверхности. Вода поднимается за счет того, что в центральной части корпуса, за счет движения колес с лопастями, создается область низкого давления. Стремясь ее заполнить, вода поднимается вверх. Вот и получается, что насос всасывает воду.

Как и любой другой насос, самовсасывающий состоит из двигателя и рабочей камеры, в которой находится нагнетательный механизм. Валы насоса и двигателя соединяются через муфту, надежность соединения и герметичность определяется типом уплотнителя.Уплотнители бывают двух типов:

  • сальниковый — более дешевый и менее надежный;
  • торцевой уплотнитель — более надежный, но дорогой.

Есть модели самовсасывающих насосов с магнитными муфтами. Они уплотнения не требуют, так как сквозных соединений не имеют. Это на сегодняшний день самая надежная конструкция, но и самая дорогая тоже.

Строение и принцип действия

По способу действия самовсасывающий насос может быть вихревым и центробежным. В обоих ключевым звеном является крыльчатка только имеет она разное строение и установлена в корпусе разной форы. От этого меняется принцип работы.

Центробежные

Центробежные самовсасывающие насосы имеют интересное строение рабочей камеры — в виде улитки. В центре корпуса закреплены рабочие колеса. Колесо может быть одно, тогда помпа называется одноступенчатой, может быть несколько — многоступенчатая конструкция. Одноступенчатые всегда работают на одной мощности, многоступенчатые могут в зависимости от условий изменять производительность, соответственно, являются более экономичными (меньше расходую электроэнергии).

Основной рабочий элемент в данной конструкции — колесо с лопастями. Лопасти загнуты в обратном направлении по отношению к движению колеса. При движении они как-бы расталкивают воду, отжимая ее к стенкам корпуса. Такое явление называется центробежной силой, а зону между лопастями и стенкой называют «дифузор». Итак, рабочее колесо движется, создавая на периферии область повышенного давления и подталкивая воду в сторону выходного патрубка.

Одновременно в центре рабочего колеса образуется зона пониженного давления. В нее засасывается вода из подающего трубопровода (всасывающей магистрали). На рисунке выше поступающая вода обозначена желтыми стрелками.  Далее она крыльчаткой проталкивается к стенкам и за счет центробежной силы поднимается наверх. Этот процесс постоянный и бесконечный, повторяется до тех пор, пока крутится вал.

С принципом действия центробежных насосов связан их недостаток: создавать центробежную силу из воздуха крыльчатка не может, потому перед работой корпус заполняют водой. Так как часто работают помпы в прерывистом режиме, чтобы вода не вытекала из корпуса при останове, на всасывающем патрубке ставят обратный клапан. Вот такие особенности работы центробежных самовсасывающих насосов. Если обратный клапан (он должен быть обязательно) на подающем трубопроводе стоит внизу, заполнять приходится и весь трубопровод, а для этого понадобится не один литр.

Название Мощность Напор Максимальная глубина всасывания Производительность Материал корпуса Подсоединительные размеры Цена
Калибр НБЦ-380 380 Вт 25 м 9 м 28 л/мин чугун 1 дюйм 32$
Metabo P 3300 G 900 Вт 45 м 8 м 55 л/мин чугун (приводной вал из нержавеющей стали) 1 дюйм 87$
ЗУБР ЗНС-600 600 Вт 35 м 8 м 50 л/мин пластик 1 дюйм 71$
Elitech НС 400В 400Вт 35 м 8 м 40 л/мин чугун 25 мм 42$
PATRIOT QB70 750 Вт 65 м 8 м 60 л/мин пластик 1 дюйм 58$
Джилекс Джамбо 70/50 Ч 3700 1100 Вт 50 м 9 м (втроенный эжектор) 70 л/мин чугун 1 дюйм 122$
БЕЛАМОС XI 13 1200 Вт 50 м 8 м 65 л/мин нержавеющая сталь 1 дюйм 125$
БЕЛАМОС XA 06 600 Вт 33 м 8 м 47 л/мин чугун 1 дюйм 75$

Вихревые

Вихревой самовсасывающий насос отличается строением корпуса и рабочего колеса. Рабочее колесо — диск с короткими радиальными перегородками, располагающиеся по краям. Называется он импеллер.

Корпус сделан так, что он довольно плотно охватывает «плоскую» часть рабочего колеса, а в районе перегородок остается значительный боковой зазор. При вращении импеллера вода увлекается перемычками. За счет действия центробежной силы она отжимается к стенкам, но через какое-то расстояние снова попадает в зону действия перегородок, получая дополнительную порцию энергии. Таким образом в зазорах она еще и закручивается в вихри. Получается сдвоенный вихревой поток, что и дало название оборудованию.

Благодаря особенностям работы вихревые насосы могут создавать давление в 3-7 раз больше, чем центробежные (при одинаковых размерах колес и скорости вращения). Они идеальны, когда необходим малый расход и высокое давление. Еще один плюс — они могут качать смесь воды и воздуха, иногда даже создают разрежение если заполнены только воздухом. Это делает проще его запуск в работу — не надо заполнять камеру водой или достаточно ее небольшого количества. Недостаток вихревых насосов — низкий КПД. Он не может быть выше 45-50%.

Название Мощность Напор (высота подъема) Производительность Глубина всасывания Материал корпуса Цена
LEO XKSm 60-1 370 Вт 40 м 40 л/мин 9 м чугун 24$
LEO XKSm 80-1 750 Вт 70 м 60 л/мин 9 м чугун 89$
AKO QB 60 370 Вт 30 м 28 л/мин 8 м чугун 47$
AKO QB 70 550 Вт 45 м 40 л/мин 8 м чугун 68 $
Pedrollo РКm 60 370 Вт 40 м 40 л/мин 8 м чугун 77$
Pedrollo РК 65 500 Вт 55 м 50 л/мин 8 м чугун 124$

Эжекторные

Самая большая глубина, с которой поверхностные вихревые и центробежные насосы могут поднимать воду — 8-9 метров, часто она располагается глубже. Чтобы «добыть» ее оттуда, на насосы устанавливают эжектор. Это трубка специальной формы, которая при движении воды через нее создает разряжение на входе. Так что такие устройства тоже относятся к разряду самовсасывающих. Эжекторный самовсасывающий насос может поднять воду с глубины 20-35 м, а этого уже более чем достаточно для большинства источников.

Недостаток в том, что для обеспечения работы часть понятой воды необходимо вернуть обратно, следовательно, производительность значительно снижается — такая помпа может обеспечить не очень большой расход воды, но электричества на обеспечение работоспособности тратится ничуть не меньше. При установке инжектора в колодец или скважину достаточной ширины в источник опускают два трубопровода — один подающий большего диаметра, второй, возвратный, меньшего. К их выходам подключается эжектор, а на конце устанавливается фильтр и обратный клапан. В этом случае недостаток тоже очевиден — двойной расход труб, а значит — более дорогая установка.

В скважинах малого диаметра используется один трубопровод — подающий, а вместо обратного используется обсадная труба скважины. Таким образом тоже формируется зона разрежения.

Вихревые и центробежные — сравнение и область применения

Сначала общие черты:

  • максимальная глубина всасывания — 8-9 метров;
  • способ установки — поверхностный;
  • на всасывающем трубопроводе должна стоять труба или армированный шланг (обычный не ставить, его сплющит отрицательным давлением).

Теперь о том, в чем отличия между вихревыми и центробежными моделями. Вихревые насосы более компактные, стоят меньше, но при работе издают больше шума. Центробежные — более тихие, на выходе создают небольшое давление. Вихревые при тех же размерах крыльчатки и скорости ее вращения могут создать давление в 3-7 раз больше. Но нельзя сказать, что это их достоинство — далеко не всегда требуется большой напор на выходе. Например, он не нужен при поливе сада и огорода. Вода, подаваемая с высоким давлением просто размоет почву, обнажит корни. Потому в качестве насоса для полива лучше брать самовсасывающий насос центробежного типа.

Высокое давление на выходе может потребоваться при организации системы водоснабжения дома. Вот тут и потребуются характеристики вихревых насосов. Есть только у них один недостаток: они не могут обеспечить большой расход. Так что чаще для этих целей используют все тот же центробежный, но в паре с гидроаккумулятором. Правда, тогда это получается уже насосная станция.

Основной недостаток поверхностных центробежных самовсасывающих насосов — необходимость заполнять их водой перед стартом. Не самое приятное занятие, которое добавляет хлопот при использовании такой помпы для полива.

stroychik.ru

Самовсасывающие насосы

Pioneer Pump - самовсасывающие насосыСамовсасывающие насосы получили свое название из-за способности втягивать в себя воду с некоторой глубины, то есть когда ее поверхность расположена ниже уровня установки самого агрегата.

Малосведущему человеку может показаться, что это свойство характерно для любого насоса, однако это не так: агрегаты второй разновидности – нормального всасывания – «ждут», пока перекачиваемая среда поступит в их рабочую камеру самотеком (из расположенной рядом емкости) или посредством другого насоса.

Если же вода находится в скважине, колодце или естественном водоеме, откуда самотеком попасть в рабочую камеру устройства никак не может, насос нормального всасывания приходится в нее погружать.

Предназначенные для этого модели так и называются – погружными.

Совсем по-другому обстоят дела с самовсасывающим насосом: он «умеет» создавать разрежение, благодаря которому внешнее атмосферное давление заставляет воду подняться по всасывающей магистрали.

Похожим образом действуем и мы, когда пьем напиток через соломинку.

Теоретически при создании идеального вакуума воду в условиях нормального атмосферного давления можно втянуть на высоту 10,34 м. Но до идеального вакуума даже самым современным самовсасывающим насосам пока далеко. Да ведь и вода при работе помпы пребывает не в статичном состоянии, а в постоянном движении, а значит на нее оказывает воздействие гидравлическое сопротивление всасывающего трубопровода. В результате глубина всасывания – так называют максимальную высоту, на которую самовсасывающий насос может вытянуть воду – составляет в лучшем случае 9 м, а у большинства моделей – не более 8 м.

Тот факт, что самовсасывающий насос может выкачивать воду из скважины или колодца, находясь при этом на поверхности (такие агрегаты как раз и называют поверхностными – в противоположность погружным), обуславливает целый ряд преимуществ:

  1. Корпус насоса можно изготовить из дешевых материалов – обычной углеродистой стали (без легирующих добавок) или низкокачественного (непищевого) чугуна.
  2. Сэкономить, также, можно на качестве и конструкции уплотнителей, удерживающих в двигателе смазку, ведь даже при самых неблагоприятных обстоятельствах она в колодец не попадет. Погружные агрегаты, напротив, приходится делать сверхнадежными, поскольку удаление машинного масла из источника в случае его протечки – очень сложная и дорогостоящая процедура.
  3. Разработчики самовсасывающих насосов не стеснены размерами скважины или колодца. Корпус и двигатель могут иметь любые габариты, соответственно, и мощность поверхностного агрегата ничем не ограничена.
  4. Поверхностный насос покоится на прочном основании, с которого никуда деться не может. В отличие от него погружной агрегат приходится подвешивать на тросике, который нередко обрывается.
  5. Самовсасывающий насос всегда находится на виду, что облегчает контроль его состояния и обслуживание.

При установке самовсасывающего насоса следует учитывать, что максимальная глубина всасывания ограничивает не только разность уровней зеркала воды и насоса, но и расстояние между агрегатом и скважиной. Обычно гидравлическое сопротивление 4-метрового горизонтального участка всасывающей магистрали считают эквивалентным перепаду высот в 1 м. Приведем пример: если у нас имеется источник глубиной 3 м и насос с максимальной глубиной всасывания 7 м, то мы его сможем расположить не далее, чем в (7 — 3)х4 = 16 м от источника.

Соотношение 1:4 справедливо только для всасывающего трубопровода, для напорной магистрали характерна другая зависимость – 10 м трубопровода приблизительно приравниваются к 1-му метру напора.

Конструкция и виды самовсасывающих насосов

Самовсасывающий поверхностный насос с удлинённым внутренним эжектором Leo XJm 100LНасос данного типа, как и любой другой, состоит из двигателя (в подавляющем большинстве случаев применяются электродвигатели) и корпуса с рабочей камерой, внутри которой расположен нагнетательный механизм.

Вал насоса получает вращение от вала двигателя, как правило, посредством муфты.

При этом надежность насоса во многом зависит от того, чем уплотнено отверстие в корпусе, через которое проходит вал.

Самый современный и эффективный вариант – торцевой уплотнитель, который остается герметичным даже при вибрациях или небольших смещениях вала. Сальниковая набивка является менее надежной и сегодня применяется только в дешевых моделях.

Существуют насосы с полностью герметичным корпусом, в которых вращение нагнетательному механизму передается от двигателя посредством магнитной муфты.

По типу нагнетательного механизма самовсасывающие помпы делятся на два типа:

  • центробежные;
  • вихревые.

Центробежные

Внутри рабочей камеры вращается крыльчатка – колесо, состоящее из двух дисков и нескольких заключенных между ними радиальных лопаток криволинейной формы. Крыльчатка раскручивает находящуюся внутри насоса жидкость, отчего та отбрасывается от оси вращения центробежной силой.

Благодаря тому, что корпус имеет улиткообразную форму, перекачиваемая среда по ходу движения попадает в нагнетательный патрубок, а оттуда – в трубопровод.

Центробежный агрегат может иметь несколько рабочих колес. Расположены они на одном валу и вращаются совместно, но корпус устроен таким образом, что вода поступает последовательно от одного колеса к другому, так что с каждой ступенью ее энергия увеличивается.

Таким образом, общий напор многоступенчатого насоса равен сумме напоров каждой ступени.

Вихревые

Вихревая помпаРассмотрим принцип работы вихревого насоса. Здесь также имеется рабочее колесо, которое представляет собой диск с расположенными по его краю небольшими прямыми лопатками, направленными вдоль радиусов.

Корпус как бы охватывает лопатки с двух сторон, так что они движутся внутри канала, имеющего вид замкнутого кольца.

Напорный и всасывающий патрубки соединены с этим каналом, но между собой их разделяет уплотняющий выступ.

Вращаясь, колесо заставляет вращаться и перекачиваемую среду, которая при этом под воздействием центробежных сил начинает закручиваться. Следствием этого становится образование в кольцевом канале двойного вихря – жидкость движется по винтовой траектории.

За время движения от всасывающего патрубка к нагнетательному порция жидкости несколько раз оказывается в пространстве между лопастями, получая при этом все новую и новую энергию. В результате на выходе насоса получается довольно мощный напор.

Сравнительная характеристика центробежных и вихревых помп

Эти насосы не являются конкурентами, у каждого из них свой круг задач. Перечислим их особенности:

Способ нагнетания жидкости

Способ нагнетания жидкости, применяемый в вихревых насосах, характеризуется значительными потерями энергии, поэтому эти агрегаты имеют довольно низкий КПД: большая часть – от 34% до 38%, самые экономичные – 45%, а есть и такие, в которых полезная работа составляет только 25% от затраченной энергии.

Поэтому вихревые насосы применяют только там, где использование центробежных затруднено или невозможно.

Напор

Pedrollo PKm 60 самовсасывающий вихревой насосВихревые насосы при тех же размерах и частоте вращения рабочего колеса способны развивать напор в 4 – 7 раз больший, чем центробежные.

Это позволяет существенно уменьшить их габариты. При этом получается компактный насос с небольшой производительностью (обычно – до 12 л/с) и довольно высоким напором (может достигать 240 м).

Такие качества делают их пригодными для использования, к примеру, в химической промышленности, где небольшие объемы химикалий приходится прокачивать через несколько реакторов, тонкие трубки которых имеют большое гидравлическое сопротивление.

Эта же особенность обуславливает применение в некоторых случаях вихревых насосов для водоснабжения сельских населенных пунктов, где при значительной продолжительности водопроводных линий (большое гидравлическое сопротивление) расход является очень небольшим. При этом подача у вихревого насоса в гораздо меньшей степени, чем у центробежного, зависит от сопротивления напорного трубопровода.

Эксплуатация с пустой всасывающей магистралью

Работа помпы с пустой всасывающей магистральюПеред запуском рабочую камеру центробежного насоса вместе со всасывающей магистралью нужно заполнять водой.

Если же в ходе работы агрегат каким-то образом подсосет воздух, он не сможет дальше работать.

Вихревые насосы в этом отношении гораздо более практичны. Они могут втянуть воду даже с пустой всасывающей магистралью, когда в рабочей камере после предыдущего включения остается буквально несколько капель жидкости.

И даже если перекачивать придется смесь жидкости и газа, насос справится с этой задачей на «отлично».

Эти свойства очень пригодились при создании заправочного оборудования для автомобилей и самолетов. Во-первых, заливать насос перед каждой заправкой было бы затруднительно. Во-вторых, здесь приходится работать с бензином и другими видами топлива, которые являются легколетучими веществами и при перекачивании образуют смесь жидкости и пара. Такие продукты центробежному насосу оказались бы не под силу.

В большинстве же случаев, несмотря на более дорогую и сложную конструкцию, применяется центробежный насос. Его популярность обусловлена двумя преимуществами — экономичностью (высокий КПД) и стойкостью к воздействию абразивных примесей (механизм вихревого насоса в таких условиях быстро изнашивается).

aquacomm.ru

Конструкция вихревого насоса

Существует два основных типа вихревых насосов: открытого и закрытого типа. Рассмотрим конструктивные схемы этих насосов.

Вихревой насос закрытого типа

Конструктивная схема насоса показана на рисунке.

Конструкция вихревого насоса закрытого типа

В корпусе 1 вихревого насоса установлено рабочее колесо 2 с малыми зазорами. В корпусе также выполнен специальный концентрический канал 3, расположенный по периметру окружности описываемой лопатками от входного патрубка 4 до напорного 5. Концентрический канал разделен перемычкой 6, не позволяющей жидкости перетекать из напорной линии во всасывающую. Лопатки рабочего колеса передают энергию жидкости, которая под воздействием сил инерции и трения перемещается от всасывающего патрубка к напорному.

Устройство вихревого насоса открытого типа

Схема открыто-вихревого насоса показана на рисунке.

Схема открытого вихревого насоса

Рабочая жидкость поступает к лопаткам рабочего колеса 1 через подвод 2 и окно 3. Через рабочее колесо жидкость поступает в кольцевой канал 4, выполненный в корпусе 5. Под воздействием лопаток рабочего колеса жидкость перемещается по кольцевому каналу, и через отверстие 6 поступает в напорную линию 7.

Принцип работы вихревого насоса

Вихревой насос относится является динамическими, а значит движение жидкости в нем осуществляется за счет сил инерции и трения. От рабочего колеса энергия передается частицам жидкости, которая через спрофилированные каналы поступает из линии всасывания в линию нагнетания.



Рабочее колесо вихревого насоса

Лопатки рабочего колеса вихревого насоса спрофилированы таким образом, что при движении жидкость направляется от внутренней части канала ко внешней, приобретая окружную составляющую скорости.

Происходит активное смешивание жидкости поступающей от рабочего колеса и текущей по каналу за счет сил инерции. В результате взаимодействия частиц с различными скоростями и направлениями движения возникают интенсивные вихри, что ведет к значительным потерям энергии.

Для исключения продольной силы, возникающей в результате разницы давления в осевых зазорах, используют симметричное рабочее колесо.

Характеристики вихревых насосов

  • Напор — до 25 м
  • Подача — до 12 л/с
  • Мощность — до 25 кВт
  • КПД — 35…40%

Вид основной характеристики вихревого насоса показан на рисунке.

Характеристики вихревого насоса

Потери энергии в вихревом насосе

Гидравлические потери в вихревом насосе велики и составляет до 30% от энергии на валу насоса. Эти потери возникают вследствие образования многочисленных вихрей при движении жидкости в насосе.

Объемные потери также велики и могут достигать 20%, обусловлены они перетеканием жидкости через зазоры разделителя.

Механические потери в вихревом насосе возникают из-за трения в подшипниках и уплотнительных устройствах.

Ввиду высоких гидравлических и объемных потерь общий КПД вихревого насоса невысок и составляет 35 — 40%.



Применение вихревых насосов

Учитывая рабочие характеристики, вихревые насосы, как правило, используют в системах, где необходимо создать высокий напор при, относительно небольшой подаче. Например в небольших автоматических насосных станциях для водоснабжения. Способность перекачивать жидкостно газовую смесь позволяет использовать вихревые насосы для перекачки летучих жидкостей (бензин, керосин), что обуславливает применение таких насосов в системах заправки топливом.

Достоинства вихревых насосов

При тех же габаритах, что и у центробежного, вихревой насос способен создать больший напор (в 3-9 раз больше). Вихревые насосы открытого типа обладают способностью к самовсасыванию, также они способны работать на газожидкостной смеси.

www.hydro-pnevmo.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.