Производительность насоса формула


Под характеристиками насоса обычно понимается взаимосвязь технических показателей агрегата – напора, мощности, КПД, давления, расхода и высоты всасывания при разных условиях работы. При этом учитывается частота вращения рабочего колеса, консистенция перекачиваемой жидкости на входе и выходе.
Характеристика центробежного насоса зависит от его конструкции, материалов, из которых изготовлены детали, а также от принципа действия основных узлов.
Самые точные характеристики насоса определяются экспериментальным путем в заводских условиях. Бывает, что характеристики указываются теоретически на основании проведенных вычислений, но в этом случае реальные данные могут отличаться от предполагаемых. При функционировании центробежных насосов учитывается большое количество внешних факторов, которые не всегда возможно предусмотреть, поэтому характеристики, полученные теоретическим путем, обладают некоторым процентом неточности.
Испытания, при которых выявляются характеристики центробежного насоса, проводятся в соответствии с государственным стандартом.


и этом насос оборудуется измерительными приборами, которые фиксируют показания агрегата во время запуска. В нашем каталоге промышленные насосы для воды представлены в широком ассортименте.
В документации к центробежному насосу характеристика обычно представлена в виде графика с несколькими кривыми и указывается рядом с техническими параметрами. На таких графиках можно проследить зависимость высоты всасывания от подачи, напора от мощности, КПД от напора и ознакомиться с другими характеристиками. Центробежный консольный насос предназначен для перекачивания в стационарных условиях чистой воды (кроме морской) с рН=6-9.

Принцип работы центробежных насосов
Работа центробежных насосов возможна только при условии, что корпус устройства заполнен водой. Как следует из названия, такие насосы функционируют под действием центробежной силы, вызываемой вращающимися колесами.
Корпус насоса содержит одно или несколько рабочих колес, прочно закрепленных на валу. Рабочее колесо оснащено изогнутыми лопастями, где находится жидкость, поступающая через всасывающий патрубок. При запуске агрегата вал, соединенный с электромотором, приводит в движение колесо, которое захватывает жидкость лопастями и отбрасывает ее от центра к внутренним стенкам корпуса. Развиваемая центробежная сила перемещает жидкость к нагнетательному трубопроводу через направляющую камеру.
ким образом, с освобождением пространства между лопастями снижается давление, что позволяет принимать вновь поступающую жидкость из всасывающего трубопровода. Как правило, всасывающий патрубок оснащен фильтрующим элементом, который препятствует проникновению в корпус твердых частиц и мусора.
В зависимости от количества рабочих колес центробежные насосы могут быть одноступенчатой или многоступенчатой конструкции, но принцип их работы остается практически одним и тем же. Разница состоит в том, что в многоступенчатых агрегатах давление жидкости увеличивается на каждом следующем колесе.

ГК Multipumps предлагает большой выбор насосного оборудования.

  • Основные принципы подбора насосов
    • Технологические и конструктивные требования
    • Характер перекачиваемой среды
    • Основные расчетные параметры
    • Области применения (подбора) насосов по создаваемому напору
    • Области применения (подбора) насосов по производительности
  • Основные расчетные параметры насосов (производительность, напор, мощность)
  • Расчет производительности для различных насосов. Формулы
    • Поршневые насосы
    • Шестеренчатые насосы
    • Винтовые насосы
  • Расчет напора насоса
  • Расчет потребляемой мощности насоса
  • Предельная высота всасывания (для центробежного насоса)
  • Примеры задач по расчету и подбору насосов с решениями

    • расчет объемного коэффициента полезного действия плунжерного насоса
    • расчет необходимой мощности электродвигателя двухпоршневого насоса
    • расчет величины потери напора трехпоршневого насоса
    • расчет объемного коэффициента полезного действия винтового насоса
    • расчет напора, расхода и полезной мощности центробежного насоса
    • расчет целесообразности перекачки воды центробежным насосом
    • расчет коэффициента подачи шестеренчатого (шестеренного) насоса
    • определить, удовлетворяет ли данный насос требованиям по пусковому моменту
    • расчет полезной мощности центробежного насоса
    • расчет предельного повышения расхода насоса
  • Основные принципы подбора насосов

    Выбор насосного оборудования – ответственный этап, от которого будут зависеть как технологические параметры, так и эксплуатационные качества проектируемой установки. При выборе типа насоса можно выделить три группы критериев:

    1) Технологические и конструктивные требования

    2) Характер перекачиваемой среды

    3) Основные расчетные параметры

    Технологические и конструктивные требования:

    В некоторых случаях выбор насоса может диктоваться какими-либо строгими требованиями по ряду конструктивных или технологических параметров. Центробежные насосы, в отличие от поршневых, могут обеспечивать равномерную подачу перекачиваемой среды, в то время как для выполнения условий равномерности на поршневом насосе приходится значительно усложнять его конструкцию, располагая на коленчатом вале несколько поршней, совершающих возвратно-поступательные движения с определенным отставанием друг от друга.
    то же время подача перекачиваемой среды дискретными порциями заданного объема также может являться технологическим требованием. Примером определяющих конструктивных требований может служить использование погружных насосов в тех случаях, когда необходимо или единственно возможно расположить насос ниже уровня перекачиваемой жидкости.

    Технологические и конструктивные требования к насосу редко являются определяющими, а диапазоны подходящих типов насосов для различных специфических случаев применения известны исходя из накопленного человечеством опыта, поэтому в доскональном их перечислении нет необходимости.

    Характер перекачиваемой среды:

    Характеристики перекачиваемой среды часто становятся определяющим фактором в выборе насосного оборудования. Различные типы насосов подходят для перекачки самых разнообразных сред, отличающихся по вязкости, токсичности, абразивности и множеству других параметров. Так винтовые насосы способны перекачивать вязкие среды с различными включениями, не повреждая структуру среды, и могут с успехом применяться в пищевой промышленности для перекачивания джемов и паст с различными наполнителями. Коррозионные свойства перекачиваемой среды определяют материальное исполнение выбираемого насоса, а токсичность – уровень его герметизации.


    Основные расчетные параметры:

    Требованиям по эксплуатации, предъявляемы различными отраслями, могут удовлетворять несколько типов насосов. В такой ситуации предпочтение отдается тому типу насосов, который наиболее применим при конкретных значениях основных расчетных параметров (производительность, напор и потребляемая мощность). Ниже приведены таблицы, в общих чертах отражающие границы применения наиболее распространенных типов насосов.

    Области применения (подбора) насосов по создаваемому напору



    До 10 м

    От 10

    От 100

    От 1 000

    От 10 000
    м

    Одноступенчатые
    центробежные

    Многоступенчатые
    центробежные

    Осевые
    (напор до 20-30 м)

    Поршневые

    Винтовые

    Плунжерные

    Вихревые


    Области применения (подбора) насосов по производительности



    До 10 м3/ч

    От 10

    От 100

    до 1 000 м3/ч

    От
    1 000

    до 10 000 м3/ч

    От
    10 000 м 3 /ч

    Одноступенчатые
    центробежные

    Многоступенчатые
    центробежные

    Осевые

    Поршневые

    Винтовые

    Плунжерные

    Вихревые

    Только соответствующий всем трем группам критериев насос может гарантировать длительную и надежную эксплуатацию.

    Основные расчетные параметры насосов

    Несмотря на многообразие машин для перекачки жидкостей и газов, можно выделить ряд основных параметров, характеризующих их работу: производительность, потребляемая мощность и напор.

    Производительность (подача, расход) – объем среды, перекачиваемый насосом в единицу времени. Обозначается буквой Q и имеет размерность м 3 /час, л/сек, и т.д. В величину расхода входит только фактический объем перемещаемой жидкости без учета обратных утечек. Отношение теоретического и фактического расходов выражается величиной объемного коэффициента полезного действия:

    Однако в современных насосах, благодаря надежной герметизации трубопроводов и соединений, фактическая производительность совпадает с теоретической. В большинстве случаев подбор насоса идет под конкретную систему трубопроводов, и величина расхода задается заранее.

    Напор – энергия, сообщаемая насосом перекачиваемой среде, отнесенная к единице массы перекачиваемой среды. Обозначается буквой H и имеет размерность метры. Стоит уточнить, что напор не является геометрической характеристикой и не является высотой, на которую насос может поднять перекачиваемую среду.

    Потребляемая мощность (мощность на валу) – мощность, потребляемая насосом при работе. Потребляемая мощность отличается от полезной мощности насоса, которая затрачивается непосредственно на сообщение энергии перекачиваемой среде. Часть потребляемой мощности может теряться из-за протечек, трения в подшипниках и т.д. Коэффициент полезного действия определяет соотношение между этими величинами.

    Для различных типов насосов расчет этих характеристик может отличаться, что связано с различиями в их конструкции и принципах действия.

    Расчет производительности для различных насосов

    Все многообразие типов насосов можно разделить на две основные группы, расчет производительности которых имеет принципиальные отличия. По принципу действия насосы подразделяют на динамические и объемные. В первом случае перекачка среды происходит за счет воздействия на нее динамических сил, а во втором случае – за счет изменения объема рабочей камеры насоса.

    К динамическим насосам относятся:

    1) Насосы трения (вихревые, шнековые, дисковые, струйные и т.д.)
    2) Лопастные (осевые, центробежные)
    3) Электромагнитные

    К объемным насосам относятся:
    1) Возвратно-поступательные (поршневые и плунжерные, диафрагменные)
    2) Роторные
    3) Крыльчатые

    Ниже будут приведены формулы расчета производительности для наиболее часто встречающихся типов.

    Основным рабочим элементом поршневого насоса является цилиндр, в котором двигается поршень. Поршень совершает возвратно-поступательные движения за счет кривошипно-шатунного механизма, чем обеспечивается последовательное изменение объема рабочей камеры. За один полный оборот кривошипа из крайнего положения поршень совершает полный ход вперед (нагнетание) и назад (всасывание). При нагнетании в цилиндре поршнем создается избыточное давление, под действием которого всасывающий клапан закрывается, а нагнетательный клапан открывается, и перекачиваемая жидкость подается в нагнетательный трубопровод. При всасывании происходит обратный процесс, при котором в цилиндре создается разряжение за счет движения поршня назад, нагнетательный клапан закрывается, предотвращая обратный ток перекачиваемой среды, а всасывающий клапан открывается и через него происходит заполнение цилиндра. Реальная производительность поршневых насосов несколько отличается от теоретической, что связано с рядом факторов, таких как утечки жидкости, дегазация растворенных в перекачиваемой жидкости газов, запаздывание открытия и закрытия клапанов и т.д.

    Для поршневого насоса простого действия формула расхода будет выглядеть следующим образом:

    Q = F·S·n·η V

    Q – расход (м 3 /с)
    S – длина хода поршня, м

    Для поршневого насоса двойного действия формула расчета производительности будет несколько отличаться, что связано наличием штока поршня, уменьшающего объем одной из рабочих камер цилиндра.

    Q = F·S·n + (F-f)·S·n = (2F-f)·S·n

    Q – расход, м 3 /с
    F – площадь поперечного сечения поршня, м 2
    f – площадь поперечного сечения штока, м 2
    S – длина хода поршня, м
    n – частота вращения вала, сек -1
    η V – объемный коэффициент полезного действия

    Если пренебречь объемом штока, то общая формула производительности поршневого насоса будет выглядеть следующим образом:

    Q = N·F·S·n·η V

    Где N – число действий, совершаемых насосом за один оборот вала.

    Производительность насоса формула

    В случае шестеренчатых насосов роль рабочей камеры выполняет пространство, ограничиваемое двумя соседними зубьями шестерней. Две шестерни с внешним или внутренним зацеплением размещаются в корпусе. Всасывание перекачиваемой среды в насос происходит за счет разряжения, создаваемого между зубьями шестерен, выходящими из зацепления. Жидкость переносится зубьями в корпусе насоса, и затем выдавливается в нагнетательный патрубок в момент, когда зубья вновь входят в зацепление. Для протока перекачиваемой среды в шестеренных насосах предусмотрены торцевые и радиальные зазоры между корпусом и шестернями.

    Производительность шестеренного насоса может быть рассчитана следующим образом:

    Q = 2·f·z·n·b·η V

    f – площадь поперечного сечения пространства между соседними зубьями шестерни, м 2
    z – число зубьев шестерни
    b – длинна зуба шестерни, м
    n – частота вращения зубьев, сек -1
    η V – объемный коэффициент полезного действия

    Существует также альтернативная формула расчета производительности шестеренного насоса:

    Q = 2·π·D Н ·m·b·n·η V

    Q – производительность шестеренчатого насоса, м 3 /с
    D Н – начальный диаметр шестерни, м
    m – модуль шестерни, м
    b – ширина шестерни, м
    n – частота вращения шестерни, сек -1
    η V – объемный коэффициент полезного действия

    Производительность насоса формула

    В насосах данного типа перекачивание среды обеспечивается за счет работы винта (одновинтовой насос) или нескольких винтов, находящихся в зацеплении, если речь идет о многовинтовых насосах. Профиль винтов подбирается таким образом, чтобы область нагнетания насоса была изолирована от области всасывания. Винты располагаются в корпусе таким образом, чтобы при их работе образовывались заполненные перекачиваемой средой области замкнутого пространства, ограниченные профилем винтов и корпусом и движущиеся по направлению в области нагнетания.

    Производительность одновинтового насоса может быть рассчитана следующим образом:

    Q = 4·e·D·T·n·η V

    Q – производительность винтового насоса, м 3 /с
    e – эксцентриситет, м
    D – диаметр винта ротора, м
    Т – шаг винтовой поверхности статора, м
    n – частота вращения ротора, сек -1
    η V – объемный коэффициент полезного действия

    Производительность насоса формула

    Центробежные насосы являются одним из наиболее многочисленных представителей динамических насосов и широко распространены. Рабочим органом в центробежных насосах является насаженное на вал колесо, имеющее лопасти, заключенные между дисками, и расположенное внутри спиралевидного корпуса.

    За счет вращения колеса создается центробежная сила, воздействующая на массу перекачиваемой среды, находящейся внутри колеса, и передает ей часть кинетической энергии, которая затем переходит в потенциальную энергию напора. Создаваемое при этом в колесе разрежение обеспечивает непрерывную подачу перекачиваемой среды их всасывающего патрубка. Важно отметить, что перед началом эксплуатации центробежный насос должен быть предварительно заполнен перекачиваемой средой, так как в противном случае всасывающей силы будет недостаточно для нормальной работы насоса.

    Центробежный насос может иметь не один рабочий орган, а несколько. В таком случае насос называется многоступенчатым. Конструктивно он отличается тем, что на его валу расположено сразу несколько рабочих колес, и жидкость последовательно проходит через каждое из них. Многоступенчатый насос при той же производительности будет создавать больший напор в сравнении с аналогичным ему одноступенчатым насосом.

    Производительность насоса формула

    Производительность центробежного насоса может быть рассчитана следующим образом:

    Q = b 1 ·(π·D 1 -δ·Z)·c 1 = b 2 ·(π·D 2 -δ·Z)·c 2

    Q – производительность центробежного насоса, м 3 /с
    b 1,2 – ширины прохода колеса на диаметрах D 1 и D 2 , ­м
    D 1,2 – внешний диаметр входного отверстия (1) и внешний диаметр колеса (2), м
    δ – толщина лопаток, м
    Z – число лопаток
    C 1,2 – радиальные составляющие абсолютных скоростей на входе в колесо (1) и выходе из него (2), м/с

    Расчет напора

    Как было отмечено выше, напор не является геометрической характеристикой и не может отождествляться с высотой, на которую необходимо поднять перекачиваемую жидкость. Необходимое значение напора складывается из нескольких слагаемых, каждое из которых имеет свой физический смысл.

    Общая формула расчета напора (диаметры всасывающего и нагнетающего патрубком приняты одинаковыми):

    H = (p 2 -p 1)/(ρ·g) + H г + h п

    H – напор, м
    p 1 – давление в заборной емкости, Па
    p 2 – давление в приемной емкости, Па

    H г – геометрическая высота подъема перекачиваемой среды, м
    h п – суммарные потери напора, м

    Первое из слагаемых формулы расчета напора представляет собой перепад давлений, который должен быть преодолен в процессе перекачивания жидкости. Возможны случаи, когда давления p 1 и p 2 совпадают, при этом создаваемый насосом напор будет уходить на поднятие жидкости на определенную высоту и преодоление сопротивления.

    Второе слагаемое отражает геометрическую высоту, на которую необходимо поднять перекачиваемую жидкость. Важно отметить, что при определении этой величины не учитывается геометрия напорного трубопровода, который может иметь несколько подъемов и спусков.

    Третье слагаемое характеризует снижение создаваемого напора, зависящее от характеристик трубопровода, по которому перекачивается среда. Реальные трубопроводы неизбежно будут оказывать сопротивление току жидкости, на преодоление которого необходимо иметь запас величины напора. Общее сопротивление складывается из потерь на трение в трубопроводе и потерь в местных сопротивлениях, таких как повороты и отводы трубы, вентили, расширения и сужения прохода и т.д. Суммарные потери напора в трубопроводе рассчитываются по формуле:

    H об – суммарные потери напора, складывающиеся из потерь на трение в трубах H т и потерь в местных сопротивлениях Н мс

    H об = H Т + H МС = (λ·l)/d э · + ∑ζ МС · = ((λ·l)/d э + ∑ζ МС)·

    λ – коэффициент трения
    l – длинна трубопровода, м
    d Э – эквивалентный диаметр трубопровода, м
    w – скорость потока, м/с
    g – ускорение свободного падения, м/с 2
    w 2 /(2·g) – скоростной напор, м
    ∑ζ МС – сумма всех коэффициентов местных сопротивлений

    Расчет потребляемой мощности насоса

    Выделяют несколько мощностей в зависимости от потерь при ее передаче, которые учитываются различными коэффициентами полезного действия. Мощность, идущая непосредственно на передачу энергии перекачиваемой жидкости, рассчитывается по формуле:

    N П = ρ·g·Q·H

    N П – полезная мощность, Вт
    ρ – плотность перекачиваемой среды, кг/м 3
    g – ускорение свободного падения, м/с 2
    Q – расход, м 3 /с
    H – общий напор, м

    Мощность, развиваемая на валу насоса, больше полезной, и ее избыток идет на компенсацию потерь мощности в насосе. Взаимосвязь между полезной мощностью и мощностью на валу устанавливается коэффициентом полезного действия насоса. КПД насоса учитывает утечки через уплотнения и зазоры (объемный КПД), потери напора при движении перекачиваемой среды внутри насоса (гидравлический КПД) и потери на трение между подвижными частями насоса, такими как подшипники и сальники (механический КПД).

    N В = N П /η Н

    N В – мощность на валу насоса, Вт
    N П – полезная мощность, Вт
    η Н – коэффициент полезного действия насоса

    В свою очередь мощность, развиваемая двигателем, превышает мощность на валу, что необходимо для компенсации потерь энергии при ее передаче от двигателя к насосу. Мощность электродвигателя и мощность на валу связаны коэффициентами полезного действия передачи и двигателя.

    N Д = N В /(η П ·η Д)

    N Д – потребляемая мощность двигателя, Вт
    N В – мощность на валу, Вт
    η П – коэффициент полезного действия передачи
    η Н – коэффициент полезного действия двигателя

    Окончательная установочная мощность двигателя высчитывается из мощности двигателя с учетом возможной перегрузки в момент запуска.

    N У – установочная мощность двигателя, Вт
    N Д – потребляемая мощность двигателя, Вт
    β – коэффициент запаса мощности

    Коэффициент запаса мощности может быть приближенно выбран из таблицы:

    Предельная высота всасывания
    (для центробежного насоса)

    Всасывание в центробежном наосе происходит за счет разности давлений в сосуде, откуда происходит забор перекачиваемой среды, и на лопатках рабочего колеса. Чрезмерное увеличение разности давлений может привести к появлению кавитации – процессу, при котором происходит понижение давления до значения, при котором температура кипения жидкости опускается ниже температуры перекачиваемой среды и начинается ее испарение в пространстве потока с образованием множества пузырьков. Пузырьки уносятся потоком дальше по ходу течения, где под действием возрастающего давления они конденсируются, и происходит их “схлопывание”, сопровождаемое многочисленными гидравлическими ударами, негативно сказывающимися на сроке службы насоса. В целях избегания негативного воздействия кавитации необходимо ограничивать высоту всасывания центробежного насоса.

    Производительность насоса формула

    Геометрическая высота всасывания может быть определена по формуле:

    h г = (P 0 -P 1)/(ρ·g) – h св – w²/(2·g) – σ·H

    h Г – геометрическая высота всасывания, м
    P 0 – давление в заборной емкости, Па
    P 1 – давление на лопатках рабочего колеса, Па
    ρ – плотность перекачиваемой среды, кг/м 3
    g – ускорение свободного падения, м/с 2
    h св – потери на преодоление гидравлических сопротивлений во всасывающем трубопроводе, м
    w²/(2·g) – скоростной напор во всасывающем трубопроводе, м
    σ·H – потери на добавочное сопротивление, пропорциональное напору, м
    где σ – коэффициент кавитации, H – создаваемый насосом напор

    Коэффициент кавитации может быть рассчитан по эмпирической формуле:

    σ = [(n·√Q) / (126H 4/3)] 4/3

    σ – коэффициент кавитации
    n – частота вращения рабочего колеса, сек -1
    Q – производительность насоса, м 3 /с
    Н – создаваемый напор, м

    Также существует формула для центробежных насосов для расчета запаса напора, обеспечивающего отсутствие кавитации:

    H кв = 0,3·(Q·n²) 2/3

    H кв – запас напора, м
    Q – производительность центробежного насоса, м 3 /с
    n – частота вращения рабочего колеса, с -1

    Примеры задач по расчету и подбору насосов с решениями

    Пример №1

    Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м 3 /ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

    Требуется найти объемный коэффициент полезного действия насоса.

    Производительность насоса формула

    Площадь поперечного сечения плунжера:

    F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

    Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

    η V = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

    Пример №2

    Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м 3 . Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

    Производительность насоса формула

    Площади попреречного сечения поршня и штока:

    F = (3,14·0,08²)/4 = 0,005024 м²

    F = (3,14·0,01²)/4 = 0,0000785 м²

    Производительность насоса находится по формуле:

    Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

    N П = 920·9,81·0,0045195·160 = 6526,3 Вт

    С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

    N УСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

    Пример №3

    Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м 3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м 3 /час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

    Найдем создаваемый насосом напор из формулы полезной мощности:

    H = N П /(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

    Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

    h п = H – (p 2 -p 1)/(ρ·g) – H г = 617,8 – ((1,6-1)·10 5)/(1080·9,81) – 3,2 = 69,6 м

    Пример №4

    Реальная производительность винтового насоса составляет 1,6 м 3 /час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

    Выразим искомую величину из формулы производительности винтового насоса:

    η V = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

    Пример №5

    Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м 3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

    Производительность насоса формула

    Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

    Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

    Скоростной напор в трубе:

    w²/(2·g) = 2²/(2·9,81) = 0,204 м

    При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

    H Т = (λ·l)/d э · = (0,032·78)/0,2 · 0,204 = 2,54 м

    Общий напор составит:

    H = (p 2 -p 1)/(ρ·g) + H г + h п = ((2,5-1,2)·10 5)/(1020·9,81) + 8 + 2,54 = 23,53 м

    Остается определить полезную мощность:

    N П = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

    Пример №6

    Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м 3 /час по трубопроводу 150х4,5 мм?

    Рассчитаем скорость потока воды в трубопроводе:

    Q = (π·d²)/4·w

    w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

    Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

    Пример №7

    Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм 2 ; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

    Теоретическая производительность насоса:

    Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·10 6) = 0,0004256 м³/час

    Коэффициент подачи соответственно равен:

    η V = 0,0004256/1,8·3600 = 0,85

    Пример №8

    Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м 3 с расходом 132 м 3 /час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

    Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

    N П = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

    Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

    N Д = N П /(η Н ·η Д) = 6372/(0,78·0,95) = 8599 Вт

    Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

    β = N У /N Д = 9500/8599 = 1,105

    Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

    Пример №9

    Центробежный насос перекачивает жидкость плотностью 1130 кг/м 3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м 3 /час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

    Производительность насоса формула

    Рассчитаем напор, создаваемый насосом в трубопроводе:

    H = (p 2 -p 1)/(ρ·g) + H г + h п = ((1,5-1)·10 5)/(1130·9,81) – 12 + 32,6 = 25,11 м

    Полезная мощность насоса может быть найдена по формуле:

    N П = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

    Пример №10

    Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м 3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

    Производительность насоса формула

    Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

    Рассчитаем напор, необходимый для перекачивания воды:

    H = (p 2 -p 1)/(ρ·g) + H г + h п = ((1-1)·10 5)/(1000·9,81) + 5 + 9,7 = 14,7 м

    Полезная мощность, развиваемая насосом:

    N П = N общ /η Н = 1000/0,83 = 1205 Вт

    Значение максимального расхода найдем из формулы:

    N П = ρ·g·Q·H

    Найдем искомую величину:

    Q макс = N П /(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

    Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

    Q макс /Q = 0,00836/24·3600 = 1,254

    Источник: neftyanic.ru

    Допустимая высота всасывания

    Прежде чем говорить о допустимой высоте всасывания, необходимо сначала разобраться, что называют высотой всасывания. Следующий рисунок поясняет смысл этого термина.

    Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 с сайта http://www.adobe.com/svg/viewer/install/

    Высотой всасывания называют расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

    Допустимая высота всасывания — это максимальное расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса, при котором не возникает кавитации.

    Кавитация — крайне нежелательное явление, заключающееся в образовании пузырьков из пара перекачиваемой жидкости, поступающей в насос, и резком схлопывании этих пузырьков внутри насоса. Пузырьки образуются, если давление в потоке жидкости снижается до давления ее насыщенного пара. Обычно во всасывающем трубопроводе давление снижается от расходного резервуара до насоса. Поэтому минимальное давление (максимальное разрежение) действует перед насосом или на входе в рабочее колесо насоса. Именно там и проявляется кавитация. Это явление сопровождается вибрацией в трубопроводной системе и насосе и ведет к быстрому разрушению рабочих органов насоса. Чтобы кавитации не возникало, высота всасывания должна быть меньше допустимой, рассчитанной по формуле:

    Производительность насоса формула

    (10)

    где P1 — давление над жидкостью в расходном резервуаре, [Па]; Pн.п. — давление насыщенного пара перекачиваемой жидкости при ее температуре, [Па]; λ — коэффициент трения во всасывающем трубопроводе; l — длина всасывающего трубопровода, [м]; d — диаметр всасывающего трубопровода, [м]; ζ — коэффициенты местных сопротивлений, имеющиеся на всасывающем трубопроводе; hк — кавитационная поправка, [м].
    Кавитационная поправка определяется по формуле:

    Производительность насоса формула

    (11)

    где n — скорость вращения рабочего колеса, [об/с].
    Если на всасывающем трубопроводе есть задвижки, то при работе насоса они должны быть полностью открыты, а их коэффициенты сопротивлений ζ должны быть учтены при расчете допустимой высоты всасывания по формуле (10).

    Источник: www.isuct.ru

    Принцип функционирования

    Производительность насоса формулаДля того, чтобы правильно выполнить расчет агрегата этого вида, прежде всего, необходимо знать по какому принципу работает это устройство.

    Принцип функционирования центробежного насоса заключается в следующих важных моментах:

    • вода через всасывающий патрубок поступает к центру рабочего колеса;
    • крыльчатка, размещенная на рабочем колесе, которое установлено на основном валу приводится в движение с помощью электродвигателя;
    • под воздействием центробежной силы вода от крыльчатки прижимается к внутренним стенкам, при этом создается дополнительное давление;
    • под создавшимся давлением вода выходит через нагнетательный патрубок.

    Определение переменных

    Производительность насоса формулаНа производительность центробежного насоса влияют следующие составляющие:

    • напор воды;
    • необходимая потребляемая мощность;
    • размер рабочего колеса;
    • максимальная высота всасывания жидкости.

    Итак, рассмотрим более детально каждый из показателей, а также приведем формулы расчета для каждого из них.

    Расчет производительности центробежного насосного агрегата проводится согласно следующей формуле:

    Создаваемый центробежным насосом напор воды рассчитывается по формуле:

    Расчет необходимой потребляемой мощности производится по следующей формуле:

    Максимальная высота всасывания жидкости рассчитывается по формуле:

    Пример применения формул

    Производительность насоса формулаДля того, чтобы понимать, как использовать формулы расчета центробежного насоса, приведем пример решения одного технологического задания.

    Задача. Определите потребляемую мощность центробежного насоса, если:

    1. Агрегат перекачивает жидкость, плотность которой составляет 1210 кг/м3.
    2. Необходимый расход жидкости составляет 6,4 м3/ч.
    3. Жидкость перекачивается в резервуар с давлением 1,5 бар.
    4. Разница высот составляет 12 метров.
    5. Потери от сопротивления составляют 30, 6 м.

    Решение.

    Для начала рассчитываем напор, который создается центробежным насосом (используем формулу 2):
    N = (h2 – h1)/(p – g) + Ng + sp = ((1,5 – 1)*105)/(1210*9,81) –12 +30,6 = 22,82 (м).

    Чтобы найти потребляемую мощность насоса, воспользуемся формулой 3:
    M = p*g*s*N = 1210*9,81*6,4/3600*22,82 = 481,56 (Вт).
    Искомый результат найден.

    Таким образом, в этой статье мы рассказали все нюансы вычисления мощности центробежного насоса. Надеемся, что информация, изложенная в статье, будет для вас полезной.

    Смотрите видео, в котором показан порядок расчета рабочего колеса центробежного насоса:

    Источник: septik.guru

    20. Полезная мощность. Мощность на валу насоса. Кпд.

    полезная мощность Nп-это мощность затрачиваемая на сообщение жидкости энергии. Полная мощность равна произведению удельной энергии жидкости на массовый расход

    (Вт) (кг/с)

    Мощность на валу насоса(Nв)-это мощность потребляемая насосом или затрачиваемая. Nв>Nп в следствии потерь энергии.

    (ВТ)

    (КПД) насоса=

    -объемный КПД=(отношение действительной подачи к теоретической)

    Объемный КПД учитывает потери производимости при утечках жидкости через зазоры и сальники насоса, а так же в следствии неодновременного открытия клапанов на всасывающей и нагнетательной (высотах)? и выделении газов при движении жидкости в области пониженного давления.

    -гидравлический КПД=(отношение удельной энергии действительной к теоретической)

    -механический КПД-возникает за счет механического трения в насосе.

    Мощность давления:

    -КПД насосной установки.

    Мощность насосной установки

    B-коэффициент запаса мощности, который учитывает потери энергии на преодоление инерции покоящийся жидкости. С увеличением мощности давления, коэффициент запаса мощности уменьшается.

    21.Принцип работы центробежного насоса.

    Устройство:

    Основной рабочий орган ц-б насоса – свободно вращающееся внутри спиралевидного корпуса колесо, насаженное на вал. Между дисками колеса – лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса. Внутренние поверхности дисков и поверхности лопаток образуют т.н. межлопастные каналы колеса, при работе заполненные перекачиваемой жидкостью. Всасывание и нагнетание жидкости происходит равномерно и непрерывно под действием центробежной силы, возникающей при вращении колеса.

    Принцип работы:

    При переходе жидкости из канала рабочего колеса в корпус происходит резкое снижение скорости, в результате чего кинетическая энергия жидкости превращается в потенциальную энергию давления, которое необходимо для подачи жидкости на заданную высоту. При этом в центре колеса создается разрежение, и вследствие этого жидкость непрерывно поступает по всасывающему трубопроводу в корпус насоса, а затем в межлопастные каналы рабочего колеса. Если перед пуском ц-б насоса всасывающий трубопровод и корпус не залиты жидкостью, то возникающего разрежения будет недостаточно для подъема жидкости в насос (из-за зазоров между колесом и корпусом). Чтобы жидкость не выливалась из насоса, на всасывающем трубопроводе устанавливают обратный клапан. Для отвода жидкости в корпусе насоса есть расширяющаяся спиралевидная камера: жидкость сначала поступает в эту камеру, а затем в нагнетательный трубопровод.

    22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса.

    Параллелограмм скоростей – графическое изображение относительной (W) и окружной (U) скоростей.

    Построив параллелограмм скоростей, находим скорость С1на входе жидкости в рабочее колесо, направленную под углом α1, и скорость С2 на выходе из колеса, направленную под углом α2. При движении жидкости внутри рабочего колеса её абсолютная скорость увеличивается от С1 до С2.

    Основное уравнение ц-б насоса устанавливает зависимость между теоретическим напором Нт, создаваемым колесом, и скоростью движения жидкости в колесе. Это уравнение называется уравнением Эйлера:

    Где

    На практике насосы изготавливают таким образом, чтобы α1≈90о, т.е. cosα1= 0, это условие безударного входа жидкости в колесо. Основное уравнение принимает вид:

    studfiles.net

    Гидравлическая мощность и КПД центробежных насосов

    Опубликовано 08.02.2018

    Гидравлическая мощность и КПД центробежных насосов

    Гидравлическая мощность насоса

    PГ = ρ x g x Q x H [Вт]

    ρ — плотность жидкости [кг/м3]g — ускорение свободного падения [м/сек2]Q — расход [м3/сек]H — напор [м]

    Для насосов, у которых всасывающий и напорный патрубки имеют одинаковый диаметр и находятся на одном уровне, напор можно рассчитать по упрощённой формуле:

    H = (p2 — p1) / (ρ x g) [м]

    p2 — давление на напорном патрубке [Па]p1 — давление на всасывающем патрубке [Па]

    Таким образом, гидравлическая мощность насоса пропорциональна перепаду давления и расходу:

    PГ = (p2 — p1) x Q [Вт]

    Если диаметр напорного патрубка меньше диаметра всасывающего патрубка, то для расчёта гидравлической мощности насоса напор необходимо увеличить на величину:

    v2 — скорость жидкости в напорном патрубке [м/с]v1 — скорость жидкости во всасывающем патрубке [м/с]Q — расход [м3/с]g — ускорение свободного падения [м/с2]d2 — внутренний диаметр напорного патрубка [м]d1 — внутренний диаметр всасывающего патрубка [м]

    Если напорный и всасывающий патрубок расположены не на одной линии, то напор нужно ещё увеличить на разницу высот между двумя патрубками:

    ΔH = h3 — h2

    Потребляемая мощность насоса

    Если вал насоса жёстко соединён с валом двигателя, то потребляемая мощность насоса равна механической мощности на валу электродвигателя.

    PП = PВ

    КПД насоса

    КПД насоса равен отношению гидравлической мощности к потребляемой:

    ηН = PГ / PП

    Насос выбирается так, чтобы в рабочей точке его КПД был максимальным (см. рис.).

    Механическая мощность на валу электродвигателя:

    PВ = ηД x PЭ

    ηД — КПД электродвигателя,PЭ — электрическая мощность, потребляемая двигателем из сети.

    Электрическая мощность, потребляемая 3-х фазным электродвигателем из сети

    PЭ = √3 х U х I х cos φ

    U — напряжение сети [В]I — ток, потребляемый электродвигателем [А]cos φ — косинус угла между векторами тока и напряжения 

    Выводы: как вычислить КПД насоса

    • С помощью специального прибора с токовыми клещами измеряем электрическую мощность PЭ, потребляемую электродвигателем из сети. Если электродвигатель работает от преобразователя частоты, то ПЧ сам измеряет мощность и сохраняет это значение в одном из своих параметров
    • С шильдика электродвигателя списываем его КПД и вычисляем мощность на валу PВ. На шильдике, конечно, указана и номинальная мощность электродвигателя, но в данном случае нас интересует мощность электродвигателя в рабочей точке насоса
    • Если между двигателем и насосом существует жёсткая механическая связь (а не ременная передача, редуктор или муфта с проскальзыванием), то считаем потребляемую насосом мощность РП равной мощности на валу электродвигателя РВ
    • Измеряем перепад давления на напорном и всасывающем патрубках и вычисляем напор (если необходимо, то корректируем его с учётом разницы диаметров и высот напорного и всасывающего патрубков)
    • Измеряем расход и рассчитываем гидравлическую мощность насоса РГ
    • Вычисляем КПД насоса.

    Если КПД насоса оказался ниже, чем вы ожидали, то стоит задуматься о профилактике, ремонте или замене насоса.

    Регулирование скорости вращения рабочего колеса центробежного насоса

    Центробежные насосы: кавитация, NPSH, высота всасывания

    www.maxplant.ru

    Мощность и коэффициент полезного действия насоса

    Мощность — работа в единицу времени — применительно к насосам можно определять по нескольким соотношениям в зависимости от принятых единиц измерения подачи, давления или напора. Полезной мощностью называют мощность, сообщаемую насосом подаваемой жидкости. Если подача Q выражена в м3/с, а давление насоса — в Па, то полезная мощность Nп, кВт, составит

    Производительность насоса формула

    При массовой подаче QM выраженной в кг/с,

    Производительность насоса формула

     Если напор насоса выражен в метрах столба перекачиваемой жидкости, то

    Производительность насоса формула

     

     

     Для воды при температуре 20 °С и q = 9,81 м/с2

    Производительность насоса формула

    Если же подача воды выражена в м3/ч, а напор — в м вод. ст., то

    Производительность насоса формула

    Если мощность необходимо выразить в л. с, то ее вычисляют по следующей формуле:

    Производительность насоса формула

    Мощность насоса, т. е. мощность, потребляемая насосом, 

    Производительность насоса формула

     где η — КПД насоса.Из формулы (2.46) видно, что КПД насоса представляет собой отношение полезной мощности к мощности насосаПроизводительность насоса формула

    Коэффициент полезного действия насоса учитывает гидравлические, объемные и механические потери, возникающие при передаче энергии перекачиваемой жидкости. Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него, т. е. во всасывающем аппарате, рабочем колесе и нагнетательном патрубке. Гидравлические потери оценивают гидравлическим КПД насоса: 

    Производительность насоса формула

     где Nn — полезная мощность насоса; Nг — мощность, затраченная на преодоление гидравлических сопротивлений в насосе.

    Объемные потери возникают вследствие перетекания части жид кости из области высокого давления в область пониженного давления (во всасывающую часть насоса) и вследствие утечек жидкости через сальники. Объемные потери оценивают объемным КПД насоса

    Производительность насоса формула

     где N — мощность, потерянная в результате перетекания жидкости и утечек.

    Производительность насоса формула

     где Nм— мощность, затраченная на преодоление механических потерь.Механические потери слагаются из потерь на трение в подшип-никах, сальниках и разгрузочных дисках рабочего колеса, а также из потерь на трение наружной поверхности рабочего колеса о жидкость. Механические потери оценивают механическим КПД насоса.Коэффициент полезного действия насоса равен произведению гидравлического, объемного и механического коэффициентов полезного действия 

    Производительность насоса формула

     и характеризует совершенство конструкции, а также качество изготовления насоса. КПД крупных насосов доходит до 0,92, а КПД малых насосов — до 0,6 — 0,7 и менее. Мощность двигателя, приводящего в движение насос, всегда больше мощности насоса. Если вал насоса соединен с валом двигателя с помощью муфты, то установочную мощность двигателя определяют по формуле

    Производительность насоса формула

     где kдв — коэффициент запаса мощность двигателя.В зависимости от мощности двигателя N, кВт, и условий его работы следует принимать приведенные ниже коэффициенты запаса мощности:  

    N<2 1,5
    2<N<5 1,5—1,25
    5<N<50 1,25—1,15
    50<N<100 1,15—1,05
    N>100 1,05

     

    Если вал насоса соединен с валом двигателя редуктором или ременной передачей, то мощность двигателя определяют по выражению

     Производительность насоса формула

    где ηдв — КПД привода (или редуктора).Коэффициент полезного действия насосного агрегата, т. е. насоса, соединенного с двигателем, равенПроизводительность насоса формула

    где Na — мощность насосного агрегата; ηдв — КПД двигателя.

    www.nasosinfo.ru

    Основные принципы подбора насосов. Расчет насосов

    Пример №1

    Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

    Требуется найти объемный коэффициент полезного действия насоса.

    Производительность насоса формула

    Решение:

    Площадь поперечного сечения плунжера :

    F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

    Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

    ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

    Пример №2

    Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

    Производительность насоса формула

    Решение:

    Площади попреречного сечения поршня и штока:

    F = (3,14·0,08²)/4 = 0,005024 м²

    F = (3,14·0,01²)/4 = 0,0000785 м²

    Производительность насоса находится по формуле:

    Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

    Далее находим полезную мощность насоса:

    NП = 920·9,81·0,0045195·160 = 6526,3 Вт

    С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

    NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

    Пример №3

    Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м3/час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

    Решение:

    Найдем создаваемый насосом напор из формулы полезной мощности:

    H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

    Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

    hп = H — (p2-p1)/(ρ·g) — Hг = 617,8 — ((1,6-1)·105)/(1080·9,81) — 3,2 = 69,6 м

    Пример №4

    Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

    Решение:

    Выразим искомую величину из формулы производительности винтового насоса:

    ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

    Пример №5

    Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

    Производительность насоса формула

    Решение:

    Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

    Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

    Скоростной напор в трубе:

    w²/(2·g) = 2²/(2·9,81) = 0,204 м

    При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

    HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м

    Общий напор составит:

    H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м

    Остается определить полезную мощность:

    NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

    Пример №6

    Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?

    Решение:

    Рассчитаем скорость потока воды в трубопроводе:

    Q = (π·d²)/4·w

    w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

    Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

    Пример №7

    Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

    Решение:

    Теоретическая производительность насоса:

    Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час

    Коэффициент подачи соответственно равен:

    ηV = 0,0004256/1,8·3600 = 0,85

    Пример №8

    Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

    Решение:

    Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

    NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

    Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

    NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт

    Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

    β = NУ/NД = 9500/8599 = 1,105

    Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

    Пример №9

    Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

    Производительность насоса формула

    Решение:

    Рассчитаем напор, создаваемый насосом в трубопроводе:

    H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) — 12 + 32,6 = 25,11 м

    Полезная мощность насоса может быть найдена по формуле:

    NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

    Пример №10

    Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

    Производительность насоса формула

    Решение:

    Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

    Рассчитаем напор, необходимый для перекачивания воды:

    H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м

    Полезная мощность, развиваемая насосом:

    NП = Nобщ/ηН = 1000/0,83 = 1205 Вт

    Значение максимального расхода найдем из формулы:

    NП = ρ·g·Q·H

    Найдем искомую величину:

    Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

    Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

    Qмакс/Q = 0,00836/24·3600 = 1,254

    ence-pumps.ru

    Расчет мощности насоса по давлению и расходу. Расчет производительности насосов

    Производительность центробежных насосов зависит от размеров рабочего колеса, скорости его вращения и напора жидкости. С увеличением напора жидкости производительность насоса уменьшается. При свободном выходе жидкости из нагнетательного патрубка насос работает с максимальной производительностью.

    Рабочая характеристика насоса (рис. 24), получаемая практическим путем, позволяет определять его производительность при заданном напоре.

    Режим работы насоса при оптимальном к.п.д. обычно указывается в паспортной характеристике насоса заводом-изготовителем.

    Полный напор жидкости, создаваемый центробежным насосом, можно ориентировочно определить по формуле

    где v — окружная скорость рабочего колеса, м/сек;

    g — ускорение силы тяжести, м/сек 2 ;

    n — число оборотов рабочего колеса в секунду;

    R — радиус рабочего колеса, м.

    Потребную мощность для работы центробежного насоса можно определить по формуле

    где Q — производительность (подача) насоса, м 3 /ч;

    Н — напор жидкости, м жидк. ст.;

    р — плотность перекачиваемой жидкости, кг/м 3 ;

    n — механический к.п.д. насоса. Для лопастных насосов n=0,10÷0,15, для дисковых n=0,25÷0,30.

    Расчетное значение N увеличивают для запаса мощности на 10-15%.

    Производительность поршневых насосов вычисляют по формуле

    где F — площадь сечения цилиндра, м 2 ;

    S — ход плунжера, м;

    n — число оборотов кривошипа в минуту;

    m — число цилиндров;

    n об — объемный к.п.д. (n об =0,7÷0,75).

    Мощность, потребляемую плунжерным насосом, можно определить по формуле

    где V — объемная производительность насоса, м 3 /ч;

    р — плотность жидкости, кг/м 3 ;

    Н — высота подачи от уровня всасываемой жидкости до максимальной высоты нагнетательного трубопровода, м;

    h — напор, необходимый для преодоления гидравлических сопротивлений в трубопроводе, м вод. ст.;

    n М, — механический к.п.д. насоса.

    Объемную производительность роторных насосов с внешним зацеплением определяют по формуле

    где q — объем между двумя смежными зубьями шестерен, м 3 ;

    z — число зубьев шестерен;

    n — число оборотов шестерни в минуту;

    n об — объемный к.п.д. (n об =0,7÷0,8).

    Расчет насоса для скважины производится после изготовления скважины, получения паспорта на нее. Документация выдается специалистами компаний, в которых заказывается услуга. В ней указаны основные параметры скважины – подача, уровни зеркала, конструкция фильтра на забое. При заполнении паспорта скважины применяется профессиональное оборудование, многократно превосходящее бытовые насосы. Поэтому пользователь может смело выбирать любую модификацию поверхностного, погружного насоса в указанных пределах. В идеале производительность скважинного насоса должна быть на 5-10% меньше, чем аналогичный показатель источника водозабора. Рис. 1.

    Рисунок 1. Схема источника водозабора.

    Расчет в обязательном порядке учитывает характеристики:

    • количество сантехнических приборов;
    • схема их расположения;
    • суточная потребность семьи в жидкости;
    • классификация используемой системы водоподготовки.

    Расчеты погружных моделей отличаются от вычислений для поверхностных насосов. Оптимальным вариантом скважинного насоса является винтовая, вихревая, центробежная модификация оборудования, допускающие 40 г/л либо 180 г/л примесей соответственно. Вибрационные насосы резко снижают бюджет водообеспечения коттеджа, однако имеют низкий ресурс, выходят из строя при обилии песка.

    Производительность погружного насоса

    Для расчета производительности насоса для скважины необходимо знать величину расхода. Этот показатель складывается из расхода жидкости в нескольких сантехнических приборах, используемых одновременно. Для удобства вычислений данные сведены в таблицу:

    Расчет производится с поправочным коэффициентом 0,6-0,8, так как вероятность одновременного включения всех потребителей не превышает 60-80% соответственно. В нормативах СНиП присутствуют таблицы, облегчающие расчеты в нестандартных ситуациях (например, проживание семьи из двух человек в двухэтажном особняке с санузлами на каждом этаже). В них заложены значения, основанные на реальном эксплуатационном опыте. Например, если при сложении суммарного расхода по имеющимся сантехническим приборам получается 1 л/с, то в таблице этому значению соответствует реальное потребление 0,55 л/с. Для расчетного расхода 5 л/с, 10 л/с, 15 л/с практические значения составят 1,27 л/с, 1,78 л/с, 2,17 л/с соответственно.

    Таким образом, добавляется поправочный коэффициент 3,6. В любом случае дебит насоса должен превышать потребность семьи в воде.

    Пример для погружного насоса в коттедже

    Расчет для частного коттеджа производится с учетом имеющихся сантехнических приборов:

    • унитаз – 0,1;
    • умывальник – 0,09;
    • кухонная мойка – 0,15;
    • водонагреватель – 0,1;
    • душ + смеситель – 0,09.

    Общий расход в доме получится равным 0,53 л ежесекундно, затем к нему добавляется уличный поливочный кран (0,3 л/с), что составит 0,83 л/с. Данному значению в таблиц

    mirhat.ru

    ОПРЕДЕЛЕНИЕ ПОЛЕЗНОЙ МОЩНОСТИ НАСОСА — Мегаобучалка

     

    Устройство и работа гидравлических машин основана на использовании принципов гидравлики. Гидравлические машины это такие, в которых основным рабочим телом является жидкость.

    По своему назначению в зависимости от характера происходящих в них энергетических процессов гидравлические машины можно разделить на две большие группы: гидравлические двигатели и насосы.

    Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода различных машин.

    Насосами называются гидравлические машины для перемещения жидкостей путем повышения энергии рабочей среды. Механическая энергия, подводимая к насосам от двигателей, приводящих эти машины в действие, преобразуется в них в гидравлическую энергию жидкости.

    По принципу действия различают гидравлические машины лопастного типа (центробежные насосы, турбины) и машины, действующие по принципу вытеснения жидкости твердым телом (поршневые насосы).

     

    Полезная работа, потребляемая насосом в единицу времени (мощность) будет равна:

     

    N= γ·Q·H л.с.

    где γ – удельный вес жидкости, γ = ρ·g ;

    Q – производительность насоса, т.е. расход жидкости, подаваемой насосом в трубопровод;

    Н – полный (манометрический) напор.

     

    Действительная мощность, потребляемая насосом и подводимая к нему от двигателя, будет больше полезной мощности ввиду неизбежных потерь энергии в насосе. В формуле для определения полезной мощности насоса Н = Ннас , тогда Nнас= , где определяется по формуле:

     

    где Н-высота подъема, т.е. Н=Н2·αi. Для практических расчетов принимаем αi=1. Индекс «в» на всасывающей линии, «н» — на нагнетательной линии.

    Вычислим :

    Откуда:

    Nнас=

     

    Результаты расчетов по вариантам занести в таблицу:

     

    Вариант Значение Nнас, кВт
    6,628

     

     

    ЗАКЛЮЧЕНИЕ

     

    В ряде участков гидравлической установки режим течения жидкости – турбулентный, в результате мы имеем большие потери напора. Как следствие это влечет за собой экономические затраты. Рекомендую добавить в циркуляционную жидкость небольшие количества таких веществ, как, например, высокомолекулярные полимеры (полиокс, полиакриламид – ПАА), гуаровая смола, поливиниловый спирт – ПВС. Будучи растворенными в жидкости, они обладают способностью значительно снижать гидравлические сопротивления при турбулентном режиме.

    Механизм происходящих при этом явлений полностью пока не выяснен, но есть основания полагать. Что частицы этих веществ (их длинные и гибкие молекулы), внесенные в поток жидкости, тесно взаимодействуя с ее пульсирующими частицами, существенно изменят характер турбулентного течения.

    Указанные изменения проявляются, прежде всего, в близкой к стенкам, ограничивающим поток, весьма малой по толщине области пограничного слоя. Здесь снижаются пристеночные поперечные пульсации скоростей и давлений, и это оказывает решающее влияние на общий уровень турбулентности и поведение потока в целом. Причем достаточно нескольких миллионных долей полимера по отношению к растворителю, чтобы достигалось значительное уменьшение гидравлического сопротивления.

     

     

    СПИСОК ЛИТЕРАТУРЫ

     

    1. Нефтегазовая гидромеханика/ Басниев К.С., Дмитриев Н.М., Розенберг Г.Д.- Москва-Ижевск: Институт компьютерных исследований, 2003.-

    480 с.

     

    2. Техническая гидромеханика/ Емцев Б.Т. – 2-е изд., перераб. И доп.- М.: Машиностроение, 1987.-440 с.: ил.

     

    3. Основы теоретической механики: Учебник. 2-е изд., перераб. и дополн. – М.: Изд-во МГУ, 2000.- 719 с.

     

    4. Сопротивление материалов: Учебник для вузов/ Под общ. Ред. Акад. АН УССР Г.С. Писаренко.- 4-е изд. перераб. и доп.- Киев: Высшая школа, 1979.-696 с. 30106.2105000000.

     

    5. Бурдин Г.Д., Базакуза В.А., Единицы физических величин: Справочник-Харьков: Высшая школа, 1984.

     

    6. Стоцкий Л.Р. Физические величины и их единицы.-М.: Просвещение, 1984.

     

    7.Теория механизмов и машин: Терминология. Буквенное обозначение величин.-М.: Наука, 1984.

     

    8. Курсовое проектирование и его унификация в Московском институте нефти и газа имени И.М. Губкина.4.1. и 4.2..-М.-: МИНГ, 1987.

     

    9. Методическое пособие для выполнения курсовой работы по гидравлике/Зозуля Н.Е., Альметьевск, 2001.

     

    megaobuchalka.ru

    Пример расчета мощности двигателя центробежного водяного насоса

    Пример. Необходимо рассчитать мощность двигателя для электропривода центробежного водяного (ρ = 1000 кг/м³) насоса, работающего в продолжительном режиме S1 с неизменной нагрузкой.Привод нерегулируемый, высота подачи воды H-30 м, часовая подача насоса 36 м³ или Q = 36/3600 = 0,01 м³/с.Потеря напора в магистрали составляет ΔH = 9,5 м.Требуемая частота вращения вала двигателяn2 = 950 ± 20 об/мин.КПД насоса η1 = 0,81.Сочленение вала двигателя с рабочим колесом насоса непосредственное (η2 = 1).Условия эксплуатации: климат умеренный, категория размещения 3.Питающая сеть — трехфазный переменный ток частотой 50 Гц, напряжением 380 В.Исполнение двигателя по способу монтажа: положение горизонтальное, крепление фланцевое со стороны выступающего конца вала.Требуется выбрать двигатель.

    Решение.

    1. Запишем формулу для определения расчетной мощности привода центробежного насоса:P_p={9,81*10^{-3}*{rho}*Q*(H+{Delta}H)}/{{eta}_1*{eta}_2},гдеρ — плотность перекачиваемой жидкости, кг/м³;Q — подача (производительность) насоса, м³/с;Hc — суммарный напор жидкости, т.е. наибольшая высота, на которую может подняться жидкость над точкой выхода из насоса, м;ΔH — потеря напора в магистрали, зависящая от сечения труб, их качества, протяженности, кривизны, м;η1 — КПД насоса;η2 — КПД механической передачи вращательного движения от двигателя на механизм.

    ТогдаP_p={9,81*10^{-3}*1000*0,01*(30+9,5)}/{0,81*1}=4,78 кВт.

    2. По каталогу на асинхронные двигатели (определение термина «асинхронный двигатель») серии АИР (основное исполнение) выбираем двигатель АИР132S6 номинальной мощностью Pном = 5,5 кВт; sном = 4,0; ηном = 85 %; cos{varphi} = 0,8; λм = 2,2; λп = 2,0; λi = 7; исполнение по способу защиты IP54, исполнение по способу монтажа IМ3001 (электродвигатель без лап с фланцем доступным с обратной стороны с любым пространственным расположением 1 выходного конца вала).

    Определяем скольжение двигателя при фактической (расчетной) нагрузке Рp = 4,78 кВт:s_p={s_{HOM}}*{{P_p}/{P_{HOM}}}=0,04*{{4,78}/{5,5}}=0,035.

    Тогда, частота вращения двигателя при расчетной нагрузке:n_p=n_{HOM}*{(1-s_p)}=1000*(1-0,035)=965 об/мин.

    Это соответствует заданному диапазону частоты вращения насоса:n_2=930-970 об/мин.

    Расчет мощности двигателя насоса также рассмотрен здесь.

    electrichelp.ru

    Источник: xn—-7sbeb3bupph.xn--p1ai


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.