Инфракрасные волны


История открытия инфракрасного излучения

В 1800 году ученый Уильям Гершель объявил на заседании Лондонского Королевского общества о своем открытии. Он измерил температуру за пределами спектра и обнаружил невидимые лучи с большой нагревательной силой. Опыт проводился им с помощью светофильтров телескопа. Он заметил, что они в разной мере поглощают свет и тепло солнечных лучей.

Через 30 лет факт существования невидимых лучей, расположенных за красной частью видимого солнечного спектра, был неоспоримо доказан. Французский физик Беккерель назвал это излучение инфракрасным.

Свойства ИК-излучения

Спектр инфракрасного излучения состоит из отдельных линий и полос. Но он может быть так же непрерывным. Все зависит от источника ИК лучей. Иначе говоря, имеет значение кинетическая энергия или температура атома или молекулы. Любой элемент таблицы Менделеева в условиях разных температур имеет различные характеристики.


Например, инфракрасные спектры возбужденных атомов из-за относительного состояния покоя связки ядро — электроны будут иметь строго линейчатые ИК-спектры. А возбужденные молекулы — полосатые, хаотично расположенные. Все зависит не только от механизма наложения собственных линейных спектров каждого атома. Но так же от взаимодействия этих атомов между собой.

При повышении температуры изменяется спектральная характеристика тела. Так, нагретые твердые и жидкие тела выделяют непрерывный инфракрасный спектр. При температурах ниже 300°С излучение нагретого твердого тела целиком расположено в инфракрасной области. От диапазона температур зависит как изучение ИК-волн, так применения их важнейших свойств.

Главные свойства ИК-лучей это поглощение и дальнейший нагрев тел. Принцип передачи тепла инфракрасными обогревателями отличается от принципов конвекции или теплопроводности. Находясь в потоке горячих газов, предмет теряет какое-то количество тепла, пока его температура ниже температуры нагретого газа.

И наоборот: если инфракрасные излучатели облучают предмет, еще не значит, что его поверхность данное излучение поглощает. Он может так же отражать, поглощать или пропускать лучи без потерь. Практически всегда облучаемый предмет поглощает часть этого облучения, часть отражает и часть пропускает.

Далеко не все светящиеся объекты или нагретые тела излучают ИК-волны. Например, люминесцентные лампы или пламя газовой плиты такого излучения не имеют. Принцип работы люминесцентных лам основан на холодном свечении (фотолюминесценции). Ее спектр ближе всего к спектру дневного, белого света. Поэтому ИК-излучения в нём почти нет. А наибольшая интенсивность излучения пламени газовой плиты приходится на длину волны голубого цвета. У перечисленных нагретых тел ИК-излучение очень слабое.


Существуют так же вещества, которые прозрачны для видимого света, но не способны пропускать ИК-лучи. Например, слой воды толщиной несколько сантиметров не пропустит инфракрасное излучение с длиной волны больше 1 мкм. При этом человек может различить находящиеся на дне предметы невооруженным глазом.

www.kakprosto.ru

Что такое инфракрасное излучение

Излучение, примыкающее к красной части видимого спектра, не воспринимаемое нашими органами зрения, но обладающее способностью нагревать освещаемые поверхности, было названо инфракрасным. Приставка «инфра» означает «больше». В нашем случае — это электромагнитные лучи с длиной волны большей, чем у видимого красного света.

Что является источником инфракрасного излучения

Его естественным источником является Солнце. Диапазон инфракрасных лучей достаточно широк. Это волны с длиной от 7 и до 14 микрометра (мкм). Частичное поглощение и рассеяние инфракрасных лучей происходит в атмосфере Земли.

О масштабах инфракрасного солнечного излучения говорит тот факт, что на него приходится 58% всего спектра электромагнитных волн, исходящих от нашего светила.


инфракрасное излучение

Такой, достаточно широкий диапазон ИК лучей делят на три части:

  • длинные волны, излучаемые нагревателем с температурой до 300 °C;
  • средние — до 600 °C;
  • короткие — более 800 °C.

Все они излучаются возбуждёнными атомами (т. е. обладающими избыточной энергией), а также ионами вещества. Источником ИК излучения являются все тела, если их температура выше абсолютного нуля (минус 273 °C).

Итак, в зависимости от температуры излучателя формируются ИК лучи разной длины волны, интенсивности и проникающей способности. А от этого и зависит, как инфракрасное излучение воздействует на живой организм.

Польза и вред ИК излучения для здоровья человека

влияние инфракрасного излучения на человека


Ответить на вопрос — вредно ли для человека инфракрасное излучение, можно, вооружившись некоторыми сведениями.

Длинноволновые ИК лучи, попадая на кожу, воздействует на нервные рецепторы, вызывая ощущение тепла. Поэтому инфракрасное излучение ещё называют тепловым.

Более 90% этого излучения поглощается влагой, содержащейся в верхних слоях кожи. Оно вызывает лишь повышение температуру кожного покрова. Медицинские исследования показали, что длинноволновое излучение не только безопасно для человека, но и повышает иммунитет, запускает механизм регенерации и оздоровления многих органов и систем. Особенно эффективными в этом отношении являются ИК лучи с длиной волны 9,6 мкм. Этими обстоятельствами обусловлено применение инфракрасного излучения в медицине.

Совсем иной механизм воздействия инфракрасных лучей на организм человека, относящегося коротковолновой части спектра. Они способны проникнуть на глубину нескольких сантиметров, вызывая нагревание внутренних органов.

В месте облучения из-за расширения капилляров может появиться покраснение кожи, вплоть до образования волдырей. Особенно опасны короткие ИК лучи для органов зрения. Они могут спровоцировать образования катаракты, нарушения водно-солевого баланса, появления судорог.

Причиной известного эффекта теплового удара служит именно коротковолновое ИК излучение. Повышение температуры головного мозга на 1 °C уже вызывает его признаки:


  • симптомы отравления ИКголовокружение;
  • тошноту;
  • учащение пульса;
  • потемнение в глазах.

Перегревание на 2 °C может спровоцировать развитие менингита.

Теперь разберёмся с понятием интенсивности электромагнитного излучения. Этот фактор зависит от расстояния до источника тепла и его температуры. Длинноволновое тепловое излучение малой интенсивности играет важную роль для развития жизни на планете. Человеческий организм нуждается в постоянной подпитке этими длинами волн.

Таким образом, вред и польза инфракрасного излучения определяется длиной волны и временем воздействия.

Как избежать вредного воздействия ИК лучей

обогреватели — источники ИК излученияПоскольку мы определились, что негативное влияние на человеческий организм оказывает коротковолновое ИК излучение, выясним, где нас может подстерегать эта опасность.

Прежде всего это тела с температурой, превышающей 100 °C. Такими, могут явиться следующие.


  1. Производственные источники лучистой энергии (сталеплавильные, электродуговые печи и пр.) Снижение опасности их воздействия достигается специальной защитной одеждой, теплозащитными экранами, применением более новых технологий, а также лечебно-профилактическими мероприятиями для обслуживающего персонала;
  2. Обогреватели. Самым надёжным и проверенным из них является русская печь. Излучаемое ею тепло не только чрезвычайно приятно, но и целебно. К великому сожалению эта деталь быта почти полностью канула в Лету. На смену ей пришли все возможные электрические обогреватели. Те из них, чья тепловыделяющая спираль защищена теплоизолирующим материалом, излучают мягкое длинноволновое излучение. Оно оказывает благотворное влияние на организм. Обогреватели с открытым нагревательным элементом излучают жёсткое, коротковолновое излучение, которое и может привести к описанным выше негативным последствиям. В техническом паспорте обогревателя производитель обязан указать характер излучения этого прибора.

коротковолновый обогреватель

Если же вы стали обладателем коротковолнового обогревателя, соблюдайте правило — чем ближе обогреватель, тем меньшим должно быть время его воздействия.

Помощь при тепловом ударе


Природа наделила человека очень совершенной системой терморегуляции. Но, если все же имеет место тепловой удар, следует выполнить определённый комплекс мероприятий, минимизирующих его последствия:

  • оказание помощи при тепловом удареперенести пострадавшего в прохладное место;
  • освободить его от стесняющей одежды;
  • приложить холод на голову, область сердца, шеи, подмышечные впадины, в паховые области и позвоночник;
  • обернуть пострадавшего холодной, мокрой простыней — при испарении воды с её поверхности будет снижаться температура;
  • для усиления эффекта направить поток воздуха от вентилятора;
  • давать пострадавшему прохладное, обильное питье;
  • в тяжёлых случаях показано искусственное дыхание и вызов скорой помощи.

Человечество живёт в мире природных и рукотворных источников различных излучений. Неоспоримо воздействие инфракрасного излучения на организм человека. Но нет статистики, доказывающей его вред.

А знание закономерностей его взаимодействия с биологическими объектами позволяет использовать полезное влияние инфракрасного излучения на человека для предотвращения болезней и терапии различных заболеваний.

otravleniy.com

Задача обучения


  • Разобраться в трех диапазонах ИК-спектра и описать процессы поглощения и излучения молекулами.

Основные моменты

  • ИК-свет вмещает большую часть теплового излучения, создаваемого телами примерно комнатной температуры. Излучается и поглощается, если во вращении и колебании молекул происходят изменения.
  • ИК часть спектра можно разбить на три области по длине волн: дальний инфракрасный (300-30 ТГц), средний (30-120 ТГц) и ближний (120-400 ТГц).
  • ИК также именуют тепловым излучением.
  • Важно разобраться в концепции излучательной способности, чтобы понять ИК.
  • ИК-лучи можно применить для дистанционного определения температуры объектов (термография).

Термины

  • Термография – дистанционное вычисление перемен температуры тела.
  • Тепловая радиация – электромагнитное излучение, создаваемое телом из-за температуры.
  • Излучательная способность – умение поверхности излучать.

Инфракрасные волны

Инфракрасный (ИК) свет – электромагнитные лучи, которые по показателю длин волн превосходят видимый свет (0.74-1 мм). Диапазон инфракрасных волн сходится с диапазоном частот 300-400 ТГц и вмещает огромное количество теплового излучения. ИК-свет поглощается и излучается молекулами при изменении во вращении и колебаниях.

Инфракрасные волны

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Подкатегории ИК-волн

ИК-часть электромагнитного спектра занимает диапазон от 300 ГГц (1 мм) до 400 ТГц (750 нм). Можно выделить три вида инфракрасных волн:

  • Дальний ИК-диапазон: 300 ГГц (1 мм) до 30 ТГц (10 мкм). Нижнюю часть можно именовать микроволнами. Эти лучи поглощаются из-за вращения в газофазных молекулах, молекулярных движениях в жидкостях и фотонов в твердых телах. Вода в земной атмосфере так сильно поглощается, что делает ее непрозрачной. Но есть определенные длины волн (окна), используемые для пропускания.

  • Средний ИК-диапазон: 30 до 120 ТГц (от 10 до 2.5 мкм). Источниками выступают горячие объекты. Поглощается колебаниями молекул (разнообразные атомы вибрируют в позициях равновесия). Иногда этот диапазон именуют отпечатком пальца, потому что это специфическое явление.
  • Ближайший ИК-диапазон: 120 до 400 TГц (2500-750 нм). Эти физические процессы напоминают те, что происходят в видимом свете. Наиболее высокие частоты можно найти определенной разновидностью фотографической пленки и датчиками для инфракрасной, фото- и видеосъемки.

Тепло и тепловое излучение

Инфракрасное излучение именуют также тепловым. ИК-свет от Солнца охватывает всего 49% земного нагрева, а все остальное – видимый свет (поглощается и повторно отбивается на более длинных волнах).

Тепло – энергия в переходной форме, которая течет из-за разницы в температурных показателях. Если тепло передается теплопроводностью или конвекцией, то излучение способно распространяться в вакууме.

Чтобы разобраться в ИК-лучах, следует внимательно рассмотреть концепцию излучательной способности.

Источники ИК-волн

Люди и большая часть планетарного окружения создают тепловые лучи на 10 мкм. Это граница, отделяющая среднюю и дальнюю ИК-области. Многие астрономические тела испускают улавливаемое количество ИК-лучей на нетепловых длинах волн.

ИК-лучи можно использовать, чтобы вычислять температурные показатели объектов на расстоянии. Этот процесс именуют термографией и активнее всего используют в военном и промышленном употреблении.

 

Инфракрасные волны

Термографическое изображение собаки и кошки

ИК-волны также используют в отоплении, связи, метеорологии, спектроскопии, астрономии, биологии и медицине, а также анализе произведений искусства.

v-kosmose.com

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н2О, О2, О3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н2О наблюдаются во всей ИК-области спектра, а полосы СО2 — в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения — Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров — 1,15 и 3,39 мкм, СО2-лазеров — 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту — для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

В. И. Малышев.

knowledge.su

Особенности излучения

Фототерапия – это специальный раздел в физиотерапии, занимающийся изучением воздействия волны световой на организм человека. Было отмечено, что волны имеют различный диапазон, поэтому они по-разному сказываются на человеческом организме. Важно отметить, излучение владеет самой большой глубиной проникновения. Что касается поверхностного влияния, то им обладает ультрафиолет.

Диапазон инфракрасного спектра (спектр излучения ) имеет соответствующую длину своей волны, а именно 780 нм. до 10000 нм. Что касается физиотерапии, то для лечения человека применяется длина волны, которая колеблется в спектре от 780 нм. до 1400 нм. Данный диапазон инфракрасного излучения считается нормой для терапии. Простыми словами, применяется соответствующая длина волны, а именно более короткая, способная проникать в кожу на три сантиметра. Помимо этого, учитывается специальная энергия кванта, частота излучений.

Согласно многим исследованиям, было установлено, что свет, радиоволны, лучи инфракрасные, обладают одной природой, так как это разновидности электромагнитной волны, которая окружает людей повсюду. Подобные волны обеспечивают работу телевизоров, мобильных телефонов и радио. Простыми словами, волны позволяют человеку увидеть окружающий мир.

Инфракрасный спектр имеет соответствующую частоту, длина волны которой 7-14 мкм, что оказывает уникальное воздействие на организм человека. Данная часть спектра соответствует излучениям человеческого тела.

Что касается объектов кванта, то молекулы не имеют возможности произвольно колебаться. Каждая молекула кванта обладает определенным комплексом энергии, частот излучений, которыми запасаются в момент колебаний. Однако стоит учесть, что молекулы воздуха оснащены обширным набором таких частот, поэтому атмосфера способна поглощать излучение в разнообразных спектрах.

Источники излучения

солнце

Солнце является основным источником ИК.

Благодаря ему предметы могут нагреваться до конкретной температуры. В итоге осуществляется излучение тепловой энергии в спектре данных волн. Затем энергия доходит к объектам. Процесс передачи тепловой энергии осуществляется от предметов с высокой температурой к более низкой. В этой ситуации у объектов присутствуют различные излучающие свойства, имеющие зависимость от нескольких тел.

Источники инфракрасного излучения присутствуют повсюду, они оснащенными такими элементами, как светодиоды. Все современные телевизоры оснащены пультами, работающими на дистанционном управлении, так как он функционирует в соответствующей частоте инфракрасного спектра. В их составе имеются светодиоды. Различные источники инфракрасного излучения можно увидеть на промышленных производствах, например: в сушке лакокрасочных поверхностей.

Самым ярким представителем искусственного источника на Руси являлись русские печи. Практически все люди испытали на себе влияние подобной печи, а также оценили ее пользу. Именно поэтому от нагретой печи или же радиатора отопления можно почувствовать такое излучение. В настоящее время огромной популярностью пользуются обогреватели инфракрасные. Они обладают перечнем преимуществ по сравнению с конвекционным вариантом, так как более экономичны.

Значение коэффициента

В инфракрасном спектре имеется несколько разновидностей коэффициента, а именно:

  • излучения;
  • коэффициент отражения;
  • пропускной коэффициент.

Итак, коэффициент излучения является способностью объектов излучать частоту излучений, а также энергию кванта. Может меняться в соответствии с материалом и его свойствами, а также температуры. Коэффициент имеет такое максимальное излечение = 1, но в реальной ситуации он всегда меньше. Что касается низкой способности излучения, то ею наделены элементы, имеющие блестящую поверхность, а также металлы. Коэффициент зависит от температурных показателей.

Коэффициент отражения дает увидеть возможность материалов отражать частоту изучений. Зависит от типа материалов, свойств и температурных показателей. В основном отражение имеется у полированных и гладких поверхностей.

Коэффициент пропускания показывает способность предметов проводить сквозь себя частоту инфракрасного излучения. Подобный коэффициент напрямую зависит от толщины и разновидности материала. Важно заметить, что большая часть материалов не имеет такой коэффициент.

Использование в медицине

инфракрасное излучение на колене

Световое лечение инфракрасным излучением стало достаточно популярным в современном мире. Применение инфракрасного излучения в медицине обусловлено тем, что методика имеет лечебные свойства. Благодаря этому, наблюдается благотворное влияние на организм человека. Тепловое влияние образует в тканях тело, регенерирует ткани и стимулирует репарацию, ускоряет физико-химические реакции.

Помимо этого, организм испытывает значительные улучшения, так как происходят такие процессы:

  • ускорение кровотока;
  • расширение сосудов;
  • выработка биологически активных веществ;
  • мышечная релаксация;
  • прекрасное настроение;
  • комфортное состояние;
  • хороший сон;
  • снижение давления;
  • снятие физического, психоэмоционального перенапряжения и прочее.

Видимый эффект от лечения наступает в течение нескольких процедур. Помимо отмеченных функций, инфракрасный спектр оказывает противовоспалительное влияние на организм человека, помогает бороться с инфекцией, стимулирует и укрепляет иммунную систему.

Подобная терапия в медицине имеет следующие свойства:

  • биостимулирующее;
  • противовоспалительное;
  • дезинтоксикационное;
  • улучшение кровотока;
  • пробуждение второстепенных функций организма.

Инфракрасное световое излучения, а точнее лечение им, имеет видимую пользу для человеческого организма.

Лечебные методики

Терапия бывает двух видов, а именно – общая, местная. Что касается местного воздействия, то лечение осуществляется на определенной части тела больного. Во время общей терапии, применение световой терапии рассчитано на весь организм.

Процедура осуществляется дважды в день, продолжительность сеанса колеблется в пределах 15-30 минут. Общий лечебный курс содержит не менее пяти – двадцати процедур. Следите за тем, чтобы была готова защита от инфракрасного излучения, предназначенная для области лица. Для глаз предназначены специальные очки, вата или же картонные накладки. После проведения сеанса, кожа покрывается эритемой, а именно – покраснениями, имеющими размытые границы. Эритема исчезает через час после процедуры.

Показания и противопоказания к лечению

женщину болит голова

ИК имеет основные показания к применению в медицине:

  • болезни лор-органов;
  • невралгия и неврит;
  • заболевания, затрагивающие опорно-двигательный аппарат;
  • патология глаз и суставов;
  • воспалительные процессы;
  • раны;
  • ожоги, язвы, дерматозы и рубцы;
  • астма бронхиальная;
  • цистит;
  • болезнь мочекаменная;
  • остеохондроз;
  • холецистит без камней;
  • артрит;
  • гастродуоденит в хронической форме;
  • пневмония.

Световое лечение имеет положительные результаты. Помимо лечебного эффекта, ИК может быть опасно для человеческого организма. Это обусловлено тем, что имеются определенные противопоказания, не соблюдая которые можно нанести вред здоровью.

Если имеются следующие недуги, то подобное лечение принесет вред:

  • период беременности;
  • болезни крови;
  • индивидуальная непереносимость;
  • хронические болезни в острой стадии;
  • гнойные процессы;
  • туберкулез активной формы;
  • предрасположенность к кровотечениям;
  • новообразования.

Следует учитывать указанные противопоказания, чтобы не причинить вреда собственному здоровью. Слишком высокая интенсивность излучения способна причинить огромный вред.

Что касается вреда ИК в медицине и на производстве, то может возникнуть ожог и сильнейшее покраснение кожного покрова. В некоторых случаях у людей возникали опухоли на лице, так как они контактировали с данным излучением достаточно долго. Существенный вред инфракрасного излучения может вылиться в форме дерматитов, а также бывает тепловой удар.

Инфракрасные лучи достаточно опасны для глаз, особенно в диапазоне до 1,5 мкм. Длительное воздействие оказывает существенный вред, так как появляется светобоязнь, катаракта, проблемы со зрением. Длительное влияние ИК – очень опасно не только для людей, но для растений. Используя оптические приборы, можно постараться исправить проблему со зрением.

Воздействие на растения

прибор для измерения ИИ

Всем известно, что ИК оказывают благотворное влияние на рост, развитие растений. Например, если обустроить теплицу обогревателем с ИК, то можно увидеть ошеломляющий результат. Обогрев осуществляется в инфракрасном спектре, где соблюдается определенная частота, а волна равна от 50 000 нм. до 2 000 000 нм.

Существуют достаточно интересные факты, согласно которым можно узнать, что все растения, живые организмы, подвергаются влиянию солнечного света. Радиация солнца имеет определенный диапазон, состоящий из 290 нм. – 3000 нм. Простыми словами, лучистая энергия оказывает важную роль в жизни каждого растения.

Учитывая интересные и познавательные факты, можно определить, что растения нуждаются в свете и солнечной энергии, так как они отвечают за формирование хлорофилла и хлоропластов. Скорость света влияет на растяжение, зарождение клеток и ростовых процессов, сроки плодоношения и цветения.

Специфика микроволновой печи

Бытовые микроволновые печи оснащены микроволнами, показатели которых немного ниже гамма и рентгеновских лучей. Такие печи способны спровоцировать ионизирующий эффект, который несет опасность человеческому здоровью. Микроволны расположились в промежутке между инфракрасными и радиоволнами, поэтому такие печи не могут ионизировать молекулы, атомы. Исправные СВЧ-печи не оказывают воздействия на людей, так как они впитываются в пищу, образуя тепло.

СВЧ-печи – не могут излучать радиоактивных частиц, поэтому не оказывают радиоактивного влияния на пищу и живые организмы. Именно поэтому не стоит переживать, что микроволновые печи способны навредить вашему здоровью!

otravlenym.ru

Диапазон инфракрасного излучения и длина волны

Инфракрасное излучение — это разновидность электромагнитного излучения, занимающего в спектре электромагнитных волн диапазон от 0,77 до 340 мкм. При этом диапазон от 0,77 до 15 мкм считается коротковолновым, от 15 до 100 мкм — средневолновым, а от 100 до 340 — длинноволновым.

Коротковолновая часть спектра примыкает к видимому свету, а длинноволновая сливается с областью ультракоротких радиоволн. Поэтому инфракрасное излучение обладает как свойствами видимого света (распространяется прямолинейно, отражается, преломляется как и видимый свет), так и свойствами радиоволн (оно может проходить сквозь некоторые материалы, непрозрачные для видимого излучения).

Инфракрасные излучатели с температурой на поверхности от 700 С до 2500 С имеют длину волны 1,55-2,55 мкм и называются "светлыми" — по длине волны они ближе к видимому свету, излучатели с более низкой температурой поверхности имеют большую длину волны и называются "темными".

Источники инфракрасного излучения

Вообще говоря, любое тело, нагретое до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и может передавать эту энергию посредством лучистого теплообмена другим телам. Передача энергии происходит от тела с более высокой температурой к телу с более низкой температурой, при этом, разные тела имеют различную излучающую и поглощающую способность, которая зависит от природы двух тел, от состояния их поверхности и т.д.

Электромагнитное излучение обладает квантово-фотонным характером. При взаимодействии с веществом фотон поглощается атомами вещества, передавая им свою энергию. При этом возрастает энергия тепловых колебаний атомов в молекулах вещества, т.е. энергия излучения переходит в теплоту.

Суть лучистого отопления состоит в том, что горелка, являясь источником излучения, генерирует, формирует в пространстве и направляет тепловое излучение в зону обогрева. Оно попадает на ограждающие конструкции (пол, стены), технологическое оборудование, людей, находящихся в зоне облучения, поглощается ими и нагревает их. Поток излучения, поглощаясь поверхностями, одеждой и кожей человека, создает тепловой комфорт без повышения температуры окружающего воздуха. Воздух в обогреваемых помещениях, оставаясь практически прозрачным для инфракрасного излучения, нагревается за счет "вторичного тепла", т.е. конвекции от конструкций и предметов, нагретых излучением.

Свойства и применение инфракрасного излучения

Установлено, что воздействие инфракрасного радиационного отопления благоприятно сказывается на человеке. Если тепловое излучение с длиной волны больше 2 мкм воспринимается в основном кожным покровом с проведением образовавшейся тепловой энергии внутрь, то излучение с длиной волны до 1,5 мкм проникает через поверхность кожи, частично нагревает ее, достигает сети кровеносных сосудов и непосредственно повышает температуру крови. При определенной интенсивности теплового потока его воздействие вызывает приятное тепловое ощущение. При лучистом обогреве человеческое тело отдает большую часть избыточного тепла путем конвекции окружающему воздуху, имеющему более низкую температуру. Такая форма теплоотдачи действует освежающе и благоприятно влияет на самочувствие.

В нашей стране изучение технологии инфракрасного отопления ведется с 30-х годов как применительно к сельскому хозяйству, так и для промышленности.

Проведенные медико-биологические исследования позволили установить, что системы инфракрасного отопления более полно отвечают специфике животноводческих помещений, чем конвективные системы центрального или воздушного отопления. Прежде всего, за счет того, что при инфракрасном обогреве температура внутренних поверхностей ограждений, особенно пола, превышает температуру воздуха в помещении. Этот фактор благоприятно сказывается на тепловом балансе животных, исключая интенсивные потери тепла.

Инфракрасные системы, работающие совместно с системами естественной, вентиляции обеспечивают снижение относительной влажности воздуха до нормативных значений (на свинофермах и в телятниках до 70-75% и ниже).

В результате работы этих систем температурно-влажностный режим в помещениях достигает благоприятных параметров.

Применение систем лучистого отопления для сельскохозяйственных зданий позволяет не только создавать необходимые условия микроклимата, но и интенсифицировать производство. Во многих хозяйствах Башкирии (колхоз им. Ленина, колхоз им. Нуриманова) значительно увеличилось получение приплода после внедрения инфракрасного отопления (увеличение опороса в зимний период в 4 раза), возросла сохранность молодняка (с 72,8% до 97,6%).

В настоящее время система инфракрасного отопления установлена и отработала уже один сезон на предприятии "Чувашский бройлер" в пригороде г. Чебоксары. По отзывам руководителей хозяйства, в период минимальных зимних температур -34-36 С система работала бесперебойно и обеспечивала требуемое тепло для выращивания птицы на мясо (напольное содержание) в период 48 дней. В настоящее время ими рассматривается вопрос об оборудовании инфракрасными системами остальных птичников.

best-stroy.ru

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло – это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия – в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному – где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750–780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными источниками света, поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Термография

Термография, или тепловидение – это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева – например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Спектроскопия

Инфракрасная радиационная спектроскопия – это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз – возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.

www.nastroy.net

Инфракрасное (ИК) излучение – вид электромагнитного излучения, занимающее спектральный диапазон между видимым красным светом (ИНФРАкрасный: НИЖЕ красного) и коротковолновым радиоизлучением. Эти лучи создают тепло и в науке известны, как термические волны. Эти лучи создают тепло и в науке известны, как термические волны.

Все нагретые тела источают инфракрасное изучение, в том числе и человеческое тело и Солнце, которое именно этим способом и греет нашу с вами планету, давая жизнь всему живому на ней. Тепло, которое мы ощущаем от огня у костра или камина, обогревателя или теплого асфальта – все это следствие инфракрасных лучей.

Весь спектр инфракрасного излучения принято делить на три основных диапазона, отличающихся длинной волны:

  • Коротковолновый, с длинной волны λ = 0,74—2,5 мкм;
  • Средневолновый, с длинной волны λ = 2,5—50 мкм;
  • Длинноволновый, с длинной волны λ = 50—2000 мкм.

Ближние или иначе коротковолновые ИК лучи совсем не горячие, фактически мы их даже не чувствуем. Эти волны используются, например, в пультах дистанционного управления телевизоров, системах автоматики, охранных системах и т.д. Их частота больше, и соответственно их энергия выше, чем у дальних (длинных) инфракрасных лучей. Но не на таком уровне, чтобы повредить организму. Тепло же начинает создаваться на средних инфракрасных длинах волн, и их энергию мы уже чувствуем. Инфракрасное излучение также называют «тепловым» излучением, т. к. излучение от нагретых предметов воспринимается  кожей человека, как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Например источник с длиной волны 1,1 мкм соответствует расплавленному металлу, а источник с длиной волны 3,4 мкм – металлу к концу прокатки, ковки.

Инфракрасные волныДля нас с вами интерес представляет спектр с длинной волны 5-20 мкм, так как именно в этом диапазоне приходится более 90% производимого инфракрасными системами отопления излучения  с пиком излучения в 10 мкм. Очень важно, что именно на данной частоте само человеческое тело излучает инфракрасные волны 9,4 мкм. Таким образом, любое излучение на данной частоте воспринимается человеческим организмом как родственное и оказывает на него благотворное и, даже более того, оздоровительное влияние.

При таком воздействии на организм инфракрасным излучением возникает эффект «резонансного поглощения», которое характеризуется активным поглощением организмом внешней энергии. В результате чего можно наблюдать у человека повышение уровня гемоглобина, усиление активности ферментов и эстрогенов, в общем итоге – стимуляция жизненной активности человека.

Инфракрасные волныИнфракрасное излучение практически не воздействует на вакуум и прозрачные вещества, что объясняет передачу энергии от Солнца Земле практически без потерь. Таким же образом ИК-излучение не нагревает непосредственно воздух в помещении, передавая свою энергию сразу же предметам и телам, находящимся в нем, в том числе и телу человека. Нагрев же воздуха происходит уже за счет тепла этих предметов, которые уже нагрелись сами и готовы поделиться теплом с окружающей средой.

Воздействие инфракрасного излучения на поверхность тела человека, как мы уже говорили, полезно и, вдобавок ко всему, приятно. Вспомните первые солнечные дни в начале весны, когда после долгой и пасмурной зимы наконец-то выглянуло солнышко! Вы чувствуете, как оно приятно обволакивает освещаемый участок вашей кожи, лицо, ладони. Уже не хочется надевать перчатки и головной убор, не смотря на достаточно низкую по сравнению с «комфортной» температуру. Но стоит появиться маленькой тучке, как мы сразу испытываем ощутимый дискомфорт от прерывания столь приятного ощущения. Это и есть то самое излучение, которого нам так не хватало на протяжении всей зимы, когда Солнце долгое время отсутствовало, и мы волей-неволей несли свой «инфракрасный пост».

В результате воздействия инфракрасного излучения можно наблюдать: 

  • Ускорение обмена веществ в организме;
  • Восстановление кожной ткани;
  • Замедление процесса старения;
  • Вывод из организма излишних жиров;
  • Высвобождение двигательной энергии человека;
  • Повышение антимикробной устойчивости организма;
  • Активация роста растений

и многое многое другое. Более того инфракрасное облучение применяется в физиотерапии для лечения многих заболеваний в том числе онкологических, так как способствует расширению капилляров, стимулирует кровоток в сосудах, повышает иммунитет и производит общий лечебный эффект.

 И это совсем не удивительно, потому что данное излучение дано нам от природы как способ передачи тепла, жизни всему живому, нуждающемуся в этом тепле и комфорте, минуя пустое пространство и воздух как посредников.

хит-хаус.рф


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.