Излучатель инфракрасных лучей


Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны [1] λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами [2].

Весь диапазон инфракрасного излучения делят на три составляющих:
коротковолновая область: λ = 0,74—2,5 мкм;
средневолновая область: λ = 2,5—50 мкм;
длинноволновая область: λ = 50—2000 мкм. [3]


Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Содержание [убрать]
1 История открытия и общая характеристика
2 Диапазоны инфракрасного излучения 2.1 Обычная схема деления
2.2 CIE схема
2.3 ISO 20473 схема
2.4 Астрономическая схема

3 Тепловое излучение
4 Применение 4.1 Прибор ночного видения
4.2 Термография
4.3 Инфракрасное самонаведение
4.4 Инфракрасный обогреватель 4.4.1 При покраске

4.5 Инфракрасная астрономия
4.6 Инфракрасная спектроскопия
4.7 Передача данных 4.7.1 Дистанционное управление

4.8 Медицина
4.9 Стерилизация пищевых продуктов
4.10 Пищевая промышленность
4.11 Проверка денег на подлинность

5 Опасность для здоровья
6 Земля как инфракрасный излучатель
7 См. также
8 Примечания
9 Ссылки


История открытия и общая характеристика [править | править вики-текст]

Эксперимент Гершеля
Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением [4].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить п

Источник: otvet.mail.ru

Дальнее ИК- излучение в медицинской практике


Для того, чтобы понять причину возникновения отрицательных реакций ИК- излучения на организм, вспомним, что квантовая энергия излучения обратно пропорциональна длине волны. Если учесть, что наше собственное излучение лежит в пределах 9-10 мкм, то использование ИК с длиной волны 1,5 мкм обладает энергией в 6 раз большей, чем наше собственное излучение. Именно это излучение, обладающее большой квантовой энергией, и обуславливает появление отрицательных эффектов при применении широкого спектра инфракрасного излучения. Кроме того, следует отметить, что вода имеет максимумы поглощения в диапазоне 1,3 мкм и 2,7 мкм. Учитывая, что мы на две трети состоим из воды, можно объяснить и то отрицательное воздействие, которое оказывает ИК-излучение ближнего диапазона при высоких уровнях.

Как использовать полезные свойства ИК-излучения и избежать в то же время его минусов? Начнем с того, что уже известно. Первые сведения о положительном влиянии дальних инфракрасных лучей на организм человека появились еще в 40-50 годы двадцатого столетия: «Инфракрасные лучи могут в этой области противодействовать эффекту от ультрафиолетовых лучей или далее уничтожать его. Так как инфракрасные лучи, как, впрочем, и все другие средства нагревания, препятствуют образованию фотоактивности, возникающей под действием ультрафиолетовых лучей в жирах.»


В последние годы в зарубежной литературе в диапазоне появились публикации о результатах применения инфракрасного излучения от 2 до 8 мкм. В частности, опубликованы данные о результатах применения инфракрасной сауны для лечения диабетических ангиопатий, трофических язв. Эффективность действия авторы объясняют активизирующим влиянием применяемого излучения на первичные NO радикалы, что способствует более быстрой регенерации тканей.

В своих работах авторы используют только один вид излучателя, имеющего достаточно широкий спектр излучения. Однако, как известно, каждое вещество, а значит и каждая межмолекулярная связь имеет свой определенный спектр, как излучения, так и поглощения. Это значит, что ткани организма обладают селективной чувствительностью, что и поддерживает их жизнедеятельность.

Поэтому было бы целесообразнее для успешного лечения больных использовать узкие спектры дальнего ИК-диапазона. Именно такие узкоспектральные излучатели разработаны на основе оксидной керамики в Институте Материаловедения. Спектр их излучения лежит в диапазоне от 8 до 50 мкм. Это является принципиально важным моментом, т.к. означает, что квантовая энергия преобразованного керамикой излучения находится в пределах квантовой энергии собственного излучения человека или же ниже ее, и, соответственно, не может оказывать отрицательное воздействие на физиологические процессы организма человека. Это объясняется тем, что патологические процессы сопровождаются, как правило, снижением интенсивности собственного излучения и имеют более слабые межмолекулярные связи, и для их восстановления нужны энергии, не превышающие собственного излучения организма человека. Излучатели имеют различные временные характеристики и могут быть непрерывными, импульсными или излучать энергию в сложной временной последовательности.

Механизм действия ИК-излучателей


А. Серия К (регистрационное удостоверение № УЗТТ 00798) — рабочий диапазон длины волн полезного излучения 9,5 мкм. Хорошо известно, что нормальный обмен веществ не означает неизменное, «замороженное» состояние всех реакций организма, он изменяется в зависимости от внешних и внутренних факторов. Все должно рассматриваться в динамике — адекватном ответе на внешние или внутренние раздражители (процессы). В организме человека непрерывно происходят различные процессы, ход которых представляет собой цепь химических реакций, протекающих в строгой последовательности.

Большинство химических реакций, происходящих в организме человека, являются фотохимическими с резонансом в области собственного излучения человека, поэтому скорость и согласованность их протекания находится в строгой зависимости от мощности этого излучения. Закономерно предположить, что если извне подать энергию, соответствующую излучению организма человека, это будет способствовать восстановлению (согласованию) скоростей химических реакций и, соответственно, восстановлению процессов. Избыточное излучение не окажет отрицательного воздействия, так как скорость реакций ограничивается наличием необходимых компонентов в данный момент времени для конкретной реакции. Керамические материалы серии К позволяют получить излучение, соответствующее излучению человека.


Многочисленные исследования свидетельствуют об иммунокоррегирующем действии данного вида излучения. Так, экпериментальными исследованиями подтверждено иммунокоррегирующее действие этих излучателей при иммунодефицитных состояниях различной природы (голодании, отравлении четыреххлористым углеродом, применении иммунодепрессантов). Применение излучателей приводило к восстановлению показателей как клеточного, так и гуморального звена иммунитета. Серия R (регистрационное удостоверение № УЗТТ 00898) — рабочий диапазон длины волны полезного излучения 16.25 мкм. Излучатели серии R обладают антиоксидантным действием.

Испуская два последовательных импульса за очень короткое время (миллионные доли секунды), излучатель RC нейтрализует активный радикал. Первый импульс длится 10 мкс, при плотности энергии 320 Вт на см2. Он способствует образованию свободных радикалов из гидроперекисей и супероксидов. Второй импульс длится приблизительно 13 мкс и способствует рекомбинации образовавшихся радикалов.

Действие излучателей серии G (регистрационное удостоверение № УЗТТ 00698) — рабочий диапазон длины волны полезного излучения 8,2 и 6,4 мкм.
лучатель GI создан на основе материалов, используемых для синтеза излучателя RC. В отличие от последнего, основным материалом является муллит, который получается по специальной технологии и имеет ширину спектра пропускания до 40 микрон. Доля материалов RC в материале GI составляет 0.5%. Результатом добавления к керамическому материалу RC муллита является «разбавление» интенсивности потока его излучения и снижение частоты импульсов. Таким образом, получаемое излучение оказывает более «мягкое» действие, чем действие материала RC.

Излучение эмиттеров типа GI обладает антибактериальным действием, оказывает восстанавливающее действие: 1-на состояние иммунной системы путем нормализации микрофлоры кишечника и, особенно, в его мукоидном слое; 2-на процессы диссоциации липопротеидов и связанных с белками гормонов, 3-на процессы синтеза простогландинов.

Излучатель GI применялся при лечении заболеваний воспалительной природы (бронхиты, пневмонии, простатиты и пр.), при нарушения жирового обмена.

Излучатели серии Z

ZB (ЗК) — предназначен для перевода нерастворимых соединений (тромбы, атеросклеротические бляшки, патологический коллаген и др.) в растворимое состояние и вывода их из организма (регистрационное удостоверение № УЗТТ 00898) — рабочий диапазон длины волн полезного излучения 22,5 мкм.

Результаты собственных исследований

Нами для улучшения результатов лечения перитонитов применены излучатели GI (ГЛ) и RC (P2M).
следования проведены у 56 больных с перитонитом в возрасте от 16 до 87 лет (средний возраст 37,8). Из них 17 (30,0%) женщины и 39 (70,0%) мужчины. Исследованные больные были разделены на 2 группы: I группу составили 27 больных с перитонитом (10 больных с перфоративной язвой двенадцатиперстной кишки, 6 — с деструктивным аппендицитом, 4 — с пельвиоперитонитом, 1 — с деструктивным панкреатитом, 5 — с острой кишечной непроходимостью и 1 больной с тромбозом мезентериальных сосудов), лечение которых проведено общепринятым методом: оперативное вмешательство с тщательной санацией брюшной полости и ликвидацией патологического очага, дезинтоксикационная терапия, антибиотикотерапия, общеукрепляющие средства, обработка раны и др., II группу составили 29 больных с перитонитом (8 больных с перфоративной язвой двенадцатиперстной кишки, 9 — с деструктивным аппендицитом, 5 — с острой кишечной непроходимостью, 1 — с деструктивным панкреатитом, 3-е деструктивным холециститом, 1 — с острым мезоденитом, 1 — с перфорацией тонкого кишечника, 1 — с проникающим колото-резаным ранением живота), которым наряду с традиционным лечением проводилась терапия методом «Infra-R». Воздействие УИК-излучателями проводилось как во время операции (использовались излучатели локального действия), так и в послеоперационном периоде (использовались излучатели общего и локального действия) по 10 минут одновременно 2 раза в день) ежедневно в течение 5 суток.


У всех больных исследовали состояние перекисного окисления липидов (по содержанию ацилгидроперекиси и по уровню малонового диальдегида), антиокислительной защиты (по активности ферментов супероксиддисмутазы и каталазы) и степень эндогенной интоксикации (по концентрации средних молекулярных пептидов и по сорбционной способности эритроцитов). Контролем служили полученные данные от 20 практически здоровых лиц. Кровь на анализ брали до операции и на 3-и, 5 сутки после операции.

У 54 больных (мужчин — 40, женщин — 14) изучен бактериальный пейзаж перитонеального экссудата. I группу составили 24 больных с перитонитом, лечение которых проведено общепринятым методом, а II группу составили 30 больных с перитонитом, которым наряду с традиционным лечением как во время операции (локальные), так и в послеоперационном периоде (по 10 мин. одновременно локальными и стационарными излучателями) ежедневно в течение 5 суток проводили воздействие узкоспектральными инфракрасными керамическими излучателями. Посев экссудата проводили в начале и в конце операции, затем через сутки и трое суток после операции.

Проведенные нами исследования показывают, что применяемые обычные методы послеоперационного ведения больных являются недостаточно эффективными в восстановлении нарушенных метаболических показателей. У этих больных степень обсемененности перитонеального экссудата к концу операции и в первый день после операции не уменьшалась, в некоторых случаях повышалась. К концу 3 суток микрофлора не исчезала, у некоторых больных отмечалась замена грамположительной микрофлоры на грамотрицательную. Это проявилось тяжелым течением послеоперационного периода.


Сочетание применения последовательного курса терапии с использованием узкоспектрального инфракрасного излучения (УИКИ) вместе с общепринятым методом повышает эффективность лечения, направленного на коррекцию выявленных нарушений системы ПОЛ — АОЗ, параметров эндотоксемии, ускоряет заживления ран, приводит к снижению обсемененности перитонеального экссудата, исчезновению грамотрицательной флоры, а в 85,7% случаях через трое суток после операции микрофлора не обнаруживалась, что способствовало благоприятному течению заболевания.

Методика использования излучателей

Излучатели рекомендуется применять на фоне общепринятой терапии, как во время проведения операции, так и послеоперационном периоде. Излучатели устанавливаются на расстоянии 25-30 см от поверхности.

Применение излучателей в период операции

Излучатели устанавливаются в область операционной раны:
• Излучатель локального действия RC — 10 минут;
• Излучатель локального действия GI — 10 минут.

Применение излучателей в послеоперационном периоде

Применение излучателей в послеоперационном периоде проводится в течение 5 дней:
• Излучатель общего действия RC — 10 минут;
• Излучатель общего действия GI — 10 минут.

В период экспозиции излучателей общего действия на область раны проводится лечение и локальными излучателями:
• Излучатель RC — 10 минут;
• Излучатель GI — 10 минут.

Источник: www.tmelekt.ru

Принцип инфракрасного нагрева

спектр ИК нагрева

Ик-нагрев – это нагревание веществ и предметов с помощью электромагнитных лучей волновая длинна которых составляет от 1,3 до 10 микрон. Ик-нагревание основано на поглощении предметами определенного спектра лучей. 

При правильном подборе спектрального излучения на излучаемый предмет можно достичь его глубинного либо поверхностного нагрева, а также осуществить его локализованную сушку без нагревания всей площади и глубины предмета.

Инфракрасное излучение было открыто еще в 1800 году известным астрономом и ученым У. Гершелем во время излучения солнечного спектра в участках теплового воздействия. А в 1930-х годах 20 века Ик-нагревание впервые начали применять в большой промышленности.

От температуры нагревателя зависит длина, проникающая способность и интенсивность формирующейся волны Ик лучей. 

Лучевой диапазон принято разделять на три категории:

1. Длинноволновой, который излучается источником с температурным показателем до 300 °С;

2. Средневолновой – температура до 600 °С;

3. Коротковолновой – температура до 800 °С.

   С данных показателей следует вывод: чем ниже температура источника, тем сильнее увеличивается длина волны.

Превосходства использования ИК-нагрева:

  • Направленное нагревание предмета;

    инфракрасные обогреватели

  • Прямой вид нагревания совершается без кислородного сжигания;
  • Прогрев осуществляется равномерно и охватывает всю поверхность;

  • Передача тепла производится в течении одной минуты, что свидетельствует о высококачественной скорости нагревания;

  • Экономичное потребление электроэнергии;

  • Попадание влаги и других веществ на ИК-нагреватель не несут негативного воздействия.

Недостатки ИК нагрева

При использовании инфракрасных излучателей в качестве основных обогревателей многие задаются вопросом и влиянии ИК лучей на организм человека. Инфракрасные лучи считаются составной частью солнечных лучей, поэтому они безвредны для человека, но необходимо учитывать правила пребывания под ИК лампой. Не стоит близко к тело располагать нагреватель, устанавливать много излучателей в небольшом помещении, находиться длительное время под греющим устройством и устанавливать нагреватели с большей мощностью от рекомендованных.

В качестве недостатков инфракрасного нагрева можно назвать следующие факторы:

— при использовании ИК излучателей в качестве обогрева следует просчитывать мощность и проектировать расположение приборов отопления;

— стационарная конструкция, которая не позволяет перемещать нагреватель по комнате;

— ухудшение физического самочувствия человека при длительном нахождении  под инфракрасными лучами, при близком расположении возможны ожоги кожи;

— высокая стоимость излучателя;

— хрупкость устройства, потому как в качестве нагревательного элемента применяют керамические излучатели или стеклянные трубки (кварцевые, галогенные или карбоновые излучатели).

Мы изготавливаем:

Керамические ИК-излучатели стандартных параметров, которые применяются как нагревательные источники в самых разных установках и формовочном оборудовании.

кварцевые ик излучатели

ИК обогреватели для обогревания различных типов помещений: промышленные, складские, бытовые.

Кварцевые ИК нагреватели изготавливаются серией стандартных излучателей – QP. Изготовление кварцевых панелей с индивидуальными параметрами производится под заказ.

Оборудование с ИК излучением для сушки и нагрева. Производится проектирование по решению вопросов технологического нагрева с применением ИК ламп.

Причины выгодного сотрудничества с Infrared:

  • Широкая база изготавливаемой продукции для промышленного нагрева, отопления, саун и бытовой сферы;

    керамические излучатели от производителя

  • Большой опыт работы;
  • Стоимость на стандартные позиции указана в Прайс листах. Цены на просчет оборудования с инфракрасным излучением просчитываются индивидуально;

  • Высококачественное применение собственных разработанных программ по изготовлению ИК нагревателей;

  • Высококвалифицированный штат кадров;

  • Быстрое изготовление заказов;

  • Качество изделий контролируется на протяжении всех этапов производства.

Источник: infrared-heaters.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.