Солнечная батарейка


Солнечный свет, в качестве альтернативного источника энергии, активно используют во всем мире. И это не только независимость от природных ископаемых, которые не безграничны, но и значительный вклад в экологию всей планеты.

Одним из способов получения такой энергии являются солнечные панели или батареи. По научному эти системы называются  фотоэлектрическими панелями.

Солнечная батарейкаТак что же это за системы и как они работают

Фотоэлектрические системы энергоснабжения (ФСЕ) работают по принципу физического закона фотоэффекта. Не вдаваясь в подробности его можно описать как превращение солнечного света в электрические микроразряды.

Как известно, солнце это неограниченный источник энергии, но только незначительная ее часть доходит к поверхности земли. Однако и этой энергии вполне достаточно, учитывая что современные панели могут использовать до 45% от ее количества.

Где уже применяются и для кого актуальны

Современный мир уже давно использует ФСЕ в промышленных масштабах, особенно это актуально для стран где солнечный свет активен большую часть года. Сегодня же, благодаря снижению цен на это оборудование и росту стоимость электричества, их часть используют частные дома и дачи в качества основного или дополнительного источника энергии.


А что же с квартирами? Здесь все сложнее, во первых нет достаточной свободной площади для установки панелей. Во вторых это сложно согласовать в различными надзорными органами.

В целом, такую задачу можно решить, но обойдется установка оборудования в многоквартирном доме значительно дороже, чем в частном доме.

Как выбрать солнечную батарею

Прежде чем установить такую систему в доме нужно определится с видом самих панелей и комплекта оборудования в целом. И здесь есть несколько очень важных моментов, которые нужно знать и от которых зависеть эффективность установки.

Определяемся с системой

В комплект солнечных батарей сходят сами панели, аккумулятор, контроллер и инвертор. В некоторых случаях система может быть другой, в зависимости от ее назначения, давайте рассмотрим их подробнее.

  1. Автономные системы. Предназначена для обеспечения электроэнергией объекта который не подключен к стационарной сети. Электроснабжение в дневное время происходит от панелей, остаток накапливается в аккумуляторных батареях. Этот заряд расходуется в вечернее и ночное время, а также когда солнечного света не достаточно.

  2. Открытые системы. Их еще называют безаккумуляторными, что значительно снижает цену. Такой вариант предусматривает обеспечение объекта электроэнергией только во время дневной солнечной активности.  В остальное время потребление производится с сети через инвертор. Он выбирает источник потребления в зависимости от текущей нагрузки. Во многих странах электричество ночью дешевле, поэтому такой вариант экономически оправдан.
  3. Комбинированные системы. Этот вариант предусматривает наличие полного комплекта, включая АКБ. В пиковые нагрузки, если не хватает запаса аккумуляторов, инвертор берет недостающую мощность из сети. Такой вариант актуален для домов где возникает периодическая необходимость в большом количестве электричества, а так же если нет необходимого количества резервных батарей.
  4. Реверсные системы. Промышленный вариант, а так же, в некоторых странах частным домовладениях разрешено их устанавливать для продажи электричества. Такие установки отличаются большим количеством батарей, задача которых выработать максимум электричества и отправить его в сеть через реверсный счетчик. Киловатты, отправленные таким образом оплачиваются энергокомпаниями по так называемому “зеленому тарифу”. Этот как экономический шаг, дающий возможность снизить энергозависимость, так и политический, показать миру что страна делает свой вклад в экологию.

Виды солнечных панелей

От этого элемента напрямую зависит эффективность работы всей системы, поэтому к их выбору стоит отнестись серьезно. Их всего три вида, но массовое применение получили только два, о них подробнее.

Монокристаллические

Каждый фотоэлемент состоит из одного кремниевого кристалла. Они самые эффективные за счет одностороннего направления этих кристаллов, КПД составляет 20% – 24%, но и стоят немного дороже. По внешнему виду их легко определить, панели имеют насыщенный синий цвет и округленные края.

Цена панели 250 Вт – 170-200 долларов.

Поликристаллические

Здесь мелкие кремниевые кристаллы объедены в фотоэлементы, что не позволяет сделать однотонную поверхность. Это отрицательно сказывается на КПД панели, ее эффективность примерно на 18% меньше монокристальных. Однако, производство таких батарей менее сложное, а значит они дешевле.

Цена панели 250 Вт – 150 долларов.

Амфорные

Представляют собой слой полупроводника (кремневодорода), напыленный на гибкую подложку. За счет своей гибкости могут монтироваться на криволинейные поверхности. Невысокий КПД, в среднем 10,4%. Однако, такие панели имеют более высокое поглощение, что делает их эффективнее в пасмурную погоду.

Цена панели 150 Вт – 250 долларов.

Сравнительная таблица уровня КПД

КПД

В процентах

Монокристаллические

17-22%

Поликристаллические

12-18%

Аморфные

5-6%


По сути, выбирать панели стоит исходя их двух параметров: финансовых возможностей и доступной свободной площади. Если вы хотите немного сэкономить, но обладаете большими площадями для установки, можете взять поликристалические. Если же место ограничено, но нужно выжать максимум, берите монокристалические.

Старение панелей

Еще один важный момент, который нужно знать, это коэффициент старения. С каждым годом производительность блоков немного снижается. Монокремний стареет за 25 лет примерно на 17 – 20%, то для монокристаллических элементов этот показатель может быть все 30%.

Что такое концентрационные солнечные лучи и как они влияют на производительность

Солнечная батарейка

Как можно судить из фото иллюстрации, чем больше затенена панель тем меньше ее производительность.

Видео обзор панелей

Солнечная батарейка

Инвертор, что нужно знать о нем

Без этого элемента система солнечных батарей просто не сможет работать. Он выполняет функцию преобразователя постоянного тока от панелей в переменный с напряжением 220 вольт. Их мощность может быть от 100 до 8000 Вт.Но, не все так просто, существует 3 вида инвекторов:

  • автономные;
  • сетевые;
  • многофункциональные.

Автономный инвертор (обозначение off grid). Этот прибор установлен внутри системы, выполняя все функции, но не имеет технической возможности для подключения к внешней сети. Не может перенаправлять электричество в аккумуляторы

Сетевой (или синхронный с обозначением on grid) может функционировать с подключением к внешней энергосети. Он может регулировать потоки энергии в зависимости от необходимой мощности. При недостатке электричества от батарей будет брать необходимое с сети. При переизбытке отправлять излишки в аккумуляторные батареи. Излишки электричества также могут быть перенаправлены во внешнюю сеть (если не подключены АКП или они полностью заряжены).

Многофункциональный инвертор. Универсальный вариант, работающий как оба предыдущие типа устройств. Также он обладает большим количеством дополнительных настроек, поэтому самый дорогой. Лучший вариант для домашних электростанций.

Солнечная батарейка

Подробная статья о инверторах, как правильно выбрать, что смотреть.

Более подробно о контроллере

Солнечная батарейкаЭтот прибор контролирует зарядку аккумуляторных батарей. Он ограничивает подачу тока от панелей на АКП когда их, максимально возможный по техническим параметрам, уровень заряда достигнут. Это его основная функция, но некоторые типы этих приборов могут отслеживать и частично контролировать:

  • Величину напряжения входа.
  • Значение общей мощности солнечных элементов.
  • Измерять температуру электролита в батарее.

Можно ли не использовать контроллер в системе? Можно, но в этом случае необходимо следить за уровнем заряда батарей и вручную отключать подачу питания на АКП. Если этого не делать, батареи очень быстро выйдут из строя, выкипает электролит и высохнут банки.

Какой выбрать аккумулятор для солнечных батарей

АКП накапливают излишки электричества во время максимальной солнечной активности и раздают его, когда это необходимо. Поскольку это оборудование стоит достаточно дорого, важно подобрать его правильно что получить максимальную выгоду. Рассмотрим самые распространенные типы.

Самое важное, что нужно знать при выборе батареи, это количество циклов зарядки-разрядки, которые она выдержит. Условно говоря, батарея заряжается днем, а отдает свой заряд ночью, пусть и не полностью, а даже 90%, это уже 1 цикл.

Солнечная батарейкаЛитий-железо-фосфатные АКБ (lifepo4) – это самый лучший вариант для автономных электростанций любых видов. Относительно новый тип батарей, практической использование его на данный момент не превышает 10-12 лет.


Солнечная батарейкаПреимущества

Солнечная батарейкаНедостатки

Высокий КПД, в пределах 95-98%.

Высокая цена

Средний срок службы 15 лет

Большой размер

Количество циклов зарядки 3000-10000

 

Не боится перепадов напряжения

 

Не требует никакого обслуживания

 

 

Солнечная батарейкаСвинцово-кислотные аккумуляторы. Они нам всем хорошо известны так как стоят практически в каждом автомобиле. Самые распространенный в солнечных электростанциях.

Преимущества

Недостатки

КПД в пределах 80%.

Уязвимость к низким температурам

Средний срок службы 10 лет

Большой размер

Количество циклов зарядки 2000

 

 

Солнечная батарейкаAGM-аккумуляторы. Это самые слабые по всем показателям батареи. КПД не превышает 80%, не более 500 циклов заряда и рабочая температура в пределах +15-25 градусов. Это делает их неконкурентоспособными как по качеству так и по цене, относительно других типов.

Видео обзор аккумулятров

Солнечная батарейка


Какой комплект солнечных батарей выбрать для дома

Такие системы бывают всего нескольких видов, разобраться в них не сложно. Собирать комплект этого оборудования стоит исходя из ваших задач, давайте рассмотрим несколько вариантов.

  1. Для обеспечения электричеством в дневное время без доступа к внешней сети вам понадобится (это самый дешевый вариант):
  • необходимое по расчетам количество панелей,
  • автономный инвертор.
  1. Если хотите обеспечивать свой дом или дачу круглосуточно, при этом не важно есть ли доступ к сети или его нет, необходим более полный комплект оборудования:
  • солнечные панели,
  • сетевой или многофункциональный инвертор,
  • аккумуляторные батареи,
  • контроллер заряда.
  1. Если же хотите пользоваться энергией солнечных панелей только днем, а в остальное время брать электричество с сети, вам понадобится:
  • необходимое по расчетам количество панелей,
  • сетевой или многофункциональный инвертор.

  1. Для продажи выработанной от солнца электроэнергии, например по зеленому тарифу в Украине, вам понадобится:
  • солнечные панели,
  • сетевой или многофункциональный инвертор,
  • аккумуляторные батареи,
  • контроллер заряда,
  • реверсный счетчик.

Это основные комплекты солнечных электростанций, которые применяются в частных домовладениях.

Видео обзор комплектов

Солнечная батарейка

Немного практических расчетов цены системы

Установка солнечных батарей мощностью до 1 кВт/час = 90 000 руб (без аккумуляторная система, 8 монокристаллов и автономный инвертор). Бытовые нужды, плюс теплые полы.

Считаем рентабельность. Допустим, месяц расходуем:

  • теоретическая выработка 20 кВт в сутки, 600 кВт в месяц
  • 90 000 : 600 = 150 руб. за 1 кВт
  • Цена 1 кВт обычной электросети = 5.4 руб. за 1 кВт
  • 150 (солн.бат.) : 5,4 (обыч.сеть) = 28

Таким образом мы вычислили что солнечное электричество в 28 раз дороже обычной сети, цифра пугает, но не все так плохо. Теперь рассчитаем окупаемость:

Стоимость в год, при расхода 600 кВт = 38000 руб.

Вложили 90 000 руб, делим на годовой расход, теоретическая окупаемость наступить через 2.3 года. Однако, средне годичный световой день для Московской области составляет 34 %, это значит что наши батареи будут работать только треть времени, соответственно их срок окупаемости увеличится ровно в 3 раза, то есть до 6.9 года.

Источник: vremya-stroiki.net

Что такое солнечная батарея


Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Источник: www.forumhouse.ru

На сегодняшний день солнечные электростанции продуцируют около 1% от общей суммы вырабатываемой электроэнергии во всем мире.Все больше людей, сегодня задумываются о том, чтобы, по возможности, сделать свой дом самодостаточным, во всех смыслах этого слова, в том числе и в энергетическом.

Понятие, "солнечная батарея", как оказывается, не совсем подходящее к тому образу, который возникает у нас в голове, когда мы слышим это название. Ведь солнечной батареей можно назвать, к примеру, коллектор, в котором теплоноситель нагревается солнечными лучами и подается в дом. Почему бы и нет?:) Устройство, которое вырабатывает электрический ток путем преобразования светового потока в постоянный электрический ток, правильней всего было бы называть — солнечный фотоэлектрический модуль. Хотя, справедливости ради, нужно заметить, что и солнечные коллекторы и солнечные батареи являются объектом исследования одной научной отрасли — гелиоэнергетики.

Простому потребителю, нужно понимать, что из себя представляет энергетическая установка преобразующая энергию солнца в электрическую энергию. Нужно понимать, что производимая солнечными элементами электрическая энергия должна где-то аккумулироваться, распределятся, инвертироваться, выдаваться, контролироваться ну и т.д.

Минусы.

— Сами панели занимают много места.

— Для аккумуляторных батарей нужно отдельное помещение с необходимым температурным режимом, вентиляцией и т.п. Ну, или оборудованный бокс, с соблюдением всех норм пожарной безопасности.

— Солнечную энергетическую установку тоже нужно обслуживать, — это только кажется, что все, как бы, само по себе работает. Сами панели нужно поддерживать в чистоте, а следовательно, нужно обеспечить к ним доступ. Нужно постоянно следить за уровнем заряда аккумуляторов.

autonomy-energy

Денег на полноценное обеспечение дома "солнечной энергией" нужно много и сразу.

Не окупятся. Просто примите это как факт:)

Технику с большой мощностью потребления использовать будет проблематично.

Летом панели сильно греются, что, почти в двое снижает их производительность.

Потенциальная экологическая опасность. Необходимость в правильной утилизации.

КПД солнечных панелей, со временем, снижается.

Работают только когда есть солнце. Учитывайте также и то, что заявленные производителем мощности будут только при идеальных погодных условиях. Реальность показывает, что они всегда ниже заявленных.

Максимальный КПД достигается только если выдерживается прямой угол падения солнечных лучей на панель, а это можно осуществить только с помощью дополнительной, так называемой, системы слежения за положением солнца. Это, как вы понимаете, дополнительные затраты и неизбежные поломки, ибо механика!

Плюсы

— Возможность получить электрическую энергию в самых отдаленных уголках планеты.

— Автономия.

— Отсутствие шума.

Выводы

Уже подсчитано, что полная окупаемость солнечных панелей для частного домовладения, может наступить через 45 лет! Учитывая , что срок службы современных солнечных батарей составляет около 25 лет и срок службы аккумуляторов приблизительно 12 лет(по заверениям производителей), а также учитывая высокие темпы технологического прогресса, можно с уверенностью сказать, что уже через 15 -20 лет современные солнечные батареи либо морально устареют, либо их обслуживание будет нецелесообразно с экономической точки зрения. То есть, они попросту не успеют окупиться!

Без солнечных батарей будет трудно обойтись тем:

— Чья усадьба находится вдалеке от централизованных линий электропередач, и прокладывать новую линию было бы делом весьма не выгодным.

— Кто поставил себе целью добиться абсолютно бесплатной энергии независимо от государства.

— Кому надоели постоянные перебои с электричеством, а дизель-генератор он хочет использовать из-за шума, неприятных запахов, трат на бензин и постоянных ремонтов.

Ввиду того, что солнечная энергетика, — относительно, молодой вид энергетической отрасли, — она не успела еще сильно "намусорить". Но ее стремительное и повсеместное внедрение, уже сегодня, позволяет сделать некоторые прогнозы. И прогнозы эти не совсем утешительны. E-vaste или электронный мусор, по-нашему, к которому относят и подлежащие утилизации солнечные панели, уже занимает около 20% от общей массы на "мировой свалке". Кристаллического кремния в самих панелях содержится около 85% но самое страшное не кремний, а поликристаллическое соединение токсичного Cd-кадмия и Te-теллура, которые по своей природе очень токсичны. Нельзя просто взять и выбросить солнечную панель на свалку, также как и ртутную лампу, ведь это чревато серьёзным загрязнением почвы и грунтовых вод!

Более детально об этой стороне вопроса можете почитать тут.

Одним словом, думайте сами, решайте сами, что вам нужно и стоит ли оно того.

Подписывайтесь на канал, если статья показалась вам полезной. лайки тоже приветствуются!

Источник: zen.yandex.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.