Солнечная батарея своими руками


Желание сделать систему энергообеспечения частного дома более эффективной, экономичной и чистой с экологической точки зрения заставляет искать новые источники энергии. Одним из способов модернизации является установка солнечных батарей, способных преобразовывать энергию солнца в электрический ток. Существует прекрасная альтернатива дорогостоящему оборудованию — солнечная батарея, сделанная своими руками, которая позволит ежемесячно экономить средства из семейного бюджета. О том, как такую вещь соорудить, мы сегодня и будем говорить. Обозначим все подводные камни и расскажем как их обойти.

Общую информацию о конструктивных особенностях солнечных батарей смотрите на видео:

Разработка проекта солнечной энергосистемы

Проектирование необходимо для более удачного размещения панелей на крыше дома. Чем больше солнечных лучей попадет на поверхность батарей и чем выше их интенсивность, тем больше энергии они произведут. Для установки понадобится южная сторона кровли. В идеале лучи должны падать под углом 90 градусов, поэтому следует определить, в каком именно положении работа модулей принесет больше пользы.


Дело в том, что самодельная солнечная батарея, в отличие от заводской, не имеет специальных датчиков движения и концентраторов. Для изменения угла наклона существует возможность изготовить механизм на ручном управлении. Он позволит устанавливать модули почти вертикально в зимний период, когда солнце стоит низко над горизонтом, и опускать их летом, когда солнцестояние достигает своего пика. Вертикальное зимнее расположение имеет и защитную функцию: оно препятствует скапливанию на панелях снега и наледи, чем продлевает срок эксплуатации модулей.

Возможно, перед монтажом батарей потребуется усиление кровельной конструкции, так как комплект из нескольких панелей имеет довольно большую массу. Необходимо вычислить нагрузку на крышу с учетом тяжести не только солнечных батарей, но и снежного пласта. Вес системы во многом зависит от материалов, которые применяются при ее изготовлении.

Количество панелей и их размер рассчитывают исходя из требующей мощности. Например, 1м² модуля производит приблизительно 120 Вт, этого не хватит даже для полноценного освещения жилых помещений. Примерно 1 кВт энергии при 10м² панелей позволит функционировать осветительным приборам, телевизору и компьютеру. Соответственно, солнечная конструкция площадью 20м² обеспечит нужды семьи из 3 человек. Приблизительно на такие размеры следует рассчитывать, если частный дом предназначен для постоянного проживания.

Варианты модулей для самостоятельной сборки


Основное назначение солнечной панели – генерировать энергию солнечных лучей и преобразовывать ее в электрическую. Полученный электроток представляет собой поток свободных электронов, высвобожденных световыми волнами. Для самостоятельной сборки оптимальным вариантом являются моно- и поликристаллические преобразователи, так как аналоги еще одного вида – аморфные – в течение первых двух лет снижают свою мощность на 20-40%.

Разные виды кремниевых пластин имеют свои плюсы и минусы. Например, поликристаллические модули отличаются довольно низким КПД – до 9%, тогда как КПД монокристаллических пластин достигает 13%. Первые сохраняют показатели мощности даже в облачную погоду, но служат в среднем 10 лет, мощность вторых резко падает в пасмурные дни, зато они прекрасно функционируют на протяжении 25 лет.

Самодельное устройство должно быть функциональным и надежным, поэтому часть деталей лучше приобрести в готовом виде. Перед тем, как сделать солнечную батарею по индивидуальному проекту, загляните на сайт eBay, где можно обнаружить огромный выбор модулей с незначительным браком. Легкая поломка не влияет на качество работы, зато заметно уменьшает стоимость панелей. Предположим, монокристаллический модуль Solar Cells, расположенный на стеклотекстолитовой плате, стоит чуть больше 15 долларов, а поликристаллический комплект из 72 штук – около 90 долларов.

Инструкция по изготовлению солнечной батареи


Вариантов самостоятельной сборки солнечных батарей множество. Технология зависит от количества солнечных элементов, приобретенных заранее, и дополнительных материалов, необходимых для изготовления корпуса. Важно запомнить: чем больше общая площадь панелей, тем мощнее оборудование, но вместе с тем вырастает и вес конструкции. В одной батарее рекомендуют применять одинаковые модули, так как эквивалентность тока приравнивается к показателям меньшего из элементов.

Сборка модульного каркаса

Дизайн модулей, как и их размеры, могут быть произвольными, поэтому вместо цифр ориентироваться следует на фото и выбрать любой индивидуальный вариант, подходящий для конкретных расчетов.

Для изготовления корпуса, внутри которого будут закреплены солнечные элементы, необходимо подготовить следующий материал и инструмент:

  • листы фанеры выбранного размера;
  • невысокие рейки для бортиков;
  • клей универсальный или для древесины;
  • уголки и саморезы для крепежа;
  • дрель;
  • плиты ДВП;
  • куски оргстекла;
  • краска.

Берем кусок фанеры, который будет играть роль основания, и по периметру приклеиваем невысокие бортики. Рейки по краям листа не должны загораживать солнечные элементы, поэтому следим, чтобы высота их не превышала ¾ дюйма. Для надежности каждую приклеенную рейку дополнительно привинчиваем саморезами, а углы можно скрепить металлическими уголками.


Для вентиляции высверливаем отверстия в нижней части корпуса и по бортикам. Отверстий в крышке быть не должно, так как это грозит попаданием влаги. Крепление элементов будет производится на листы ДВП, которые можно заменить любым похожим материалом, главное условие – он не должен проводить электроток.

Крышку вырезаем из оргстекла, подгоняя под размеры корпуса. Обычное стекло слишком хрупкое для размещения на крыше. Для защиты деревянных частей используем специальную пропитку или краску, которой следует обработать каркас и подложку со всех сторон. Неплохо, если оттенок краски каркаса будет сочетаться с цветом кровельного покрытия.

Монтаж солнечных элементов

Все солнечные модули раскладываем ровными рядами на подложке обратной стороной вверх, чтобы произвести пайку проводников. Для работы потребуется паяльник и припой. Места пайки предварительно необходимо обработать специальным карандашом. Для начала можно потренироваться на двух элементах, соединив их последовательно. Так же последовательно, цепочкой, соединяем все элементы на подложке, в результате должна получиться «змейка».

Соединив все элементы, аккуратно поворачиваем их лицевой стороной вверх. Если модулей много, придется пригласить помощников, так как одному спаянные элементы, не повредив, повернуть достаточно сложно. Но перед этим намазываем модули клеем, чтобы прочно закрепить их на панели. В качестве клея лучше использовать силиконовый герметик, причем наносить его следует строго по центру элемента, в одной точке, а не по краям. Это необходимо для предохранения пластин от поломок, если вдруг произойдет небольшая деформация основания. Лист фанеры может прогнуться или разбухнуть из-за изменения влажности, и стабильно приклеенные элементы просто треснут и выйдут из строя.


Закрепив модули на подложке, можно произвести пробный запуск панели и проверить функциональность. Затем основу помещаем в готовый уже каркас и фиксируем по краям шурупами. Чтобы исключить разряд аккумулятора через солнечную батарею, на панель устанавливаем блокировочный диод, закрепляя его герметиком.

Сверху установленные элементы накрываем защитным экраном из оргстекла. Перед тем, как зафиксировать его, вновь проверяем работоспособность конструкции. Кстати, тестировать модули можно и в течении всего процесса установки и пайки, группами по нескольку штук. Следим за тем, чтобы герметик просох окончательно, так как его испарения могут покрыть оргстекло непрозрачной пленкой. Выходной провод оснащаем двухконтактным разъемом, чтобы в дальнейшем можно было использовать контроллер.

Фотоэлектрические системы частного дома

Электрические домашние системы энергообеспечения с использованием солнечных элементов можно разделить на 3 вида:

  • автономная;
  • гибридная;
  • безаккумуляторная.

Если дом подключен к центральной энергосети, то оптимальным вариантом будет смешанная система: днем питание производится от солнечных батарей, а ночью – от аккумуляторов. Центральная сеть в данном случае является резервом. Когда нет возможности подключиться к центральному энергоснабжению, его заменяют топливными генераторами – бензиновыми или дизельными.

При выборе наиболее удачного варианта следует учитывать время суток, в которое происходит максимальное потребление энергии. В частных домах пиковый период выпадает на вечер, когда солнце уже зашло, поэтому логичным будет использовать либо подключение к общей сети, либо дополнительное применение генераторов, так как солнечное энергоснабжение происходит в дневное время.

Для дачников, режим работы которых часто совпадает со световым днем, подходит солнечная энергосберегающая система, которая начинает функционировать вместе с восходом солнца, а заканчивает вечером.

 

aqua-rmnt.com

Что такое солнечная батарея, и как она работает?

Общие понятия о принципе получения электричества от солнечной энергии

У людей, решивших собрать солнечную батарею, возникает немало вопросов, а для многих эта задача видится и вовсе не выполнимой из-за кажущейся сложности ее конструкции. Однако, на самом деле особых трудностей в ее сборке нет. И в этом можно убедиться, изучив схему и рассмотрев, как выполняет работу мастер, изготовивший не один подобный прибор.


Солнечная батарея представляет собой совокупность фотоэлектрических преобразователей солнечной энергии в электрическую.

Отдельные фотоэлементы соединены в единую панель и защищены с двух сторон материалами, стойкими к ультрафиолету, влаге и другим атмосферным явлениям. Это важно, так как батареи чаще всего эксплуатируются на открытом незащищенном пространстве — это может быть крыша здания, балконное ограждение или же поляна около дома.

Общая конструкция системы получения электрической энергии от солнечной представляет собой целый ряд приборов и устройств, соединенных в единую цепь:

  • Пластины-преобразователи — это полупроводниковые фотоэлементы, обладающие способностью генерировать постоянный ток под воздействием света. Пластины соединяются между собой по определенной схеме специальными шинами (плоскими проводниками), и собираются в батарею в общем корпусе.
  • Панели-батареи, собранные из фотоэлементов, подключаются к прибору-контролеру с подобранными параметрами тока и напряжения, необходимыми для зарядки аккумулятора.
  • Аккумулятор или целая батарея таких аккумуляторов накапливает заряд.
  • Специальный инвертор преобразует постоянный ток в переменный с напряжением в 220 В (если этот необходимо).

Такая череда приборов используются в схеме в том случае, когда планируется отдельные постоянные точки потребления или даже полностью весь дом запитать от солнечной энергии. Накопленная в аккумуляторе за день энергия может быть использована в пасмурные дни или в темное время суток. Применяются и более простые схемы, когда солнечные батареи выступают лишь вспомогательным источником питания, и накопление энергии не требуется. Панель в таком случае может быть непосредственно подключена к прибору-потребителю. Однако, этот вариант менее надежен, так как стабильность питания будет полностью зависеть от наличия солнца в данный момент.

Использование солнечных батарей для полного снабжения дома энергией актуально в регионах, где количество солнечных дней в  течение года преобладает. Этим обычно «славятся» южные регионы страны. В других условиях они чаще всего применяются в качестве дополнительных источников электроснабжения.

Модули солнечных батарей, из которых собирается панель, подразделяются на три типа:

монокристаллический;

— поликристаллический;

— аморфный (тонкопленочный).

От особенностей структурного строения пластин напрямую зависит эффективность конструкции, а также ее общая стоимость.


Монокристаллический и поликристаллический вариант солнечной батареи

Монокристаллические пластины изготавливаются из монокристаллов кремния, выращенных по методу Чохральского. Они отличаются высоким качеством и обладают неплохим (по меркам фотоэлементов) КПД, равным примерно 20÷22%. Из-за этого и стоимость их достаточно высока.

Солнечные лучи, попадая на монокристаллическую поверхность, способствуют возникновению направленного движения свободных электронов. Пластины с двух сторон подсоединены к шинам, которые затем подключаются к общей электрической цепи системы.

Высокий КПД этого типа пластин объясняется тем, что солнечные лучи равномерно рассеиваются по поверхности кристалла.

Поликристаллические фотоэлементы изготавливаются из полупроводника, имеющего поликристаллическую структуру. Именно этот тип батареи считается оптимальным для создания системы преобразования солнечной энергии. Стоимость элементов, а как следствие — и целых батарей получается ниже по сравнению с монокристаллическими приборами. Это обуславливается особенностями производства фотоэлементов, так как при их изготовлении применяются фрагменты, оставшиеся от монокристаллов.

Если сравнивать два этих типа изделий, то можно выделить следующие различия, выявленные тестированием независимых компаний:

  • Поликристаллические пластины отличаются по внешнему виду от монокристаллов, так как имеют неоднородный по цвету окрас поверхностей, с перемежением темных и светлых участков.

  • В процессе эксплуатации у всех фотоэлементов происходит постепенное снижение мощности. Так, после года работы у монокристаллов она снижается на 3%, а у поликристаллических элементов — на 2%.
  • Суммарное количество электроэнергии, выработанное монокристаллическим модулем, примерно на 30% выше, чем у поликристаллических элементов, при их одинаковой площади.
  • Стоимость поликристаллов на 10÷15 % ниже монокристаллических батарей.

Аморфные солнечные модули

Этот тип элементов представляет собой плотную гибкую пленку, значительно упрощающую процесс монтажа батарей.

На современном рынке представлены три поколения подобных фотоэлементов:

  • Элементы первого поколения являются однопереходными. Они имеют низкий КПД — всего 5% и относительно небольшой срок эксплуатации — не более 10 лет.
  • Пленка второго поколения тоже однопереходного типа, но уровень КПД у нее повышен до 8%, увеличен и срок эксплуатации.
  • Тонкопленочные батареи третьего поколения обладают КПД до 12%, и обладают длительным сроком службы, составляя конкуренцию кристаллическим вариантам.

Несмотря на не выдающиеся характеристики, самыми популярными остаются однопереходные тонкопленочные модули второго поколения. Они доступны по цене и обладают приличной мощностью, которая вполне может конкурировать с кристаллическими вариантами батарей.

Сравнение солнечных фотоэлементов

Если сравнивать кристаллические и пленочные батареи, то у последних существует ряд существенных преимуществ, благодаря которым часто предпочтение отдается именно им:

  • Аморфные пленочные элементы лучше реагируют на изменение температуры, в частности, на ее повышение. В солнечные месяцы года этот тип батарей способен произвести большее количество энергии по сравнению с кристаллическими аналогами — те при нагреве способны потерять до 20% мощности.
  • Пленочные батареи продолжают выработку энергии даже при рассеянном солнечном свете, в отличие от кристаллов, которые не генерируют энергию в пасмурную погоду. При слабом или рассеянном свете аморфная пленка способна вырабатывать до 20% энергии от своих номинальных показатели. Не слишком много, но лучше, чем ничего.
  • Стоимость кристаллических панелей гораздо выше, чем пленочных. Причем цена на последние продолжает снижаться из-за активного наращивания объемов их производства.
  • Пленочные солнечные батареи имеют меньшее количество дефектов и уязвимых мест. Дело в том, что жёсткие пластины при формировании панели спаиваются между собой, а пленка устанавливается в корпус конструкции в целом виде.

Если подвести итоги и вывести их в таблицу, то сравнительные характеристики пленочных аморфных и жестких кристаллических солнечных фотоэлементов будут выглядеть следующим образом:

Параметры Кристаллические панели Аморфные тонкопленочные батареи
КПД изделий 9÷20% 6÷12%
Выходное напряжение одного фотоэлемента Около 0,5 В Около 1,7 В
Световой спектр максимальной чувствительности Ближе к красному цвету, то есть для эффективной работы необходимо яркое солнце. Ближе к ультрафиолету, то есть восприимчивы и к рассеянному освещению.
Гибкость Хрупкие и ломкие, требуют обязательной жесткой основы и надежной защиты от механического воздействия. Гибкие, легко гнутся, не заламываются.
Надежность при эксплуатации в экстремальных условиях Требуют жесткой основы и надежной защиты от механического воздействия. Более устойчивы к механическим воздействиям, хотя тоже требуют защиты.
Долговечность При должной защите, эксплуатируются длительное время, но с годами постепенно снижается эффективность работы изделий. Качественные изделия, выполненные с соблюдением технологии, выгорают на солнце на 4% за первые 4÷5 лет эксплуатации. Дешевые китайские аналоги могут подвести через 2÷3 года.
Вес Тяжелые. Легкие.

Необходимо уточнить, что производятся и комбинированные варианты солнечных батарей, то есть состоящие из кристаллических и аморфных элементов. То есть используются по максимуму все преимущества обоих типов. Однако, стоимость подобных изделий весьма высока, поэтому они не настолько популярны, как упомянутые выше батареи.

Что влияет на эффективность солнечных батарей?

Чтобы не удивляться тому, что солнечные батареи работают с разной эффективностью в различные периоды, необходимо выделить факторы, которые влияют на КПД системы. Причем названные ниже моменты действуют на солнечные батареи всех типов, но с различной интенсивностью.

  • При повышении температуры производительность любых фотоэлементов панелей снижается.
  • При частичном затемнении, например, если солнце попадает только на часть панели, а какое-то количество элементов остается неосвещенным, выходное напряжение падает за счет потерь неосвещенных пластин.
  • Панели, оснащенные линзами для концентрирования излучения, становятся совершенно неэффективными в облачную погоду, так как пропадает эффект фокусирования потока света.
  • Для достижения высокой эффективности работы солнечной батареи необходим правильный подбор сопротивления нагрузки. Поэтому панели подключаются не напрямую к приборам или аккумулятору, а через управляющий системой контролер, который обеспечит оптимальный режим функционирования батареи.

Недостатки солнечных батарей

У солнечных батарей существует ряд недостатков, узнав о которых многие хозяева жилья сразу отказываются от затеи их приобретения и установки.

  • Для получения достаточного количества энергии необходимо установить весьма большое количество батарей довольно больших размеров. Понятно, что для их размещения потребуются большие площади. Многие собственники частных домов используют для их монтажа солнечную сторону крыши.
  • Нельзя забывать, что батарея будет работать эффективно, только если ее лицевая сторона будет подвергаться периодической очистке от насевшей пыли, грязи, разводов высохшей дождевой воды. А это значит, что к поверхности необходимо обеспечить удобный и легкий доступ.
  • Солнечные батареи недостаточно эффективно функционируют в сумерках и совершенно не работают в ночные часы. Чтобы использовать энергию от них в любое время суток необходимо подключение к нескольким аккумуляторам, которые за солнечный период накапливают энергию.
  • Для большого количества аккумуляторов, если система планируется в качестве основного источника энергии, может потребоваться отдельное помещение.
  • Солнечная энергия считается экологически чистой, однако сами пластины фотоэлементов содержат в себе такие токсичные вещества, как кадмий, свинец, мышьяк, галлий и т.п. При нагревании конструкции данные вещества могут выделяться не только в окружающую среду, но и проникать в помещения дома, если батареи установлены на крыше или балконе дома. Оптимальным вариантом будет установить систему в отдалении от жилых строений.
  • При установке батарей на открытой площадке, для более высокой эффективности их работы, систему часто снабжают специальным фотоэлементом, реагирующим на положение Солнца, и поворотным механизмом, который будет поворачивать их вслед за движением светила. Эффективность повышается, но зато возрастает сложность системы и стоимость реализации проекта.
  • Пока что не приходится говорить о высокой эффективности работы подобных систем. Их КПД составляет в самом лучшем случае 20%, остальные 80% воспринятой поверхностью солнечной энергии уходят на нагрев самой батареи, средняя температура которой может достигать 55÷60 градусов. Как уже говорилось выше, при нагреве фотоэлементов, эффективность их работы падает.
  • Чтобы предотвратить перегревание батарей, применяют те или иные системы принудительного охлаждения. Например, устанавливаются вентиляторы или насосы, перекачивающие хладагент. Понятно, что такие приборы также требуют электроэнергии, а также периодического обслуживания. Кроме того, они могут значительно снизить надежность работы всей конструкции. Ну а проблема эффективного пассивного охлаждения батарей пока не решается.

Как собрать солнечную батарею в домашних условиях?

Если после изучения представленной выше информации желание заняться изготовлением солнечной батареи не пропало, можно поэкспериментировать, создав и проверив собственное творение. Далее будет подробно рассмотрена сборка панели из монокристаллических пластин.

В показанном примере домашний мастер собирает панель габаритами 750×960 мм, состоящую из 36 жёстких монокристаллических пластин размером мм. Пластины устанавливаются в четыре ряда, по 9 фотоэлементов в каждом. Между фотоэлементами выдерживается зазор порядка 10÷12 миллиметров.

Иллюстрация Краткое описание выполняемых операций
Солнечная батарея своими руками Для работы потребуются, прежде всего, сами пластины. Мастер рекомендует приобретать их с запасом, так как они могут иметь разные параметры выходного напряжения, а из них необходимо будет выбрать 36 штук, имеющих наиболее близкие друг к другу показатели.
Шина — это медная луженая лента, то есть уже покрытая оловом, что упрощает ее пайку. Потребуется порядка 10 метров узкой шины шириной в 1,6 мм и 2 метра широкой, шириной в 5 мм.
Для электромонтажных работ необходимо подготовить обычный паяльник на 40 Вт. флюс для пайки — это канифоль, растворенная в спирте, спирт для обезжиривания поверхностей под пайку и их последующей очистки от остатков флюса, ватные диски и палочки.
В качестве основы для монтажа всего модуля в данном случае используется акриловое стекло толщиной 5 мм. Для последующей герметизации фотоэлементов мастер решил использовать прочную бесцветная прозрачная поливинилхлоридную пленку ORACAL®751, которая часто применяется для закрепления рекламы на транспортных средствах.
Солнечная батарея своими руками Несколько слов о том, почему выбрана ширина шины именно 1,6 мм.
Металл имеет свойство при нагревании расширяться, а при остывании, соответственно, сжиматься. На солнечной батарее этот процесс будет происходить постоянно, то есть днем припаянные шины будут увеличиваться в размерах, а ночью — наоборот, что не особо полезно для конструкции.
На опыте мастер испытал ленту шириной в 2 мм, и все-таки остановил свой выбор именно на ширине 1,6 мм. По токопроводящим качествам эти шины не особо отличаются между собой, а более узкая все же меньше повержена линейной деформации.
Солнечная батарея своими руками Подготовив все необходимое, имеет смысл в первую очередь произвести сортировку пластин.
Как говорилось выше, несмотря на то, что это одна модель, они зачастую могут иметь разные показатели в практической работе. А для гармоничной работы батареи значения вырабатываемого напряжения должны быть максимально близкими друг к другу. Например, в данном случае при проведении проверки обнаружилось, что фотоэлементы в равных условиях (при искусственном освещении) могут вырабатывать от 0,19 до 0,35 вольт.
Лучше, если в одной панели будут собраны элементы, имеющие максимально близкие значения, скажем, от 0,30 до 0,33 вольт. Если в комплексе будет установлен один или два элемента, значительно отличающиеся по выходному напряжению, то они будут создавать никому не нужное сопротивление, и станут перегреваться.
Таким образом, отбраковываются пластины, явно выпадающие из общей массы.
Солнечная батарея своими руками При монтаже пластин между ними будет оставляться зазор в 10÷12 мм. Он нужен для того, чтобы пленка, фиксирующая элементы на акриловом стекле, удерживала их со всех сторон.
Солнечная батарея своими руками Далее, необходимо уложить на столе две пластины на расстоянии в 10 мм, и по ним замерить, какой длины необходимо нарезать узкие шины.
Как можно видеть на внешней стороне пластин для скрепления предусмотрены две металлические токосъемные полосы, а на обратной ее стороне места фиксации указаны точечно, окошками.
Солнечная батарея своими руками На лицевой стороне пластины от ее верхнего края необходимо отступить примерно 3 мм.
Солнечная батарея своими руками На обратной стороне второй панели шина также должна не доходить до нижнего края на эти же 2÷3 мм.
Солнечная батарея своими руками После определения длины одной соединительной шины, остальные соединительные элементы отмеряются по ней. Для каждых двух пластин потребуется по два отрезка шины, то есть всего нужно 72 штуки.
В нарезанном виде шины выглядят, как показано на фото. Вовсе не обязательно заготавливать сразу все отрезки — их можно нарезать по ходу работы. Однако если они все-таки будут заготовлены все сразу, то рекомендовано их собрать и сцепить резинкой. Так они не потеряются, и не будут мешаться на столе.
Солнечная батарея своими руками Сначала шины припаиваются к лицевой стороне всех пластин.
Но перед началом пайки металлические токосъемные полосы на пластинах необходимо подготовить, обезжирив спиртом. Для этой работы удобно использовать ватные палочки — их обмакивают в спирт и проходятся по полоске.
Этот процесс необходим для повышения качества пайки.
Солнечная батарея своими руками Следующим подготовительным этапом идет нанесение на очищенные спиртом полоски канифольного флюса.
Лучше, если он будет налит в эластичную емкость в виде маркера (клеевого карандаша) с мягким наконечником. Так будет легче работать, при необходимости выдавливая и распределяя необходимое количество состава.
Солнечная батарея своими руками Следующим шагом идет припаивание шин к внешней стороне пластин.
Шина укладывается на металлическую контактную полоску и выравнивается. Далее, придерживая бо́льшую часть шины, аккуратно прижав ее к полосе, ее верхнюю сторону фиксируют паяльником на 20÷30 мм по длине.
Дополнительный припой при этом не используется – вполне достаточно слоя лужения на самой шине.
Теперь она закреплена и не сможет сдвинуться, поэтому ее оставшуюся длинную сторону закрепить на поверхности будет совсем просто.
Солнечная батарея своими руками Для этого пластину необходимо повернуть к себе противоположной стороной, так чтобы длинная часть шины оказалась под рукой.
Придерживая шину и слегка ее натягивая, по ней аккуратно проводят паяльником, следя за тем, чтобы он не соскользнул в сторону. Луженая лента хорошо припаивается к правильно подготовленной поверхности — достаточно один раз без спешки провести по ней хорошо разогретым паяльником.
Если на ленте останутся заусеницы, то их сразу же необходимо загладить, так как эта сторона пластин должна быть прижата к акриловому стеклу.
Солнечная батарея своими руками Припаяв обе ленты к пластине, их необходимо протереть спиртом с помощью ватной палочки или диска. Необходимо удалить с поверхности весь оставшийся флюс.
Солнечная батарея своими руками Таким же образом последовательно подготавливаются все 36 пластин, или же только 9 фотоэлементов, чтобы собрать одну из четырех полос солнечной панели.
Здесь каждый мастер поступает так, как ему будет удобнее.
Солнечная батарея своими руками Далее будет рассмотрена сборка подготовленных фотоэлементов в одну полосу. Таким же способом производится и соединение остальных трех полос солнечной панели.
Солнечная батарея своими руками Вначале берется пластина, которая будет первой в полосе.
Она укладывается на стол лицевой стороной вниз, вместе с припаянными к ней шинами. Затем полосы под пайку, выделенные на обратной стороне пластины контактными окошками, обрабатывается спиртом, а потом флюсом.
Далее, отступив от края примерно 3 мм по линии, проходящей через окошки, укладывается отрезок шины, и по тому же способу, что и с внешней стороны, припаивается к поверхности.
Свободные концы шин должны расположиться в противоположном направлении относительно припаянных к лицевой поверхности – они будут нужны при коммутации всего ряда элементов в общую батарею широкими шинами.
Солнечная батарея своими руками Теперь необходимо соединить между собой первую и вторую пластины ряда. Для этого концы шин, припаянных к лицевой стороне первой пластины, необходимо вывести на тыльную сторону второй пластины.
Пластины при этом размещаются параллельно друг другу на установленном расстоянии (10 мм). Для удобства можно на рабочем столе заранее выполнить разметку, то есть сделать своеобразный шаблон взаимного расположения пластин.
Солнечная батарея своими руками Точки припаивания контактов обрабатываются спиртом, и затем на них наносится флюс.
Солнечная батарея своими руками Теперь можно осуществить припаивание шин.
Для этого по ним также аккуратно, не торопясь, проводят разогретым паяльником. После окончания пайки обеих шин, их также необходимо протереть спиртом для удаления оставшегося флюса.
Солнечная батарея своими руками Далее, таким же образом коммутируется третья и все последующие пластины ряда.
В результате должно получиться четыре полосы по 9 фотоэлементов, соединенных так, как было показано на иллюстрациях.
Солнечная батарея своими руками Готовые, спаянные ряды фотоэлементов поочередно укладываются на заранее подготовленное акриловое стекло необходимого размера. От краев элементов до края стекла должно быть выдержано расстояние в 50÷60 мм. На стекле ряды временно фиксируются короткими полосками прозрачного скотча.
Солнечная батарея своими руками «Золотое правило» последовательной коммутации источников питания постоянного тока: плюс предыдущего элемента соединен с минусом последующего – и так далее.
В рядах это правило соблюдено. Теперь очень важно его не нарушить и при укладке рядов в батарею.
Так, выступающие слева отрезки шин первого и третьего ряда должны быть припаяны на внешней стороне панели, которая в данном случае повернута к акриловой поверхности. Во втором и четвертом ряду должны выступать концы шин, зафиксированные на тыльной светлой стороне пластин. Если допустить ошибку, то последовательное соединение нарушится, и батарея работать не будет.
Солнечная батарея своими руками В результате конструкция уложенной панели должна будет выглядеть следующим образом.
Когда все ряды будут закреплены на стекле скотчем, их необходимо объединить в одну систему.
Солнечная батарея своими руками Электрическое соединение осуществляется по представленной схеме.
В результате сверху окажется «плюс», снизу «минус».
Солнечная батарея своими руками В качестве соединительных элементов используется широкие шины – это хорошо показано на схеме выше. К ним припаиваются выступающие концы тонких шин.
Излишки после припаивания следует откусить кусачками.
Солнечная батарея своими руками На этой фото хорошо показана крайняя точка коммутации шин.
Закончив работу, панель необходимо проверить на работоспособность с помощью тестера, переключив его на вольтметр и установив щупы на плюс и минус.
Солнечная батарея своими руками Проверку панели можно сначала произвести на рабочем столе – больших показателей не будет, но собранная панель продемонстрирует, что она «живая».
А затем можно провести проверку, вынеся батарею на солнце.
Солнечная батарея своими руками К крайним плюсовой и минусовой шинам закреплены щупы мультитестера.
Солнечная батарея своими руками Даже при облачной погоде на холостом ходу батарея выдает 19,4 вольт — это говорит о правильности соединения панелей.
Солнечная батарея своими руками Солнца на момент проверки не было, и ток невелик, всего около 0,5 ампера. Но даже в пасмурную погоду батарея вырабатывает около 10 ватт энергии.
Солнечная батарея своими руками Параллельно рекомендуется проверить пластины на перегрев — это несложно прочувствовать тыльной стороной ладони.
Если отдельные пластины на общем фоне явно перегреваются, то их желательно сразу же заменить – это пока сделать несложно.
Солнечная батарея своими руками Если батарея работает нормально, то можно ее окончательно герметизировать — закатывать в пленку.
Эксплуатационный срок этой пленки семь лет, но как показывает практика, она отлично функционирует и дольше.
Пленка имеет клеевой слой, закрытый защитной подложкой, которая снимается по мере наклеивания покрытия на фотоэлементы и акриловое стекло.
Солнечная батарея своими руками Первое, что необходимо сделать — это разложить пленку сверху конструкции и выровнять край, от которого начнется ее наклеивание. От того, насколько будет выровнен край, зависит качество приклеивания всего полотна.
Должна быть достигнута полная герметизация, без складок и пустот, так как пленка предназначена для надежной защиты фотоэлементов от любых внешних воздействий.
Солнечная батарея своими руками Далее, необходимо аккуратно отделить защитный слой от пленки по всему краю, примерно на 40 мм, сразу закрепив ее на стекле.
Солнечная батарея своими руками Эта операция проводится очень аккуратно, при приклеивании пленка разравнивается и разглаживается.
Здесь необходимо помнить, что отклеить и выровнять определенный участок пленки — уже не получится, поэтому необходимо делать работу качественно сразу.
Пленку нельзя натягивать, но в то же время она и не должна собираться складками.
Солнечная батарея своими руками Защитная подложка подгибается вниз и по мере приклеивания постепенно снимается. Освободив 20÷30 мм пленки, ее приглаживают к фотоэлементам и просветам между ними, то есть к акриловому стеклу.
Солнечная батарея своими руками Процесс закатывания батареи в пленку — длительный и кропотливый, поэтому необходимо набраться терпения и выполнять его, не торопясь.
Если пленка все-таки замялась или ушла в сторону, ее нельзя отклеивать, так как повредятся фотоэлементы. В этом случае необходимо вырезать и наклеить сверху уже закрепленной пленки дополнительный фрагмент.
Главное — закрыть всю поверхность батареи. На этой иллюстрации показан закатанный в пленку край панели. Хорошо видно, что идеальная гладкость не требуется, главное — плотное прилегание пленки по всей площади.
Солнечная батарея своими руками Когда пленка будет наклеена, можно проводить испытания готовой панели.
Для этого батарею необходимо вынести на солнце и снова подключить к ней тестер.
Солнечная батарея своими руками Как можно видеть, батарея выдает напряжение на выходах почти 20 вольт.
Затем проверяется ток короткого замыкания — он составил 3.94 ампер. А это уже, ни много, ни мало – почти 80 ватт.
Солнечная батарея своими руками Для проверки под нагрузкой к батарее через амперметр была подключена лампочка на 24 В.
Итог на фотографии – горит хоть и не в полный накал, но достаточно ярко.

Многие мастера, кроме стекла и пленки, используют еще и обрамление батареи, одевая ее в жесткую раму. Это придает конструкции необходимую прочность и повышает ее надежность.

Если планируется собрать и использовать несколько солнечных батарей, то их соединяют или последовательно — для увеличения напряжения на выходе, или параллельно – так можно добиться более высоких показателей тока и суммарной мощности

Комплекс панелей через контроллер подключается к аккумулятору — накопителю энергии, а уже от него идет распределение на точки потребления, напрямую или через инвертор.

*  *  *  *  *  *  *

Итак, как можно видеть из представленной информации, батарею вполне можно собрать своими руками. Потребуется наличие некоторых знаний электротехники и монтажа, усидчивость и внимательность.

Другое дело — что предварительно стоить очень тщательно взвесить ожидаемый эффект от батареи и стоимость комплектующих и всего необходимого для системы оборудования. Насколько система получится рентабельной, тем более с учетом местных климатических условий? Не превратится ли ее создание просто в «игрушку» для деятельного мужчины среднего возраста?

Возможно, некоторые вопросы по этому поводу снимет размещенный ниже видеосюжет:

stroyday.ru

Солнечная энергия в солнечных батареях

Солнечная батарея – это понятие совсем недавно было чем-то далеким для обычного человека. Развитие науки и техники приблизило нас к ним на минимальное расстояние. Сейчас, при желании, их может сделать каждый. Нужно понять зачем нам это, определится с целями и задачами, которые нам потребуется решать. Батарея – это лишь «вершина айсберга», приложив небольшие усилия, которую легко достичь. Дальше полученную преобразованную энергию надо куда-то девать. Поэтому первым делом, следует все спланировать и решить как ее использовать и для каких целей.

Солнечная батарея своими руками

Особенности климата таковы, что бывает мы подолгу можем не видеть солнца, также пиковые нагрузки, когда мы потребляем электрическую энергию припадают на вечер и утро. Таким образом добытую нами энергию требуется аккумулировать, и это первое – нам нужна аккумуляторная батарея для сохранения и потом использования добытой нами энергии.

Компоненты солнечной системы энергосбережения

Система энергосбережения состоит из четырех основных компонентов: фотоэлектрическая панель, контроллер заряда, аккумулятор и инвертор, который преобразует постоянный ток в переменный, пригодный для использования в повседневности. Панель площадью 1 м² вырабатывает около 120 Вт мощности, 10 м² уже будет больше 1кВт, что будет достаточно для организации освещения.

Солнечная батарея своими руками

Определившись с целями и задачи, можно приступать к их поэтапному решению. Для начала, например, добиться автономности в таких вопросах, как освещение и работа холодильника. И дальше по нарастающей до достижения полной автономности вашей домашней энергосистемы. Но для начала все же вернемся к вопросу с которого начиналась наша статья.

Материалы для сборки своими руками

Для солнечной батареи нам потребуются следующие материалы: кремниевые пластины, шина широкая (шина представляет собой луженый медный плоский провод покрытый слоем олова) и шина узкая, шлейф для узкой шины лучше использовать шириной 1,6 мм, стекло, герметик, алюминиевые уголки, карандаш(флюс), спирт, ватные диски и палочки, поролон, пленка полиэтиленовая.

Необходимый инструментарий: паяльник 40 Вт, газовый паяльник, пилка по металлу, лучше выбирать с крупными зубьями 18 зубьев на дюйм, напильник, цифровой мультиметр (далее тестер).

Сортировка элементов

Солнечная батарея своими рукамиНужно сделать выборку элементов или точнее сортировку. Зачем ее делать? Все просто, ведь область собранная из ряда пластин будет равняться на слабое звено, то есть выдавать максимальный ток который будет выдаваться самой слабой пластиной. Из-за этого полной мощности на выходе не будет, а будет минимальное пороговое ее значение.

 

Проводить сортировку следует тестером, выявляя и группируя компоненты нашей батареи близкие по значениям. Таким образом если вам нужно по схеме 36 элементов, то заказать их лучше с некоторой избыточностью, хоть на 1 или 2 больше, чтобы было чем менять найденную выбраковку.

Рассчитав схематически общий вид солнечной батареи, исходя из потребностей и конструктивных особенностей можно приступать к реализации проекта.

Если это 900х750 мм, то это будет 9х4 элементов. Расстояние между пластинами приблизительно равно 1 см. Делаем замер для нарезки необходимого количества шин.

Солнечная батарея своими рукамиСолнечная батарея своими руками В данном случае, для 36 пластин, нужно 72 кусочка соединительной шины. Но из них 16 штук нужно короче, где-то 3/4 от стандартной длинны, для краев. Перед припайкой к пластине проводника, следует протереть контактные дорожки спиртом, то есть обезжирить. Это удобно делать ватной палочкой. После этого, туда же, карандашом нанести флюс и аккуратно, без лишних усилий, так как материал кремний очень хрупкий, припаиваем шину сначала к верхней части.Солнечная батарея своими руками Солнечная батарея своими руками

После припайки, ватными палочками удаляем лишний флюс. Удаляем все шероховатости и зацепы, добиваясь ровности, ведь они должны прилегать плотно к стеклу. Пропаиваем обратную сторону фотоэлементов.

Делаем полосу из девяти элементов

Изготовление рамки с алюминиевого уголка. Определив, на этапе планирования, ширину и высоту делаем 4 заготовки. С каждой делаем идентичные манипуляции.
Первое с двух сторон заготовки напильником делаем спилы, приблизительно под углом 45 градусов.

Второе – делаем спилы пилой по металлу, все под тем же углом, 45. По месту спила делаем напильником подгонку под соседнюю грань, чтобы угол среза тоже был 45.

Солнечная батарея своими руками Солнечная батарея своими руками

Переходим к изготовлению скрепляющих уголков, их потребуется четыре и два держателя стекла, так называемые метизы. В уголках делаем разметку, по центру их керним и просверливаем. В самой рамке тоже делаем отверстие в нужных местах. Причем в уголках сверлим отверстие 6 мм, а в рамке 5 мм, это манипуляция позволяет подогнать угол практически идеально, без зазоров. Поможет не путаться при сборке нумерация сторон рамки и углов. Скручиваем болтами.

Солнечная батарея своими руками Солнечная батарея своими руками

Монтаж защиты для солнечной батареи

Защитить нашу солнечную батарею можно применяя разные прозрачные материалы, используя обычное стекло есть вероятность повреждения его градом, поэтому лучше использовать оргстекло, поликарбонат, плексиглас – в статье просто стекло. В раму вклеиваем его используя силиконовый герметик.
Вырезаем поролон по размеру рамы, запаиваем его в полиэтилен. Очень удобно использовать газовый паяльник при запайке.
Обезжириваем его ацетоном и стеклоочистителем, главное им не попадать в места склейки стекла с рамой. Укладываем туда полосы фотоэлементов.

Солнечная батарея своими руками

Сами полосы укладываются последовательно, в виде змейки, то есть первая полоса скрепляется с второй при помощи широкой шины справа, вторая с третьей слева, третья с четвертой справа.

Солнечная батарея своими руками Укладываем полосы фотоэлементов 2

Подключать нужно через диод Шоттки, который вставляют в цепь на плюсовом выходе схемы. Диод защищает аккумулятор от разряда в те моменты времени, когда пасмурно или темно.
Для обеспечения неподвижности полосок скрепляем их в нескольких местах скотчем. Делаем разводку, припаивая ленты к толстой шине. Выводы батареи будут располагаться с одной стороны. После распайки кладем на фотоэлементы запаянный поролон и сверху доску. Переворачиваем конструкция стеклом вверх и снимаем раму.

Готовая солнечная батарея

солнечная батарея

Разводим герметик и наносим кисточкой его на фотоэлементы. Важно разводить герметик без особой избыточности, ведь остаток засохнет и станет непригодным для использования в будущем.
Укладываем раму обратно, сверху конструкции ставим хороший груз, тем самым, выдавливая воздух из-под стекла. Через 12 часов груз снимаем и аккуратно отрываем поролон от рамы.
Проводим тестирование. При облачной погоде, тестере будет отражать «холостой» ход батареи. Ток работы приблизительно должен быть равен 1 Ампер.

ecoteplo.pro

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты «отпускают» свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора — пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические «дорожки», на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 — 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов — 10 лет.

Монокристаллические фотоэлементы могут похвастаться более высоким КПД — 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Гибкие батареи с аморфным кремнием — самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 — 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков. Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий — лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта — оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже — обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант — батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие — батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1. Пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка — очень непростая и кропотливая работа, занимающая много времени. Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент — два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Шаг #2. Изготовление каркаса для солнечной батареи

Каркас — это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка — 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части — монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3. Монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин — самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: «+» дорожки расположены на лицевой стороне пластины, «-» — на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно «+» и «-«. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Шаг #4. Тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов — так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Обычно самодельная солнечная батарея, сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.

Шаг #5. Герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками — не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи — правильно выбрать и установить фотоэлементы. Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

sovet-ingenera.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.