Кпд газа


Добрый день!

Юрий, Вы абсолютно правы, теплота есть функция процесса, а не функция состояния. Для того чтобы задать состояние идеального газа, как известно, нужно два параметра. Здесь представлена только температура, поэтому через какие именно состояния проходит система мы ответить не можем. Однако данная картинка позволяет вычислить КПД цикла. Единственное, что наверное стоило бы для пущей серьезности добавить в условие, так это слова о том, что процесс идет квазиравновесно.

Так вот, вернемся к КПД. Смотрите, что дает нам этак картинка. Она говорит следующее: тепло передается в систему и забирается из нее только при фиксированной температуре (участки 1-2 и 3-4). Это сразу задает нам две изотермы, по одной мы передаем газу тепло, по другой мы его забираем. При этом объемы и давления, нам, конечно, неизвестны. Мы можем, они, в принципе могут быть любыми, отвечающими данным изотермам. С другой стороны, когда изменяется температура, тепло в систему не передается, то есть у нас получаются адиабаты.


Все!!! При условии, что состояние газа меняется непрерывно, и той информации, что это цикл (то есть пройдя все точки мы вернулись в исходное состояние, и у нас совпали не только начальные и конечные температуры, но и давления с объемами), нам достаточно данных, чтобы посчитать КПД. В данном случае у нас получился просто цикл Карно.

Какой именно (т. е. каковы минимальный и максимальный объем) — нам неизвестно, но КПД такого цикла зависит только от температуры холодильника и нагревателя. Большего нам и не нужно.

 

Если бы на графике была бы нарисована произвольная «кривулина», то мы все равно смогли вычислить КПД (опять же, если бы нам сказали, что это цикл, ну и, конечно, «кривулина» должна начинаться и заканчиваться при одной и той же температуре). Для этого есть формула Кпд газа. Там где «кривулина» растет тепло передается системе, там где она убывает — тепло отдается. Вот и все!

Я к тому, что Вы для любого цикла, нарисованного, скажем, на диаграмме Кпд газа, можете нарисовать подобную картинку. Конечно, для разных циклов могут получаться одинаковые картинки (например, все циклы Карно с заданными температурами нагревателя и холодильника дадут одно и тоже), то это только означает, что у них КПД одинаковые. Кстати, для цикла «прямоугольник» я Вам уже рисовал подобную картинку в комментариях к задаче 3676.


 

Если я не прав, то поправьте меня. Но мое утверждение такое, задача поставлена корректно. Другое дело, что может использование значка Кпд газа не вполне уместно, лучше бы использовать Кпд газа.

Источник: phys-ege.sdamgia.ru

Немного истории

Возможность превращения энергии пара в энергию движения была известна еще в древности. 130 год до нашей эры: Философ Герон Александрийский представил на суд зрителей паровую игрушку – эолипил. Сфера, заполненная паром, приходила во вращение под действием исходящих из нее струй. Этот прототип современных паровых турбин в те времена не нашел применения.

Долгие годы и века разработки философа считались лишь забавной игрушкой. В 1629 г. итальянец Д. Бранки создал активную турбину. Пар приводил в движение диск, снабженный лопатками.

С этого момента началось бурное развитие паровых машин.

Тепловая машина


Превращение внутренней энергии топлива в энергию движения частей машин и механизмов используется в тепловых машинах.

Основные части машин: нагреватель (система получения энергии извне), рабочее тело (совершает полезное действие), холодильник.

Нагреватель предназначен для того, чтобы рабочее тело накопило достаточный запас внутренней энергии для совершения полезной работы. Холодильник отводит излишки энергии.

Основной характеристикой эффективности называют КПД тепловых машин. Эта величина показывает, какая часть затраченной на нагревание энергии расходуется на совершение полезной работы. Чем выше КПД, тем выгоднее работа машины, но эта величина не может превышать 100%.

Расчет коэффициента полезного действия

Пусть нагреватель приобрел извне энергию, равную Q1. Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q2.

Исходя из определения, рассчитаем величину КПД:

η= A / Q1. Учтем, что А = Q1 — Q2.

Отсюда КПД тепловой машины, формула которого имеет вид η= (Q1 — Q2)/ Q1 = 1 — Q2/ Q1, позволяет сделать следующие выводы:

  • КПД не может превышать 1 (или 100%);
  • для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику;
  • увеличения энергии нагревателя добиваются изменением качества топлива;
  • уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

Идеальный тепловой двигатель

Возможно ли создание такого двигателя, коэффициент полезного действия которого был бы максимальным (в идеале — равным 100%)? Найти ответ на этот вопрос попытался французский физик-теоретик и талантливый инженер Сади Карно. В 1824 его теоретические выкладки о процессах, протекающих в газах, были обнародованы.

Основной идеей, заложенной в идеальной машине, можно считать проведение обратимых процессов с идеальным газом. Начинаем с расширения газа изотермически при температуре T1. Количество теплоты, необходимой для этого, — Q1. После газ без теплообмена расширяется (процесс адиабатный). Достигнув температуры Т2, газ сжимается изотермически, передавая холодильнику энергию Q2. Возвращение газа в первоначальное состояние производится адиабатно.

КПД идеального теплового двигателя Карно при точном расчете равен отношению разности температур нагревательного и охлаждающего устройств к температуре, которую имеет нагреватель. Выглядит это так: η=(T1 — Т2)/ T1.

Возможный КПД тепловой машины, формула которого имеет вид: η= 1 — Т2/ T1, зависит только от значения температур нагревателя и охладителя и не может быть более 100%.


Более того, это соотношение позволяет доказать, что КПД тепловых машин может быть равен единице только при достижении холодильником абсолютного нуля температур. Как известно, это значение недостижимо.

Теоретические выкладки Карно позволяют определить максимальный КПД тепловой машины любой конструкции.

Доказанная Карно теорема звучит следующий образом. Произвольная тепловая машина ни при каких условиях не способна иметь коэффициент полезного действия больше аналогичного значения КПД идеальной тепловой машины.

Пример решения задач

Пример 1. Каков КПД идеальной тепловой машины, в случае если температура нагревателя составляет 800оС, а температура холодильника на 500оС ниже?

T1= 800оС= 1073 К, ∆T= 500оС=500 К, η — ?

Решение:

По определению: η=(T1 — Т2)/ T1.

Нам не дана температура холодильника, но ∆T= (T1 — Т2), отсюда:

η= ∆T / T1 = 500 К/1073 К = 0,46.

Ответ: КПД = 46%.

Пример 2. Определите КПД идеальной тепловой машины, если за счет приобретенного одного килоджоуля энергии нагревателя совершается полезная работа 650 Дж. Какова температура нагревателя тепловой машины, если температура охладителя — 400 К?


Q1 = 1 кДж=1000 Дж, А = 650 Дж, Т2 = 400 К, η — ?, T1 = ?

Решение:

В данной задаче речь идет о тепловой установке, КПД которой можно вычислить по формуле:

η= A / Q1.

Для определения температуры нагревателя воспользуемся формулой КПД идеальной тепловой машины:

η = (T1 — Т2)/ T1 = 1 — Т2/ T1.

Выполнив математические преобразования, получим:

Т1 = Т2 /(1- η).

Т1 = Т2 /(1- A / Q1).

Вычислим:

η= 650 Дж/ 1000 Дж = 0,65.

Т1 = 400 К /(1- 650 Дж/ 1000 Дж) = 1142,8 К.

Ответ: η= 65%, Т1 = 1142,8 К.

Реальные условия

Идеальный тепловой двигатель разработан с учетом идеальных процессов. Работа совершается только в изотермических процессах, ее величина определяется как площадь, ограниченная графиком цикла Карно.

В действительности создать условия для протекания процесса изменения состояния газа без сопровождающих его изменений температуры невозможно. Нет таких материалов, которые исключили бы теплообмен с окружающими предметами. Адиабатный процесс осуществить становится невозможно. В случае теплообмена температура газа обязательно должна меняться.

КПД тепловых машин, созданных в реальных условиях, значительно отличаются от КПД идеальных двигателей. Заметим, что протекание процессов в реальных двигателях происходит настолько быстро, что варьирование внутренней тепловой энергии рабочего вещества в процессе изменения его объема не может быть скомпенсировано притоком количества теплоты от нагревателя и отдачей холодильнику.

Иные тепловые двигатели

Реальные двигатели работают на иных циклах:


  • цикл Отто: процесс при неизменном объеме меняется адиабатным, создавая замкнутый цикл;
  • цикл Дизеля: изобара, адиабата, изохора, адиабата;
  • газовая турбина: процесс, происходящий при постоянном давлении, сменяется адиабатным, замыкает цикл.

Создать равновесные процессы в реальных двигателях (чтобы приблизить их к идеальным) в условиях современной технологии не представляется возможным. КПД тепловых машин значительно ниже, даже с учетом тех же температурных режимов, что и в идеальной тепловой установке.

Но не стоит уменьшать роль расчетной формулы КПД цикла Карно, поскольку именно она становится точкой отсчета в процессе работы над повышением КПД реальных двигателей.

Пути изменения КПД

Проводя сравнение идеальных и реальных тепловых двигателей, стоит отметить, что температура холодильника последних не может быть любой. Обычно холодильником считают атмосферу. Принять температуру атмосферы можно только в приближенных расчетах. Опыт показывает, что температура охладителя равна температуре отработанных в двигателях газов, как это происходит в двигателях внутреннего сгорания (сокращенно ДВС).


ДВС – наиболее распространенная в нашем мире тепловая машина. КПД тепловой машины в этом случае зависит от температуры, созданной сгорающим топливом. Существенным отличием ДВС от паровых машин является слияние функций нагревателя и рабочего тела устройства в воздушно-топливной смеси. Сгорая, смесь создает давление на подвижные части двигателя.

Повышения температуры рабочих газов достигают, существенно меняя свойства топлива. К сожалению, неограниченно это делать невозможно. Любой материал, из которого изготовлена камера сгорания двигателя, имеет свою температуру плавления. Теплостойкость таких материалов – основная характеристика двигателя, а также возможность существенно повлиять на КПД.

Значения КПД двигателей

Если рассмотреть паровую турбину, температура рабочего пара на входе которой равна 800 К, а отработавшего газа — 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение КПД двигателей внутреннего сгорания не превышает 44%. Повышение этого значения – вопрос недалекого будущего. Изменение свойств материалов, топлива – это проблема, над которой работают лучшие умы человечества.

Источник: FB.ru

КПД-брутто и КПД-нетто


Не всё выработанное при сгорании топлива тепло направляется на нагрев теплоносителя, определенная часть расходуется на собственные нужды котлоагрегата: турбина, вентилятор или дымосос, циркуляционный насос, работа автоматики и электронного дисплея, работа электропривода (как вы уже поняли, в расчете используются все виды получаемой энергии, в том числе и электроэнергия, если котел энергозависимый).

С учетом этого принято разделять эффективность котла по выработанной теплоте (КПД-брутто) и отпущенной теплоте (КПД-нетто).

Такая классификация позволяет выделить степень технического совершенства котла – КПД-брутто или экономичность расхода топлива и электроэнергии – КПД-нетто.

Как рассчитать КПД котла отопления

Рассчитать значения можно несколькими способами. В европейских странах расчет КПД котла отопления принято производить по температуре отходящих газов (метод прямого баланса), то есть зная разницу между температурой окружающей среды и реальной температурой отходящих через дымоход газов. Формула довольно проста:

ηбр = (Qir/Q1) 100%, где

  • ηбр (читается «эта») – КПД котла «брутто»;
  • Qir (МДж/кг) – общее количество тепла, выделяемое при сжигании топлива;
  • Q1 (МДж/кг) – к-во тепла, которое удалось аккумулировать, т.е. использовать в целях обогрева дома.

Например, если Q1 = 22 МДж/кг, Qir = 19 МДж/кг, то КПД «брутто» = (19/22)*100 = 86,3%. Все замеры проводятся при уже установившемся, стандартном режиме работы котла.

КПД и теплопотери

Метод прямого баланса не учитывает теплопотери самого котлоагрегата, недожог топлива, отклонения в работе и прочие особенности, поэтому был придуман принципиально другой, более точный способ расчета – «метод обратного баланса». Используется уравнение:

ηбр = 100 – (q2 + q3 + q4 + q5 + q6), где

  • q2 – потери тепла с уходящими газами;
  • q3 – потери тепла вследствие химического недожога горючих газов (применимо к газовым котлам);
  • q4 – потери тепловой энергии с механическим недожогом;
  • q5 – теплопотери от наружного охлаждения (через тепплообменник и корпус);
  • q6 – потери тепла с физическим теплом шлаков, удаляемых из топки.

КПД «нетто» котла отопления согласно методу обратного баланса:

ηнетто = ηбр — Qс.н, где

  • Qс.н – общий расход тепловой и электрической энергии на собственные нужды в % выражении.

Реальный КПД практически всегда будет отличаться от заявленного производителем, поскольку зависит от правильности монтажа котла и отопительной системы, системы дымоудаления, качества электроснабжения и т.д. Измеряется он, соответственно, уже на месте.

От чего зависит тепловая эффективность котлоагрегатов

Принцип работы газового атмосферного котла
Принцип действия классического напольного газового атмосферника.

Коэффициент полезного действия отопительных котлов равен не при любой мощности, существует пропорциональная зависимость от нагрузки: увеличение тепловой нагрузки (к-ва сжигаемого топлива) увеличивает и теплопотери через корпус или дымоход. Так же точно эксплуатация на минимальной мощности не всегда обеспечивает полноценное сгорание топлива, что приводит к снижению КПД.

Например, в сервисной инструкции к газовым котлам Protherm Волк KSO мощностью 12,5 кВт и 16,0 кВт указано, что при работе на максимальной мощности (12,8 кВт и 16,3 кВт соответственно) КПД равен 92,5 %, в то время как при работе с минимальной нагрузкой (4,5 кВт и 5,8 кВт) – снизится и составит всего 78,4 %.

Это одна из основных причин, почему стоит осознанно подходить к выбору мощности котлоагрегата. Наиболее оптимальная работа в большинстве моделей достигается при нагрузке в диапазоне 60-90% от максимальной мощности.

В остальном коэффициент полезного действия зависит исключительно от технологического совершенства модели, направленного на снижение вышеописанных q2-6 (снижение температуры отходящих газов, эффективное сжигание топлива, модулируемые горелки, теплоизоляция и т.д.), а также от качества обслуживания и эксплуатации котлоагрегата. Чистота теплоносителя, регулярная чистка и промывка – все это со временем серьезно влияет на КПД.

Значения современных котлов в зависимости от вида топлива

Фото Вид котла в зависимости от сжигаемого топлива Средний КПД, %
Baxi SLIM 2.230 I Газовые
— Конвекционные 87-94
— Конденсационные 104-116*
Твердотопливный котел на угле в разрезе Твердотопливные
— Дровяные 75-87
— Угольные 80-88
— Пеллетные 80-92
Жидкотопливный котел Жидкотопливные
— На дизельном топливе 86-91
— На мазуте 85-88
Vaillant eloBLOCK VE 12 Электрические ТЭНовые 99-99,5

 

*С точки зрения физики КПД не может превышать 100%: больше тепловой энергии, чем выделяется при сжигании топлива получить невозможно. Однако все зависит от того, как считать. Есть два определения:

  • низшая теплота сгорания – тепло, полученное при сгорании топлива, когда продукты сгорания просто удаляются через дымоход;
  • высшая теплота сгорания – теплота с учетом в том числе и энергии, содержащиеся в водяном паре – одном из продуктов сгорания горючих газов.

Газовые конденсационные котлы дополнительно аккумулируют и тепловую энергию конденсата, образующегося из продуктов сгорания газа и оседающего на дополнительном теплообменнике. Таким образом, существенная часть тепла не «вылетает в трубу», а температура отходящих газов практически равна атмосферной.

Принцип работы конденсационных одноконтурных газовых котлов
Устройство простого конденсационного одноконтурного газового котла.

Согласно действующим нормам, как в России, так и в Европе, КПД отопительных котлов рассчитывается по низшей удельной теплоте сгорания, поэтому учет дополнительного тепла, извлекаемого из конденсата, приводит к значениям более 100%. При расчете по высшей теплоте сгорания КПД конденсационных газовых котлов равен 96-98% в зависимости от модели и типа монтажа: у настенных котлов КПД обычно выше, чем у напольных (это относится ко всем газовым котлоагрегатам).

Также из таблицы можно заметить, что средний КПД твердотопливных котлов также отличается в зависимости от используемого топлива, связанно это со степень сжигания топлива, его теплоотдачей, температурой горения и теплопотерями с физическим теплом шлаков, удаляемых из топочной камеры. Даже один и тот же твердотопливный котел может выдавать разный КПД при работе на разных видах топлива.

Источник: GradusPlus.com

Добрый день!

Юрий, Вы абсолютно правы, теплота есть функция процесса, а не функция состояния. Для того чтобы задать состояние идеального газа, как известно, нужно два параметра. Здесь представлена только температура, поэтому через какие именно состояния проходит система мы ответить не можем. Однако данная картинка позволяет вычислить КПД цикла. Единственное, что наверное стоило бы для пущей серьезности добавить в условие, так это слова о том, что процесс идет квазиравновесно.

Так вот, вернемся к КПД. Смотрите, что дает нам этак картинка. Она говорит следующее: тепло передается в систему и забирается из нее только при фиксированной температуре (участки 1-2 и 3-4). Это сразу задает нам две изотермы, по одной мы передаем газу тепло, по другой мы его забираем. При этом объемы и давления, нам, конечно, неизвестны. Мы можем, они, в принципе могут быть любыми, отвечающими данным изотермам. С другой стороны, когда изменяется температура, тепло в систему не передается, то есть у нас получаются адиабаты.

Все!!! При условии, что состояние газа меняется непрерывно, и той информации, что это цикл (то есть пройдя все точки мы вернулись в исходное состояние, и у нас совпали не только начальные и конечные температуры, но и давления с объемами), нам достаточно данных, чтобы посчитать КПД. В данном случае у нас получился просто цикл Карно.

Какой именно (т. е. каковы минимальный и максимальный объем) — нам неизвестно, но КПД такого цикла зависит только от температуры холодильника и нагревателя. Большего нам и не нужно.

 

Если бы на графике была бы нарисована произвольная «кривулина», то мы все равно смогли вычислить КПД (опять же, если бы нам сказали, что это цикл, ну и, конечно, «кривулина» должна начинаться и заканчиваться при одной и той же температуре). Для этого есть формула Кпд газа. Там где «кривулина» растет тепло передается системе, там где она убывает — тепло отдается. Вот и все!

Я к тому, что Вы для любого цикла, нарисованного, скажем, на диаграмме Кпд газа, можете нарисовать подобную картинку. Конечно, для разных циклов могут получаться одинаковые картинки (например, все циклы Карно с заданными температурами нагревателя и холодильника дадут одно и тоже), то это только означает, что у них КПД одинаковые. Кстати, для цикла «прямоугольник» я Вам уже рисовал подобную картинку в комментариях к задаче 3676.

 

Если я не прав, то поправьте меня. Но мое утверждение такое, задача поставлена корректно. Другое дело, что может использование значка Кпд газа не вполне уместно, лучше бы использовать Кпд газа.

Источник: phys-ege.sdamgia.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.