Принцип работы конденсационного котла


Для обогрева своего дома вы решили приобрести самое современное котельное оборудование, использующее в качестве топлива природный газ. Благодаря новейшим техническим решениям эта водогрейная установка должна быть экономичной, экологичной, надежной и обеспечивать максимальный уровень комфорта при эксплуатации. Тогда конденсационный газовый котел – это то что вам нужно, среди агрегатов, сжигающих природный газ, ему нет равных.

Дополнительная энергия от сгорания газа

В действительности энергия выделяется в процессе горения, а фокус заключается в том, чтобы ее применить для нагрева воды. Чтобы понять суть процесса, достаточно вспомнить школьный курс физики. Для того чтобы воду превратить в пар, нужно затратить дополнительную энергию на переход из одного агрегатного состояния в другое. Эта энергия – удельная теплота парообразования и для воды ее значение равно 2256 кДж/кг или 627 Вт/кг, величина немалая. Конденсируясь, водяной пар отдает это же количество теплоты.


Горение – это химический процесс, в результате которого выделяется тепло, используемое для обогрева жилища. Природный газ СН4 распадается, атомы углерода соединяются с кислородом, образуя углекислый газ СО2. Атомы водорода также окисляются и получается вода Н2О. Она тут же превращается в водяной пар, поскольку реакция проходит в зоне выделения большого количества теплоты.

Вода переходит в пар, забирая ощутимую долю теплоты на парообразование, а конструкция конденсационного котла позволяет отобрать эту энергию обратно.

В обычных газовых установках водяные пары благополучно удаляются вместе с углекислым газом через дымоход наружу. Теплообменник с протекающей по нему водой, установленный на пути дымовых газов, заставляет пар конденсироваться на его поверхности, это и есть принцип работы конденсационного газового котла. При этом теплота парообразования, отобранная при горении газа, возвращается и передается теплоносителю. Соответственно, КПД простой водогрейной установки составляет 88—93%, а использующей принцип конденсации – 97—98%. Такая эффективность позволяет ощутимо экономить природный газ, стоимость которого неуклонно растет.

Особенности конструкции

Поскольку выпадающий конденсат содержит примеси кислот, теплообменники для отопительных агрегатов выполняются из нержавеющей стали. Теплоноситель из обратного трубопровода подводится к змеевику, его витки образуют кольцо, внутри которого располагается газогорелочное устройство. В идеале оно тоже имеет цилиндрическую форму, отверстия форсунок расположены по всей поверхности горелки и пламя распространяется во всех направлениях. Таким способом прогревается весь змеевик, водяной пар активно конденсируется на первой половине витков, где теплоноситель имеет низкую температуру.


Для выпадения конденсата требуется температура 59 ºС и ниже. В системах отопления температура воды в обратном трубопроводе колеблется от 30 до 60 ºС, что вполне приемлемо. Схема основных узлов, из которых состоит настенный газовый конденсационный котел, представлена на рисунке.

Схема с пояснениямиКамера сжигания – закрытого типа, с принудительным нагнетанием воздуха для горения. Поскольку вентилятор – самый шумный элемент конструкции, для конденсационных установок используются малошумящие модели, звук их работы практически не слышен. Воздух втягивается по наружному каналу двустенного коаксиального дымохода. Одновременно навстречу ему по внутреннему каналу выходят дымовые газы, отдавая тепло через металлическую стенку. Температура газов на выходе из конденсационного котла – менее 100 ºС.

Рекомендации по выбору конденсационного котла

Поскольку выбор типа котла сделан изначально, перед его покупкой следует найти ответы на вопросы:


  1. Какова потребная тепловая мощность на обогрев дома в холодный период?
  2. Есть ли необходимость подогревать воду для хозяйственных нужд, если да, то определить число ее потребителей.
  3. Уточнить расположение котельной установки в доме и выяснить, сколько для нее есть места.
  4. Заблаговременно предусмотреть возможность устройства дымохода и его тип.

Вопрос стоимости не затрагивается по умолчанию, поскольку конденсационные котлы выпускаются зарубежными производителями и имеют высокую цену.

Как правило, необходимую тепловую мощность высчитывают по упрощенному алгоритму: выясняют общую обогреваемую площадь дома и умножают ее на число 0,1, получая в результате мощность котла в киловаттах. Алгоритм исходит из того, что на отопление 100 м2 здания требуется 10 кВт тепловой энергии. Способ пригоден для помещений высотой не более 3 м и довольно точен для районов с умеренным климатом.

В силу своей конструкции конденсационные газовые котлы отопления имеют переменную мощность, которая зависит от температурного графика работы системы отопления.

Чем ниже температура теплоносителя в обратном трубопроводе, тем эффективнее работа конденсационной установки. Поэтому производители в техническом паспорте на изделие могут указывать две тепловых мощности:

  • для температурного графика работы 80/60 ºС;
  • для температурного графика работы 50/30 ºС.

У некоторых производителей эти графики могут несколько отличаться, — 75/60 ºС и 40/30 ºС соответственно. Как пример, приведем значения тепловой мощности для котла FERROLIEconceptTech. Для первого графика диапазон мощностей установки составляет 3.7–17.6 кВт, а для второго – 4—19 кВт, на это следует обратить внимание при выборе отопительного агрегата. В южных районах температура в подающем трубопроводе редко превышает 50 ºС и системы отопления там работают по второму графику, в то время как в северных регионах нормальная температура подачи – 80 ºС (1-й график).

Расположение котла

Конструкция газового котла с принудительной подачей воздушной смеси позволяет расположить его практически в любом помещении, так как он не забирает воздух из комнаты и оборудован закрытой камерой сгорания. Это позволяет установить агрегат, к примеру, на кухне. Лучше, когда он находится неподалеку от наружной стены, чтобы не пришлось делать длинный горизонтальный участок дымохода. В зависимости от интерьера можно выбрать настенный котел, вписав его между бытовой техникой либо напольную версию. Например, внешний дизайн напольного конденсационного агрегата Vitodens 222 – F бренда Viessmann отлично подходит для кухни, так как с виду он похож на большой холодильник.

Пример монтажа котла в помещении


Перед покупкой стоит внимательно изучить все конденсационные котлы конкретного производителя не только на предмет мощности, но и дизайна. Как настенные, так и напольные установки разных брендов имеют большой диапазон мощностей. Настенный агрегат можно приобрести от 3.5 до 110 кВт тепловой мощности, что позволит отапливать как несколько комнат, так и трехэтажный коттедж. Мощность бытовых напольных установок еще больше – до 320 кВт.

Если требуется обеспечить нагрев воды на хозяйственные нужды, есть смысл приобрести двухконтурный газовый котел конденсационного типа. Подбирать его следует по количеству потребителей горячей воды. Агрегаты с проточным теплообменником могут обеспечить 2—3 потребителя, если же их количество больше, стоит рассмотреть вариант со встроенным бойлером.

Определив место установки котла, нужно убедиться, что к нему есть возможность подвести дымоход. Самый простой вариант – вывести трубу горизонтально сквозь наружную стену, — такой вариант подойдет для одноэтажного дома. Для двух и более этажей он может стать неприемлемым, поскольку дым может задуваться ветром в окна верхних помещений. Здесь лучше установить традиционный вертикальный дымоход. Некоторые производители продают детали дымовой трубы в комплекте со своими котельными установками.


Заключение

Поскольку любой одноконтурный конденсационный газовый котел имеет достаточно высокую стоимость, его выбор сводится к подбору производителя, определению мощности, способу установки и наружному дизайну. Автоматикой и опциями, повышающими удобство и комфорт эксплуатации, снабжены все конденсационные агрегаты начиная от выносных пультов управления и заканчивая приложениями для мобильного телефона, с помощью которых можно управлять котлом на любом расстоянии.

Источник: cotlix.com

Процесс горения

Рассмотрение принципа работы конденсационных котлов имеет смысл начать с того, за счет чего вообще происходит нагрев теплоносителя в данном оборудовании — горения топлива. Основные химические элементы, участвующие в процессе горения любого углеводородного топлива:

  • Углерод (С), водород (H2), сера (S) — содержатся в топливе. Содержание серы может быть достаточно высоким в дизельном или твердом топливе (дрова, уголь). Для природного газа максимальное содержание сероводорода согласно нормам составляет 20 мг/м3, фактическое обычно гораздо меньше.
  • Кислород (О2), азот (N2) — содержатся в воздухе. Так же в воздухе присутствуют другие газы, но они либо инертны, либо их процентное содержание крайне мало.

Далее будем рассматривать горение на примере простейшего углеводорода — метана (CH4). Строго говоря, данная реакция представляет собой достаточно сложную цепочку с образованием промежуточных соединений, мы приведем итоговую формулу:

CH4+2O2 ? CO2+2H2O+Q

Реакция проходит с выделением энергии и образованием углекислого газа и воды. Важным моментом здесь является то, что при недостатке кислорода в реагирующей смеси, помимо углекислого газа образуется так же угарный (СО), который даже в сравнительно малых концентрациях опасен для человека. Кроме того, при этом снижается количество получаемой энергии. Для предотвращения данного эффекта существуют определенные особенности в конструкции элементов котла, которые мы обсудим в последующем.

Другой важной группой реакций при горении метана в воздухе является окисление азота и серы:

N2+O2 = { NO | NO2 | N2O }

S+O2 = { SO2 | SO3 }

Оксиды азота NO и NO2 обычно обозначают общим наименованием NOx. При реакции с водой они образуют азотную (HNO3) и азотистую (HNO2) кислоты. При выбросе в атмосферу последние становятся одним из основных компонентов кислотных дождей. Закись азота N2O кислот не образует, но участвует в разрушении озонового слоя. Естественно, что в конструкции современных котлов предпринимаются меры для снижения данных выбросов. Мы рассмотрим эти меры при обсуждении отдельных компонентов оборудования.

Оксиды серы при реакции с водой образуют серную кислоту. Но их содержание в продуктах сгорания крайне мало, поэтому как фактор загрязнения среды они не рассматриваются. Но они могут оказывать сильное воздействие на элементы конденсационного котла.
 

Принцип работы конденсационных котлов


Теперь перейдем к рассмотрению использования тепловой энергии, образующейся при горении топлива. Цепочку преобразований энергии в котле условно можно выразить в следующем виде:

Горение ? Выход энергии ? Использование энергии

? На первом этапе получаемое тепло можно разделить на три части:

  1. Излучение;
  2. Нагрев продуктов сгорания;
  3. Испарение воды, находящейся в продуктах сгорания.

? На втором этапе, соответственно:

  1. Нагрев теплоносителя;
  2. Потери через корпус котла;
  3. Потери с уходящими газами.

Главная цель котлового агрегата — обеспечить максимальное получение тепла на первом этапе (качество горения) и передачу его теплоносителю (сокращение потерь).

Основная идея «конденсационные котлы принцип работы» в том, что теплота, расходующаяся на испарение воды на первом этапе, с точки зрения дальнейшего использования, принципиально отличается от излучения и нагрева продуктов сгорания.
ло в том, что нагрев теплоносителя с помощью излучения или контакта с разогретыми газами происходит в любом случае, пусть и с разной эффективностью. В то же время, чтобы использовать энергию, заключенную в водяном паре, необходимо обеспечить условия, при которых произойдет фазовый переход: переход из пара в жидкость (конденсат). Происходит это при охлаждении пара до так называемой точки росы, которая для метана при нормальных условиях примерно равна 55 °C.

В силу того, что в продуктах сгорания содержится определенное количество оксидов азота и серы, при выпадении конденсата они вступают в реакцию с образованием соответствующих кислот. Кроме того, при определенных условиях, может образоваться угольная кислота как продукт реакции углекислого газа и воды. Но данная кислота достаточно неустойчива и в атмосфере быстро распадается.

Соответственно, используются два термина для энергии, получаемой при горении:

  • Высшая теплота сгорания (Qs) — полная тепловая энергия.
  • Низшая теплота сгорания (Qi) — полная тепловая энергия за вычетом энергии заключенной в водяном паре.
     

Эффективность конденсационного котла

В соответствии с описанным выше вводится понятие КПД — коэффициента полезного действия котла как отношения тепла, переданного теплоносителю, к теплоте сгорания топлива. При чем обычно, если не указано обратного, используется именно низшая теплота сгорания, то есть без учета энергии конденсации пара.


Вообще говоря, любой котел можно поставить в условия, когда он начнет работать в конденсационном режиме — достаточно, чтобы температура теплоносителя была ниже определенной величины. Но оборудование, не предназначенное для такой работы крайне чувствительно к кислотному составу конденсата и быстро выходит из строя. Поэтому в документации к неконденсационным котлам обычно приводится ограничение температуры обратного теплоносителя “не ниже 60 °C”. Исключение составляют чугунные котлы некоторых производителей, где за счет толщины металла даже при низких температурах теплоносителя дымовые газы не остывают до точки росы. Впрочем, данных фактор сильно сказывается на эффективности таких котлов.

Для повышения коэффициента полезного действия нужно предпринимать действия в нескольких связанных направлениях:

  1. Повышение качества горения.
  2. Снижение тепловых потерь с уходящими газами.
  3. Повышение количества тепла, передаваемого теплоносителю.
  4. Снижение тепловых потерь через корпус котла.

Мероприятия, связанные с последним пунктом достаточно очевидны — тепловая изоляция корпуса и отдельных элементов, так что отдельно мы его рассматривать не будем.

В решении задач, связанных с первым и вторым пунктами большую роль играет конструкция горелочных устройств.

За повышение количества передаваемого теплоносителю тепла отвечает, в первую очередь, конструктив теплообменника котла.
 

Теперь рассмотрим основные конструктивные особенности котлов, позволяющие им работать в режимах с выпадением конденсата и направленные на повышение эффективности.

Теплообменник конденсационного котла

На данный момент существует достаточно большое разнообразие конструктивных решений в данной сфере у различных производителей котельного оборудования. Как относящихся к геометрии теплообменника, так и к используемым материалам. При более детальном рассмотрении можно выделить три основных направления, в которых ведутся разработки:

  • Повышение количества образующегося конденсата;
  • Повышение общей эффективности теплообменника (передача излучения от горящего топлива и тепла от дымовых газов);
  • Обеспечение устойчивости оборудования к кислотному составу конденсата.

Ранее в конденсационных котлах использовалось два теплообменника — один для первичного охлаждения дымовых газов (неустойчивый к конденсату), и дополнительный для обеспечения конденсации паров воды, так называемый экономайзер. Такая конструкция до сих пор встречается в котлах больших мощностей (порядка нескольких мегаватт) и в устаревших моделях котлов малой (до 100 кВт) и средней (до 2 МВт) мощности.

Принцип работы конденсационного котла с двумя теплообменниками

В современных котлах используется один теплообменник отвечающий за два первых пункта из списка выше:
Конденсационные котлы принцип работы

Устойчивость к кислотному конденсату обеспечивается за счет применяемых материалов. На сегодняшний день используют два типа материалов — высококачественные нержавеющие стали и сплавы алюминия с кремнием и магнием в качестве легирующих добавок (далее для краткости будем обозначать их как просто алюминий).

Теплообменники конденсационных котлов
Каждый из указанных материалов имеет свои сильные и слабые стороны. Плюсы алюминия — высокая теплопроводность, малая плотность, возможность формовки литьем; сильные стороны нержавеющей стали — высокая механическая прочность, крайне высокая коррозионная устойчивость как к кислотным так и к щелочным средам, гладкая поверхность деталей.

С точки зрения устойчивости к конденсату алюминиевые теплообменники прекрасно себя проявляют во взаимодействии с азотной кислотой — при контакте с ней поверхность алюминия пассивируется, то есть образуется защитная пленка — так же как при нахождении алюминия в воздухе. Но при этом такие теплообменники крайне уязвимы даже к малым концентрациям серной кислоты, причем при контакте с ней защитная пленка разрушается и начинается взаимодействие с азотной кислотой. В большинстве случаев данный фактор не имеет критического значения в силу малого содержания серы в топливе, но в долгосрочной перспективе снижает срок службы теплообменника. Нержавеющая сталь соответствующих марок воздействию кислот не подвержена.

Как было отмечено выше, снижение температуры дымовых газов до точки росы — необходимое условие для образования конденсата и съема соответствующей тепловой энергии. Достигается это снижение за счет подачи в теплообменник обратного теплоносителя низкой температуры. Однако, не стоит полагать, что при соблюдении данного условия весь водяной пар, содержащийся в продуктах сгорания, конденсируется. Дело в том, что конденсация происходит только при непосредственном контакте дымовых газов с поверхностями теплообмена, соответственно, при равной температуре обратного теплоносителя эффективность образования конденсата сильно зависит от геометрии теплообменника.

Таким образом, главная инженерная задача при проектировании теплообменника с точки зрения повышения количества образующегося конденсата — увеличение поверхности контакта с дымовыми газами и обеспечение их качественного перемешивания в процессе прохождения через дымовой тракт (для отвода уже осушенных газов от теплообменных поверхностей). При этом необходимо придерживаться разумных аэродинамических потерь в теплообменнике. Поддержание баланса между всеми перечисленными требованиями делает проектирование геометрии теплообменника конденсационного котла достаточно сложной и интересной задачей.

При изготовлении теплообменника из алюминия указанные задачи решаются за счет внутреннего оребрения (по дымовому тракту).

Основной конструктивный элемент теплообменников из нержавеющей стали — трубки. Выполненные либо в форме спирали, либо в виде прямых отрезков с коллекторами.

Теплообменник конденсационного котла из нержавеющей стали

Пример засорения для спирального теплообменника

Спиральная конструкция наиболее распространена, но подвержена засорению при использовании недостаточно качественного теплоносителя. Происходит это за счет центробежных эффектов при движении воды по трубкам. Причем механическая чистка таких засорений невозможна, а химическая, зачастую, не приводит к успеху.

И в том и в другом случае суммарная площадь поверхности стальных трубок достаточно велика.
 

 

Горелка Premix

Горелка так же является важным компонентом любого котла, в том числе конденсационного. Список задач, за которые она отвечает:

  • Обеспечение точных пропорций смешения топлива с окислителем (воздухом).
  • Качественное перемешивание газовых составляющих.
  • Обеспечение экологичности горения.

Первые два пункта необходимы для повышения полноты сгорания топлива и, соответственно, общего КПД котла. Подробно разберем их ниже.

В третьем пункте, в конечном счете, подразумевается снижение выбросов вредных веществ в атмосферу. В горелках современных конденсационных котлов это достигается за счет сравнительно малых температур горения, что снижает количество образующихся соединений азота и серы. Для достижения необходимых показателей по мощности при снижении температуры площадь пламени в таких горелках обычно достаточно велика.

Наиболее распространены два варианта организации поверхности для горения. Цилиндрическая: И плоская:
 

Цилиндрическая горелка premix Плоская горелка premix
цилиндрическая горелка premix плоская горелка premix

Увеличение поверхности горения так же обеспечивает большую площадь инфракрасного излучения при работе горелки на малой модуляции мощности.

Сам материал поверхности представляет собой ячеистую структуру из металла либо керамики. 

цилиндрическая-горелка-premix-структура плоская-горелка-premix-структура

Ячеистость обеспечивает дополнительное перемешивание газа с воздухом. Но основное смешение и контроль его пропорций в современных котлах происходит до горелки — в узле “газовый клапан/вентилятор/трубка Вентури”. Его схематичное изображение представлено ниже.
Трубка Вентури схема

Подобные системы носят общее название “Premix”, то есть система с предварительным смешением. Точное поддержание пропорции воздух-газ обеспечивается за счет приблизительно равных давлений в точке смешения. Причем эта пропорция поддерживается в широком диапазоне расходов смеси и модуляции котла.

Таким образом общую схему можно описать по пунктам:

  1. Вентилятор создает высокую тягу, обеспечивая точный расход воздуха в соответствии с требуемой мощностью.
  2. Трубка Вентури обеспечивает выравнивание давлений газа и воздуха в точке смешения.
  3. Газовый клапан поддерживает оптимальную пропорцию газ-воздух в широком диапазоне скоростей вентилятора.
  4. Полученная газовоздушная смесь поступает на поверхность горелки, где происходит дополнительное перемешивание.
  5. Смесь поступает в область горения. Причем горение происходит с температурой, достаточно низкой для обеспечения низких выбросов вредных веществ, но при это с высокой суммарной мощностью.

Подводя итог, можно сказать, что конструкция конденсационного котла и принцип его работы не так и сложен. Однако, каждый отдельный элемент требует большого внимания при проектировании. Правильный выбор материала теплообменника, его геометрия, надежные компоненты газово-воздушного тракта — залог эффективной работы и долговечности котла. По сравнению с любым традиционным котлом, конденсационный обеспечивает большие КПД во всех режимах работы. Теплообменник изготовленный из нержавеющей стали обеспечивает долгий срок службы оборудования (вплоть до 50-ти лет) без снижения эффективности при любом качестве топлива и теплоносителя.
 

Рассмотрим, как описанные выше принципы и технические решения используются в газовых конденсационных котлах HORTEK.

Спектр котлов HORTEK составляют три линейки оборудования:

Конденсационные котлы HORTEK Q Конденсационные котлы HORTEK XL Конденсационные котлы HORTEK HL
HORTEK Q — бытовые настенные котлы мощностью 25-60 кВт с вариантами исполнения со встроенным бойлером ГВС  HORTEK XL — настенные котлы промышленной серии 60-120 кВт с возможностью установки в каскад до 960 кВт  HORTEK HL — напольные котлы промышленной серии до 910 кВт с возможностью установки в каскад. 

 

Теплообменники котлов HORTEK

Принципиальным решением для всех перечисленных котлов является использование теплообменников только из кислотоустойчивой нержавеющий стали AISI 316. С точки зрения конструктива все теплообменники представляют собой набор гладких трубок, сообщающихся через коллекторы. Данное решение позволило обеспечить высокую устойчивость к загрязнениям как по стороне теплоносителя так и по стороне дымовых газов. Кроме того, распределение потоков в теплообменнике рассчитано на высокие скорости теплоносителя, что дополнительно повышает устойчивость к засорению. Благодаря данным факторам эффективность котлов с такими теплообменниками остается на постоянном уровне на протяжении всего срока службы.
Эффективность конденсационных котлов
 

Горелки котлов HORTEK

Как и в любом современном конденсационном котле, в HORTEK применяются горелки системы Premix. Однако геометрия горелок отличается для котлов настенного и напольного исполнения.

В котлах серии Q и XL используются плоские керамические горелки расположенные сверху теплообменника. Такое расположение обеспечивает устойчивость горелки к засорению и удобство обслуживания.

В напольных котлах HORTEK HL применена цилиндрическая горелка, поверхность которой представляет собой сетку из тугоплавкого сплава. Располагается горелка так же в верхней части котла, что в случае напольных котлов является достаточно нестандартным решением. Но именно такое расположение обеспечивает высокую компактность котлов и малую занимаемую площадь по отношению к тепловой мощности, что особенно актуально как для крышных так и для отдельно стоящих котельных большой мощности.
 

Источник: hortek.com

Устройство конденсационных котлов

Обычный газовый котел отличается на редкость простой конструкцией. Здесь располагается газовый узел с клапаном, соединенный с горелкой. Над всем этим нависает единственный теплообменник, отвечающий за подогрев теплоносителя до заданной температуры. За поддержку температуры отвечает механическая или электронная система управления. КПД оборудования достигает 90-92%, в зависимости от конструкции выбранного прибора и типа камеры сгорания – модели с закрытыми камерами сжигают топливо более эффективно.

Если одноконтурные газовые котлы устроены просто, то их двухконтурные «коллеги» устроены чуточку сложнее – здесь добавляются вторичный теплообменник (или ставится один битермический) и трехходовой клапан. Все эти узлы отвечают за подготовку горячей воды. Техника отличается неплохим КПД и позволяет избавиться от необходимости покупки дополнительного водонагревателя.

Конденсационные котлы устроены еще сложнее, ведь они отличаются повышенной эффективностью и высоким показателем КПД – он достигает 98%. Здесь используется технология конденсации влаги из выделяющихся продуктов сгорания. Так как в них все еще полно тепла, то их можно отобрать и пустить в систему отопления. Тем самым достигается солидная экономия топлива – в зависимости от модели и условий работы, она составляет до 10%.

Газовые конденсационные котлы включают в себя следующие узлы:

  • Камера сгорания – открытая или закрытая. Здесь происходит сгорание поступающего топлива. Причем подавляющее большинство конденсационных агрегатов построено на основе закрытых камер, в то время как модели с открытыми камерами – единичные;
  • Основной теплообменник – здесь происходит основной отбор тепловой энергии, которую уносит горячий теплоноситель;
  • Конденсационный теплообменник – самая важная деталь газового конденсационного котла. Именно здесь происходит конденсация влаги с отдачей тепла в отопительную систему;
  • Вторичный (или битермический) теплообменник и трехходовой клапан – эти узлы отвечают за работу контура ГВС;
  • Управляющая электроника – отвечает за работу всего установленного на борту оборудования;
  • Дренаж – отвечает за отвод конденсата в канализацию.

Конденсационный котел устроен сложнее, чем любой другой конвекционный агрегат. Но именно это позволяет ему по максимуму отбирать тепловую энергию из продуктов сгорания.

Принцип работы конденсационных котлов

Давайте рассмотрим принцип работы конденсационного газового котла и узнаем, за счет чего он получает дополнительную энергию. Мы уже говорили, что здесь используется принцип конденсации влаги из продуктов сгорания. Если взяться за дымоходную трубу, то мы обнаружим, что она теплая, а в некоторых случаях даже горячая (все зависит от эффективности оборудования). Именно эту тепловую энергию мы и можем отобрать в отопительную систему.

Работает конденсационный котел следующим образом:

  • Газовая горелка выделяет тепловую энергию, которая поглощается основным теплообменником;
  • Продукты сгорания поступают в конденсационный теплообменник большой площади;
  • Проходящий через конденсационный обменник холодный теплоноситель вызывает образование конденсата, забирая тепловую энергию из водяного пара;
  • После этого теплоноситель поступает в основной теплообменник.

Для некоторых может остаться непонятным то, откуда вообще берется водяной пар. Ничего странного здесь нет – он образуется в результате сгорания природного газа. Если мы внимательно посмотрим на химическую формулу протекающей здесь реакции, то мы увидим в ее результатах два основных компонента – это водяной пар и углекислый газ. Именно пар и содержит необходимую нам тепловую энергию.

Конденсационный котел отличается повышенным КПД. Это становится возможным за счет более полного отбора тепла из продуктов сгорания. Производители утверждают, что КПД составляет до 115%, но против законов физики не пойдешь – нельзя получить больше энергии, чем ее затрачено. И столь высокий КПД – это всего лишь маркетинговая уловка, нацеленная на увеличение продаж. В действительности же КПД достигает 98%.

Создавая конденсационный котел, разработчики сделали все возможное, чтобы оборудование получилось экономичным и энергоэффективным. Но эффективность напрямую зависит от температуры теплоносителя в обратной трубе. Чем она ниже, тем лучше, оптимальный показатель – от +30 до +40 градусов. Если же температура будет высокой, никакой конденсации не будет – тепло улетит в атмосферу, а КПД упадет. Поэтому теплоноситель сначала поступает в конденсационный, и лишь потом в основной теплообменник.

Достоинства и недостатки конденсационных котлов

Конденсационный котел – это уникальное оборудование, созданное разработчиками теплотехники. Оно заботится об окружающей среде и позволяет экономить на газовом топливе. Котлы конденсационного типа широко распространены в европейских странах, где люди заботятся о своем благосостоянии и о природе. И там они являются лидерами покупательского спроса.

На территории России конденсационный котел является редкостью – потребители не готовы сломя голову менять оборудование на более чистую, с точки зрения экологию, технику. И все дело в ее высокой стоимости, ведь отдельные модели стоят до двух раз дороже. Но те, кто умеет считать и дружат с математикой, знают, что первоначальные затраты оправдываются за счет экономии на топливе. Нужно лишь правильно настроить оборудование, чтобы оно работало в оптимальном температурном режиме.

Давайте рассмотрим плюсы и минусы конденсационного котла – начнем с положительных качеств:

  • Экономия на газовом топливе – здесь нас ждет реальная экономия, достигающая 10% и даже чуть больше. То есть, если мы как следует поработаем над уменьшением тепловых потерь в своем жилище и установим конденсационный котел, экономия на газовом топливе составит до 20-25%. Например, расход газа у котла на 20 кВт составляет менее 2 куб. м/час, в то время как у аналогичных конвекционных моделей он составляет примерно 2,2 куб. м/час;
  • Снижение нагрузки на окружающую среду – чем эффективнее перерабатывается топливо, тем лучше для природы. Плохо, что понимает это далеко не каждый человек;
  • Низкая температура продуктов сгорания – так как тепловая энергия отбирается практически полностью, температура газов на выходе газового котла получается крайне низкой;
  • Возможность беспрепятственного использования с водяными полами – им как раз необходима невысокая температура теплоносителя. В традиционном высокотемпературном отоплении газовые конденсационные котлы станут пустой тратой денег;
  • Широкий выбор моделей – любой мощности (до 50 кВт и больше), одноконтурные и двухконтурные, напольные и настенные, с открытой (редкость) и закрытой камерами сгорания.

Есть и минусы:

  • Низкая температура теплоносителя потребует перерасчета количества секций в радиаторах – от этого никуда не деться. Но можно поступить по-другому, установив вместо традиционных батарей малогабаритные плинтусные конвекторы или теплые полы;
  • Высокая стоимость газовых конденсационных котлов – если взять аналогичную конвекционную модель, то при равной мощности, характеристиках и возможностях она будет стоить дешевле (в среднем конденсационные модели на 30-80% дороже);
  • Необходимость в отводе конденсата – его излишки удаляются в канализационную систему;
  • Уменьшение КПД при росте температуры – если вдруг вам захочется прибавить газ, чтобы в комнатах было теплее, КПД начнет быстро падать;
  • Энергозависимость – все газовые конденсационные котлы нуждаются в электроэнергии. Поэтому потребителям придется позаботиться о резерве;
  • Отзывы пользователей свидетельствуют о небольшом ресурсе конденсационного теплообменника – он быстро изнашивается, несмотря на то, что сделан из нержавеющей стали или силумина.

Некоторые минусы действительно критичны, но с ними приходится мириться.

Популярные модели

Давайте теперь посмотрим, что мы можем купить на российском рынке и по каким ценам. И в этом разделе мы затронем три самые востребованные модели, получившие высшие оценки пользовательской аудитории.

Источник: remont-system.ru

Конденсационные котлы

Принцип действия

Конденсационные газовые котлы – это разновидность отопительного оборудования, предназначенного для нагрева теплоносителя системы отопления и сантехнической воды (в случае двухконтурного исполнения).

Как и у обычных котлов, здесь имеется:

  • камера сгорания газа;
  • теплообменники;
  • расширительный бак;
  • коаксиальный дымоход;
  • управляющая автоматика;
  • циркуляционный насос.

Однако есть и существенные отличия.

Принцип работы устройства основан на том, что при отдаче тепла сгоревшего топлива происходит конденсация паров, образовавшихся из воды, находящейся в природном газе. В результате скрытая в этих парах энергия парообразования не выбрасывается через дымоход на улицу, а идет на дополнительный подогрев теплоносителя.

Как известно, для конденсации воды необходима температура точки росы. В условиях газового котла она равна 57 °С. Следовательно, для работы системы нужно охладить теплообменник или его часть ниже температуры точки росы.

Для этого температура обратной подачи теплоносителя должна быть на уровне 40 – 50 °С или ниже. Значит, конденсационный котел будет продуктивно работать только с низкотемпературной высокоинерционной системой отопления. Это может быть «теплый пол» или панельное отопление.

Еще одним условием эффективной работы устройства является наличие особого теплообменника, который сможет достаточно охладить продукты сгорания топлива. Сначала эти продукты проходят через самую удаленную от обратки часть теплообменника, происходит их предварительное охлаждение, затем они снова проходят через наиболее холодную и близкую к обратке часть экономайзера и охлаждаются ниже 57 °С.

Водяные пары, которые содержатся в продуктах сгорания, конденсируются на стенках теплообменника и отдают тепловую энергию, высвобождаемую при конденсации. Это, на первый взгляд, незначительное количество тепла способно повысить эффективность работы котла на 9 — 11 % по сравнению с обычным конвекционным устройством.

Итак, перед нами котел, который получает дополнительное тепло за счет доохлаждения продуктов сгорания газа. В результате на стенках теплообменника конденсируется пар, и высвобождаемая энергия идет на подогрев теплоносителя.

Устройство

В целом устройство конденсатного агрегата напоминает конструкцию обычного газового котла.

Для реализации описанного выше принципа необходимо наличие таких узлов:

  • Специальный теплообменник, выполненный из стойкого к коррозии материала (медь или силумин), который разбит на две секции. В одной из секций происходит основной нагрев теплоносителя, затем продукты сгорания направляются к дополнительной секции с наиболее холодной водой, где водяной пар конденсируется и отдает свою энергию;
  • Закрытая камера сгорания с коаксиальным дымоходом позволяет точнее контролировать процесс движения продуктов горения газа и насыщенность смеси кислородом;
  • Нагнетающий вентилятор перед теплообменником с изменяемым количеством оборотов позволяет поддерживать оптимальное соотношение воздух/газ природный;
  • Дымоход из керамики или термостойкого пластика. Здесь возможно применение пластика, так как температура дыма не превышает 70 °С;
  • Насос для удаления дымовых газов с электронным управлением мощности. Он оптимизирует работу устройства, снижает шум и помогает настроить оптимальный режим;
  • Система удаления конденсата. Осевшая на стенках теплообменника вода выводится в канализацию.

Для наиболее продуктивной и комфортной работы устройства необходимо наличие низкотемпературной системы отопления, например, «теплый пол». Однако при работе с обычной системой агрегат также показывает хорошие результаты.

Преимущества использования конденсатных котлов

Среди преимуществ использования конденсатных агрегатов обычно выделяют такие особенности:

  1. Наиболее эффективное использование тепловой энергии сгорания топлива;
  2. Максимально высокий КПД из всех известных котлов отопления;
  3. Простая инструкция эксплуатации аппарата;
  4. Значительная экономия на оплате энергоресурсов;
  5. Надежная и долговечная работа.

Важно понимать, что это не инновация на стадии разработки. Устройства успешно применяются во многих странах Европы, и их жители уже давно не спрашивают, что это такое. В некоторых из стран, например, в Великобритании, продают только конденсационные котлы, так как правительство заботится об экономии и общем благополучии граждан.

Единственным минусом является высокая цена устройства, однако она быстро окупается за счет экономии газа, который в странах Европы стоит очень дорого. Учитывая то, что проблема дороговизны энергоресурсов постепенно становится актуальной для всех, гражданам России тоже следует присмотреться к этой технологии.

Вывод

Мы рассмотрели конденсационный котел и разобрали принцип его работы. Этот аппарат позволяет добиться максимальной эффективности и значительной экономии на отоплении. Еще больше информации вы можете почерпнуть из видео в этой статье, а свои вопросы задавайте в комментариях.

Источник: otoplenie-gid.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.