Мощность радиаторов отопления


Грамотно устроенная отопительная система обеспечит жилье необходимой температурой и во всех комнатах в любую погоду будет комфортно. Но, чтобы передать тепло воздушному пространству жилых помещений, нужно знать необходимое количество батарей, ведь верно?

Выяснить это поможет расчет радиаторов отопления, основанный на вычислениях тепловой мощности, требуемой от устанавливаемых нагревательных приборов.

Вы никогда не делали таких вычислений и боитесь ошибиться? Мы поможем разобраться с формулами – в статье рассмотрен подробный алгоритм расчета, разобраны значения отдельных коэффициентов, используемых в процессе вычислений.

Чтобы вам было проще разобраться в тонкостях расчета, мы подобрали тематические фотоматериалы и полезные видеоролики, поясняющие принцип вычисления мощности отопительных приборов.

Упрощенный расчет компенсации теплопотерь

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.


Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Подробная формула вычисления тепловой мощности

При подробных расчетах количества и размеров батарей отопления принято отталкиваться от относительной мощности 100 Вт, нужной для нормального обогрева 1 м² некоего нормативного помещения.

Формула для определения требуемой от отопительных приборов тепловой мощности такова:

Q = ( 100 x S ) x R x K x U x T x H x W x G x X x Y x Z

Множитель S в вычислениях не что иное, как площадь отапливаемого помещения, выраженная в квадратных метрах.


Остальные буквы – это различные поправочные коэффициенты, без которых расчет будет ограниченным.

Но даже добавочные расчетные параметры не всегда могут отразить всю специфику того или другого помещения. Рекомендуется при сомнениях в подсчетах отдавать предпочтение показателям с большими значениями.

Легче потом снизить температуру радиаторов с помощью терморегулирующих приборов, чем замерзать при недостатке их тепловой мощности.

Далее подробно разбирается каждый из участвующих в формуле расчета тепловой мощности батарей коэффициентов.

В конце статьи дается информация по характеристикам разборных радиаторов из разных материалов, и рассматривается порядок вычислений необходимого количества секций и самих батарей на базе основного расчета.

Ориентация комнат по сторонам света

И в самые морозные дни энергия солнца все же влияет на тепловое равновесие внутри жилища.

От направленности комнат в ту или иную сторону зависит коэффициент «R» формулы расчета тепловой мощности.

  1. Комната с окном на юг – R = 1,0. В течение светового дня она будет получать максимальное добавочное внешнее тепло по сравнению с другими помещениями. Такая ориентация принимается за базовую, и добавочный параметр в данном случае минимальный.
  2. Окно выходит на запад – R = 1,0 или R = 1,05 (для районов с коротким зимним днем). Эта комната тоже успеет получить свою порцию солнечного света. Солнце хоть и заглянет туда ближе к вечеру, но все же расположение такого помещение более выгодное, чем восточное и северное.

  3. Комната ориентирована на восток – R = 1,1. Восходящее зимнее светило вряд ли успеет как следует извне подогреть такое помещение. Для мощности батарей потребуются дополнительные Ватты. Соответственно добавляем к расчету ощутимую поправку в 10%.
  4. За окном находится только север – R = 1,1 или R = 1,15 (не ошибется житель северных широт, который возьмет дополнительно 15%). Зимой такое помещение прямых солнечных лучей не видит совсем. Поэтому рекомендуется вычисления требуемой от радиаторов тепловой отдачи также скорректировать на 10% в большую сторону.

Если в районе проживания преобладают ветры определенного направления, желательно для комнат с наветренными сторонами произвести увеличение R еще до 20% в зависимости от силы дуновения (х1,1÷1,2), а для помещений со стенами, параллельными холодным потокам, приподнять значение R на 10% (х1,1).

Учет влияния внешних стен

Кроме стены со встроенным в него окном или окнами, другие стены комнаты также могут иметь контакт с уличным холодом.

Внешние стены помещения определяют коэффициент «K» расчетной формулы тепловой мощности радиаторов:

  • Наличие у помещения одной уличной стены является типовым случаем. Здесь с коэффициентом все просто – K = 1,0.

  • Две внешних стены запросят для обогрева комнаты на 20% больше тепла – K = 1,2.
  • Каждая следующая наружная стена добавляет вычислениям по 10 % требуемой теплоотдачи. Для трех уличных стен – K = 1,3.
  • Наличие у помещения четырех внешних стен также добавляет 10% – K = 1,4.

В зависимости от особенностей помещения, для которого выполняется расчет, предстоит взять соответствующий коэффициент.

Зависимость радиаторов от теплоизоляции

Снизить бюджет на обогрев внутреннего пространства позволяет грамотно и надежно изолированное от зимней стужи жилье, причем существенно.

Степени утепления уличных стен подчиняется коэффициент «U», уменьшающий или увеличивающий расчетную тепловую мощность нагревательных приборов:

  • U = 1,0 – для стандартных внешних стен.
  • U = 0,85 – если утепление уличных стен производилось по специальному расчету.
  • U = 1,27 – если внешние стены недостаточно холодоустойчивы.

Стандартными считаются стены из соответствующих климату материалов и толщины. А также уменьшенной толщины, но с оштукатуренной наружной поверхностью или с поверхностной наружной теплоизоляцией.

Если разрешает площадь помещения, то можно произвести утепление стен изнутри. А оградить стены от холода снаружи способ найдется всегда.

Климат – важный фактор арифметики

Разные климатические зоны имеют различные показатели минимально низких уличных температур.

При расчете мощности теплоотдачи радиаторов для учета температурных отличий предусмотрен коэффициент «T».

Рассмотрим значения этого коэффициента для различных климатических условий:


  • T = 1,0 до -20 °С.
  • T = 0,9 для зим с морозцем до -15 °С
  • T = 0,7 – до -10 °С.
  • T = 1,1 для морозов до -25 °С,
  • T = 1,3 – до -35 °С,
  • T = 1,5 – ниже -35 °С.

Как видим из перечня, приведенного выше, нормальной считается зимняя погода до -20 °С. Для районов с таким наименьшим холодом берут значение, равное 1.

Для более теплых регионов этот расчетный коэффициент понизит общий результат вычислений. А вот для областей сурового климата требуемое от отопительных приборов количество теплоэнергии возрастет.

Особенности обсчета высоких помещений

Понятно, что из двух комнат с одинаковой площадью больше тепла потребуется той, у которой потолок выше. Учесть в вычислениях тепловой мощности поправку на объем отапливаемого пространства помогает коэффициент «H».

В начале статьи было упомянуто про некое нормативное помещение. Таковым считается комната с потолком на уровне 2,7 метра и ниже. Для нее берут значение коэффициента, равное 1.

Рассмотрим зависимость коэффициента Н от высоты потолков:


  • H = 1,0 – для потолков в 2,7 метра высотой.
  • H = 1,05 – для помещения высотой до 3 метров.
  • H = 1,1 – для комнаты с потолком до 3,5 метра.
  • H = 1,15 – до 4 метров.
  • H = 1,2 – потребность в тепле для более высокого помещения.

Как видим, для комнат с высокими потолками в расчет следует добавлять по 5% на каждые полметра высоты, начиная с 3,5 м.

По закону природы теплый нагретый воздух устремляется вверх. Чтобы перемешать весь его объем отопительным приборам придется потрудиться как следует.

Расчетная роль потолка и пола

К уменьшению тепловой мощности батарей ведут не только хорошо изолированные внешние стены. Соприкасающийся с теплым помещением потолок также позволяет минимизировать потери при обогреве комнаты.

Коэффициент «W» в формуле расчета как раз для того, чтобы предусмотреть это:

  • W = 1,0 – если наверху расположен, например, неотапливаемый неутепленный чердак.
  • W = 0,9 – для неотапливаемого, но утепленного чердака или другого утепленного помещения сверху.
  • W = 0,8 – если этажом выше комната отапливаемая.

Показатель W можно поправлять в сторону увеличения для помещений первого этажа, если они располагаются на грунте, над неотапливаемым подвалом или цокольным пространством. Тогда цифры будут такие: пол утеплен +20% (х1,2); пол не утеплен +40% (х1,4).


Качество рам – залог тепла

Окна – когда-то слабое место в теплоизоляции жилого пространства. Современные рамы со стеклопакетами позволили существенно улучшить защиту комнат от уличного холода.

Степень качества окон в формуле подсчета тепловой мощности описывает коэффициент «G».

За основу расчета взята стандартная рама с однокамерным стеклопакетом, у которой коэффициент равен 1.

Рассмотрим другие варианты применения коэффициента:

  • G = 1,0 – рама с однокамерным стеклопакетом.
  • G = 0,85 – если рама оснащена двух- или трехкамерным стеклопакетом.
  • G = 1,27 – если у окна старая деревянная рама.

Так, если в доме старые рамы, то потери тепла будут значительными. Поэтому потребуются более мощные батареи. В идеале такие рамы желательно заменить, ведь это дополнительные расходы на отопление.

Размер окна имеет значение

Следуя логике, можно утверждать, что чем больше количество окон в комнате и чем обширней их обзор, тем чувствительней утечки тепла через них. Коэффициент «X» из формулы расчета тепловой мощности, требующегося от батарей, как раз отражает это.

Нормой является итог деления площади оконных проемов на площадь комнаты равный от 0,2 до 0,3.

Приведем основные значения коэффициента Х для различных ситуаций:


  • X = 1,0 – при соотношении от 0,2 до 0,3.
  • X = 0,9 – для отношения площадей от 0,1 до 0,2.
  • X = 0,8 – при соотношении до 0,1.
  • X = 1,1 – если отношение площадей от 0,3 до 0,4.
  • X = 1,2 – когда оно от 0,4 до 0,5.

Если же метраж оконных проемов (например, в помещениях с панорамными окнами) выходит за рамки предложенных соотношений, разумно добавлять к значению X еще по 10% при росте отношения площадей на 0,1.

Находящаяся в комнате дверь, которой зимой регулярно пользуются для выхода на открытый балкон или лоджию, вносит свои поправки в баланс тепла. Для такого помещения будет правильным увеличить X еще на 30% (х1,3).

Потери тепловой энергии легко компенсируются компактной установкой под балконным входом канального водяного или электрического конвектора.

Влияние закрытости батареи

Конечно же, лучше отдаст тепло тот радиатор, который меньше огражден различными искусственными и естественными препятствиями. На этот случай формула расчета его тепловой мощности расширена за счет коэффициента «Y», учитывающего условия работы батареи.

Самое распространенное место расположения отопительных приборов – под подоконником. При таком их положении значение коэффициента равно 1.

Рассмотрим типичные ситуации размещения радиаторов:


  • Y = 1,0 – сразу под подоконником.
  • Y = 0,9 – если батарея оказывается вдруг полностью открытой со всех сторон.
  • Y = 1,07 – когда радиатор заслонен горизонтальным выступом стены
  • Y = 1,12 – если расположенная под подоконником батарея прикрыта фронтальным кожухом.
  • Y = 1,2 – когда отопительный прибор загражден со всех сторон.

Сдвинутые длинные плотные шторы также становятся причиной похолодания в комнате.

Эффективность подключения радиаторов

От способа присоединения радиатора к внутрикомнатной отопительной разводке напрямую зависит эффективность его работы. Часто хозяева жилья жертвуют этим показателем в угоду красоте помещения. Формула расчета требуемой тепловой мощности учитывает все это через коэффициент «Z».

Приведем значения этого показателя для различных ситуаций:

  • Z = 1,0 – включение радиатора в общую цепь отопительной системы приемом «по диагонали», что является самым оправданным.
  • Z = 1,03 – другой, самый распространенный из-за малой протяженности подводки, вариант присоединения «с боковой стороны».
  • Z = 1,13 – третий метод «снизу с двух сторон». Благодаря пластиковым трубам, это он быстро прижился в новом строительстве, несмотря на гораздо меньшую эффективность.
  • Z = 1,28 – еще один, очень низкоэффективный способ «снизу с одной стороны». Он заслуживает рассмотрения только потому, что некоторые конструкции радиаторов снабжаются готовыми узлами с подключением к одной точке труб и подачи, и обратки.

Увеличить коэффициент полезного действия отопительных приборов помогут вмонтированные в них воздухоотводчики, которые своевременно спасут систему от «завоздушивания».

Принцип работы любого водяного отопительного прибора опирается на физические свойства горячей жидкости подниматься вверх, а после охлаждения перемещаться вниз.

Поэтому настоятельно не рекомендуется использовать присоединения систем отопления к радиаторам, при которых труба подачи оказывается внизу, а обратки – вверху.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина комнаты 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Ниже приводится описание расчета количества секций радиаторов и требуемого числа батарей. Он основывается на полученных результатах тепловых мощностей с учетом габаритов предполагаемых мест установки отопительных приборов.

Независимо от итогов, рекомендуется в угловых комнатах оснащать радиаторами не только подоконные ниши. Батареи следует устанавливать у «слепых» внешних стен или возле углов, которые подвергаются наибольшему промерзанию под воздействием уличного холода.

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

О том, как правильно рассчитать нужное количество различных батарей для отопления, и пойдет речь дальше.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы из этого металла подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт. Стальные трубчатые радиаторы могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт. Легкие, эстетичные алюминиевые радиаторы надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.
  4. Биметалл – q = 180 Ватт. Внутренности биметаллических радиаторов сделаны из стали, а теплоотводящая поверхность – из алюминия. Эти батареи выдержат всякие режимы давлений и температур. Удельная тепловая мощность секций из биметалла тоже на высоте.

Приведенные значения q довольно условны и применяются для предварительного расчета. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Расчет количества секций радиаторов

Разборные радиаторы из любого материала хороши тем, что для достижения их расчетной тепловой мощности можно добавлять или убавлять отдельные секции.

Для определения нужного количества «N» секций батарей из выбранного материала придерживаются формулы:

N = Q / q,

Где:

  • Q = рассчитанная ранее требуемая тепловая мощность устройств для обогрева комнаты,
  • q = мощность тепловая удельная отдельной секции предполагаемых для установки батарей.

Вычислив общее необходимое число секций радиаторов в помещении, надо понять, сколько всего батарей нужно установить. Этот расчет основывается на сравнении габаритов предполагаемых мест установки отопительных приборов и размеров батарей с учетом подводки.

Для предварительных подсчетов можно вооружиться данными о ширине секций разных радиаторов:

  • чугунных = 93 мм,
  • алюминиевых = 80 мм,
  • биметаллических = 82 мм.

При изготовлении разборных радиаторов из стальных труб, производители не держатся за определенные стандарты. При желании поставить такие батареи, следует подходить к вопросу индивидуально.

Также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:

Повышение эффективности теплоотдачи

При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.

Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.

Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.

Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.

Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.

Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.

Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.

Выводы и полезное видео по теме

Небольшие фильмы представят практическое воплощение некоторых инженерных советов в быту. В следующем ролике можно увидеть практический пример расчета радиаторов отопления:

Изменение количества секций радиаторов рассмотрено в этом видео:

Следующий ролик поведает о том, как монтировать отражатель под батарею:

Приобретенные навыки расчёта тепловой мощности разных видов радиаторов отопления помогут домашнему мастеру в грамотном устройстве отопительной системы. А домашние хозяйки смогут проконтролировать правильность процесса установки батарей сторонними специалистами.

Вы занимались самостоятельным расчетом мощности батарей отопления для своего дома? Или столкнулись с проблемами, возникшими в результате монтажа маломощных отопительных приборов? Расскажите о своем опыте нашим читателям – оставляйте, пожалуйста, комментарии ниже.

Источник: sovet-ingenera.com

Способы расчетов

Наиболее упрощенный способ расчета мощности батарей – умножить площадь помещения на усредненное значение мощности радиатора для стандартного обогрева 1 кв.м., а именно – 100 Вт. Имеем формулу: Q = S × 100.

Например, если площадь обслуживаемой комнаты 15 кв.м, то для ее комфортного обогрева понадобится тепловая отдача в 1500 Вт или 150 кВт. Дабы определить количество секций, следует разделить выведенный результат на тепломощность одной радиаторной секции.

Предыдущий расчет справедлив только для комнат со стандартным потолком 2,7 м в высоту. Если же помещение выше, нужно умножить его площадь на высоту и на средний показатель тепломощности для обогрева 1 куб.м. объема помещения, а именно – на 41 Вт для панельного или на 34 Вт для кирпичного дома. Имеем формулу: Q = S × h × 41 (34).

Например, если площадь комнаты в панельной высотке составляет 15 кв.м., а потолок достигает в высоту 3 м, то для обогрева понадобится теплоотдача радиаторов 1845 Вт или 185 кВт.

Пользуясь упрощенными методиками, будьте готовы к неприятным «сюрпризам» – к тому, что установленные батареи с вроде бы правильно рассчитанной мощностью на практике не смогут обеспечивать необходимый обогрев. Причина этому – целый спектр особенностей, которые вышепредложенные формулы попросту не учитывают. Вот почему, если вы заинтересованы в максимально точных расчетах, рекомендуем вам пользоваться более серьезной формулой: Q = S × 100 × А × В × С × D× Е × F × G × H × I,
где S – площадь, 100 – общепринятые 100 Вт на квадратный метр.

Все остальные коэффициенты являются выражением разного рода особенностей радиаторов и отапливаемых помещений – разберем их далее по порядку.

Остекление, площадь и ориентация окон

На окна может приходиться от 10% до 35% теплопотерь. Конкретный показатель зависит от трех факторов: характера остекления (коэффициент А), площади окон (В) и их ориентации (С).

Зависимость коэффициента от вида остекления:

  • тройное стекло или аргон в двойном пакете – 0,85;
  • двойное стекло – 1;
  • одинарное стекло – 1,27.

Объем тепловых потерь напрямую зависит и от площади оконных конструкций. Коэффициент В рассчитывается на базе соотношения общей площади оконных конструкций к площади отапливаемой комнаты:

  • если окна составляют 10% и меньше общей площади комнаты, В = 0,8;
  • 10-20% – 0,9;
  • 20-30% – 1;
  • 30-40% – 1,1;
  • 40-50% – 1,2.

И третий фактор – ориентация окон: тепловые потери в комнате, выходящей на юг, всегда ниже, чем в помещении, которое выходит на север. Исходя из этого имеем два коэффициента С:

  • окна на севере или на западе – 1,1;
  • окна на южной или восточной стороне – 1.

Особенности стен и потолков

Теперь рассмотрим три коэффициента, которые связаны с особенностями стен и потолков отапливаемого помещения: D – число внешних стен, E – уровень теплоизоляции стен, F – высота потолков.

Чем активнее комната контактирует с внешней средой, тем выше ее теплопотери:

  • если одна внешняя стена, D = 1;
  • две – 1,2;
  • три – 1,3;
  • четыре внешних стены – 1,4.

Чем качественнее утеплены стены, тем ниже теплопотери помещения:

  • если теплоизоляция профессиональная, E = 0,85;
  • поверхностная теплоизоляция – 1;
  • отсутствие теплоизоляции – 1,27.

Чем выше потолки в комнате, тем большая мощность батарей потребуется для ее комфортного обогрева, поэтому, чтобы получить правильный показатель теплоотдачи приборов, учитывается корректирующий коэффициент F:

  • высота 2,7 м и меньше – 1;
  • 2,8-3 м – 1,05;
  • 3-3,5 м – 1,1;
  • 3,6-4 м – 1,15;
  • 4 и выше – 1,2.

Тип подключения батарей

Важнейший фактор, определяющий уровень теплоотдачи отопительных радиаторов, – схема их подключения. В нашей формуле она выражена коэффициентом G – его параметр зависит от характера подключения и расположения приборов:

  • при диагональном подключении с верхней подачей и нижней обраткой – 1;
  • при одностороннем подключении с верхней подачей и нижней обраткой – 1,03;
  • при двустороннем подключении с нижней подачей и нижней обраткой – 1,13;
  • при диагональном подключении с нижней подачей и верхней обраткой – 1,25;
  • при одностороннем подключении с нижней подачей и верхней обраткой – 1,28;
  • при одностороннем подключении с нижней подачей и нижней обраткой – 1,28.

Совет. Одностороннее подключение рекомендуется только в исключительных ситуациях, так как оно чревато самыми высокими теплопотерями – около 22%.

Дополнительные факторы

Осталось два коэффициента – H и I. И хоть они расположены в самом конце формулы, их важность от этого не преуменьшается. H – коэффициент, выражающий климат местности, а I – назначение помещения, которое расположено над отапливаемой комнатой.

Чтобы определить H, берется средняя зимняя температура по региону:

  • до -10 градусов С = 0,7;
  • от -10 градусов С до -15 градусов С = 0,9;
  • от -15 градусов С до -20 градусов С= 1,1;
  • от -20 градусов С до -25 градусов С = 1,3;
  • от -25 градусов С до -35 градусов С = 1,5.

Коэффициент H вычисляется по типу помещения, находящегося выше комнаты, для которой подбираются батареи:

  • неутепленный чердак/техническое помещение – 1;
  • утепленная кровля или отапливаемый чердак/техническое помещений – 0,9;
  • теплая жилая комната – 0,8.

Финальные расчеты

Разобравшись во всех коэффициентах, продемонстрируем, как формула работает на практике. Предположим, что батареи подбираются для комнаты с такими характеристиками: площадь – 17 кв.м.; окна – площадью 20% от общих размеров помещения, выходят на северную сторону и имеют двойное стекло; стены – две внешние с поверхностным утеплением; потолки – 2,8 м; подключение – диагональное с верхней подачей и нижней обраткой; средняя зимняя температура – до -10 градусов С; помещение сверху – теплая жилая комната. Имеем: Q = 17 × 100 × 1 × 1 × 1,1 × 1,2× 1 × 1× 1× 0,7× 0,8 = 1256 Вт или 125 кВт.

Получив общее значение мощности, определим, сколько необходимо секций батарей для качественного обогрева комнаты – тут нужно ориентироваться на материал радиаторов:

  • чугунные батареи – теплоотдача одной секции составляет 145 Вт.
  • стальные – 160 Вт;
  • биметаллические – 185 Вт.

Как видите, расчет мощности батарей отопления по площади с поправкой на различные особенности как самих приборов, так и отапливаемых помещений – дело не из простых. Перед вами подробный алгоритм расчетов – только четко ему следуя, вы сможете без помощи специалистов определить мощность радиаторов для создания надежной отопительной системы в своем жилище.

Расчет количества радиаторов отопления: видео

Источник: sandizain.ru

Разновидности радиаторов

На сегодняшний день самая популярная схема отопления состоит из трёх основных элементов: котёл нагрева (твердотопливные, газовые, электрические или альтернативные подвиды), трубы и радиаторы, по которым транспортируется теплоноситель (антифриз или вода). На первый взгляд, выглядит всё очень просто. Батареи устанавливаются под окном и нагревают помещение. Но здесь есть несколько нюансов. Мощность радиатора должна соответствовать квадратуре комнаты.

Все расчёты подобного типа должны проводиться по нормам СНиП. Процедура довольно сложная и выполняется исключительно специалистами в этой области. Но если воспользоваться несколькими советами, то такие расчёты можно провести и самостоятельно.

Сегодня на рынке можно найти множество разновидностей стальных радиаторов. Основные из них:

  • чугунные радиаторы;
  • алюминиевые радиаторы (несколько подвидов);
  • стальные радиаторы (трубчатая или панельная схема);
  • биметаллические радиаторы.

В этом видео вы узнаете, как рассчитать мощность радиатора:

Стальные батареи

Такие варианты на сегодня не пользуются большой популярностью, даже с учётом эстетически красивого внешнего оформления. Стенки батарей очень тонкие, поэтому они быстро нагреваются и остывают. При высоком давлении сварные швы могут не выдержать, и радиатор потечёт. Также более дешёвые модели, которые не имеют специального антикоррозионного покрытия, могут быстро ржаветь. Как правило, производители не дают длительную гарантию на такие изделия.

В большинстве случаев стальные радиаторы состоят из одной цельной плиты, поэтому изменять теплоотдачу корректировкой числа секций не выйдет. Нужно отталкиваться от квадратуры и выбирать комплектующие по установленной паспортной мощности. В некоторых моделях трубчатого типа можно изменять количество секций, но это в большей степени исключение. Подобные работы самостоятельно сделать не получится, нужно будет заказывать работу у мастера.

радиатор_сталь
Обычно, стальные радиаторы состоят из 1 плиты

Чугунные модели

Этот вариант знаком многим, так как именно такие батареи устанавливались со времён Советского союза до начала ХХ века. В народе их ещё называют «гармошками». Хотя они и не выглядят красиво, но зато имеют долгий срок эксплуатации. Каждое ребро батареи имеет теплоотдачу в 160 Вт. Количество секций никак не ограничено, поэтому собираться радиатор может по частям. Сегодня можно увидеть на рынке современные аналоги чугунных радиаторов.

При этом своих изначальных преимуществ они не теряют:

  • высокая теплоёмкость, благодаря которой температура сохраняется долгое время, а отдача тепла довольно высокая;
  • если всю систему правильно собрать, то чугунные элементы не будут «бояться» гидроударов и перепадов температур;
  • стенки довольно толстые, ржаветь они не будут.

В качестве носителя тепла может выступать любая жидкость, поэтому они хороши как для автономной системы отопления, так и для централизованной. Но у них есть и некоторые недостатки. Во-первых, плохой внешний вид и сложность монтажа. Во-вторых, чугун — довольно хрупкий материал и точечные гидроудары может не выдержать. Кроме того, большая масса таких батарей не позволит их установить на любую стену.

радиатор_чугун
У данных батарей высокая теплообменность

Алюминиевые изделия

Алюминиевые радиаторы появились относительно недавно, но за короткое время успели завоевать популярность среди покупателей. У них отличная теплоотдача, они имеют привлекательный внешний вид и достаточно просты в установке и эксплуатации. Но при их выборе необходимо обратить внимание на некоторые нюансы.

Алюминиевые модели могут выдерживать температуру до 100°C и давление до 15 атмосфер. При этом теплоотдача одной секции может достигать 200 Вт. Также с массой одной секции около 2 кг они не требуют больших объёмов теплоносителя (до 500 мл). Сегодня на рынке есть изделия с возможностью деления секций и цельные конструкции с уже рассчитанной мощностью.

Они также имеют свои недостатки:

  1. Алюминиевые радиаторы могут подвергаться кислородной коррозии, поэтому их можно устанавливать только на автономные системы отопления, поскольку они очень требовательны к теплоносителю.
  2. Некоторые модели, состоящие из цельного полотна, при определённых условиях могут протекать в области соединительных элементов, при этом заменить их не получится, нужно будет менять батарею целиком.

Из всех возможных вариаций алюминиевые радиаторы самые качественные и надёжные изделия, при производстве которых применялась технология анодного оксидирования металла. Они практически полностью избавлены от кислородной коррозии. Внешний вид таких изделий независимо от технологии производства одинаковый. В связи с этим нужно особенно тщательно обращать при выборе внимание на техническую документацию.

Биметаллические материалы

Такие изделия на сегодняшний день являются идеальным вариантом по всем параметрам. По надёжности они не уступают чугунным аналогам, а теплоотдача у них на уровне алюминиевых радиаторов. Связано это с их конструктивными особенностями.

Конструкция состоит из двух стальных коллекторов (верхнего и нижнего) и соединительных каналов между ними. Соединяются все элементы между собой муфтами высокого качества. Благодаря внешней алюминиевой оболочке теплоотдача остаётся на высоком уровне. Внутренняя часть труб сделана из металла, который не подвергается коррозии или имеет антикоррозийное покрытие. Алюминиевая ёмкость для теплообмена не подвержена коррозии, так как не контактирует с теплоносителем.

Конструкция имеет высокий уровень надёжности, и довольно большую теплоотдачу.

Биметаллические батареи не боятся скачков температуры и давления. Они более эффективны именно при высоком давлении, так как в системе с естественной циркуляцией они бесполезны. Если говорить о недостатках, то можно отметить только высокую стоимость.

Расчет мощности

Установленный радиатор должен полностью обеспечивать прогрев воздуха в комнате до нужных показателей. Основной величиной при расчёте мощности батарей отопления является площадь комнаты. Сами по себе расчёты по нормам СНиП весьма сложные. Неопытному человеку самостоятельно сделать сложный расчет не получится, но для бытовых нужд можно воспользоваться и упрощённой формулой.

Для создания комфортных условий проживания и достаточного количества тепла на один квадратный метр нужно примерно 100 Вт мощности. Поэтому для вычисления общего количества Ватт необходимо квадратуру комнаты умножить на 100. Можно использовать простейшую формулу: Т = П х 100.

Т — это необходимая теплоотдача от батареи, а П — площадь комнаты. Таких расчётов будет достаточно для радиаторов, состоящих из неразборных секций. На них необходимо ориентироваться при выборе материала, смотреть показатели изделия в его паспорте.


В случае покупки разборных батарей следует применять ещё одну формулу: К = Т / М1.

К — количество секций изделия, а М1 — мощность одной секции. Такие формулы не являются сложными, ими сможет воспользоваться человек без соответствующего образования с начальными знаниями физики и математики. Необходимо просто измерить рулеткой квадратуру комнаты и подготовить листок бумаги и ручку для вычислений. Также можно пользоваться специальной таблицей, где уже указанны все расчёты на определённую площадь помещения.

Инструкция по вычислению

Есть люди, которые не знают, как рассчитать тепловую мощность радиатора отопления правильно. Но сложного в этом ничего нет. При установке системы отопления необходимо добиваться максимального сочетания эффективности работы и экономичности.


Неопытным людям будут полезны несколько советов:

  1. Если комната со среднестатистическими условиями, то необходимо рассчитывать мощность батарей от 90 до 120 Вт на один квадрат помещения. Среднестатистическими условиями считается наличие одной двери и деревянного окна, при этом высота потолков не превышает 3 метров. Температура носителя тепла колеблется в районе 70°C.
  2. Если комната имеет два и более окна, то под каждое нужно установить отдельную батарею. Таким образом, можно предотвратить запотевание окон.
  3. Если высота комнаты больше или меньше стандарта, то необходимо учитывать это и увеличивать или уменьшать мощность прямо пропорционально высоте пололка.
  4. Если установлены стеклопакеты, то от стандартных расчётов нужно отнять от 15 до 20%.
  5. Помещения, расположенные по углам, требуют больше тепла. Поэтому в них следует устанавливать 2 батареи, а мощность увеличить на 40%. Эти же действия нужно сделать в помещениях, расположенных с северной стороны, поскольку они более подвержены воздействию холодного ветра. Погодные условия и температурный режим учитывается при расчётах.
  6. Конструктивные особенности батареи также важны. Если теплоноситель в системе движется снизу вверх по секциям, то мощность следует увеличить на 10%.
  7. Мощность нужно поднимать на 15%, если температура теплоносителя меньше нормы на 10°C, и уменьшать, если больше.
  8. Когда вход и выход для теплоносителя на батарее расположены с одной стороны, то количество секций не должно превышать десяти, так как последние рёбра не успеют достаточно нагреться.
  9. Учитывать нужно и тип радиатора, поскольку необходимая мощность у каждого типа разная.


Выполняя расчёты, не рекомендуется их делать сразу для целого дома. Лучше каждую комнату сделать отдельно, спешить при таком важном процессе не нужно. После увеличения на одну секцию нагрузка на котёл уменьшается, поэтому дополнительное ребро является хорошим показателем.

Рассчитать мощность батареи для личных целей несложно. Хватит элементарных правил математики и физики. Но для получения соответствующего разрешения необходимо приглашать специалиста с лицензией.

Источник: kaminguru.com

О расчете отопительной системы

На этом этапе нужно добиться того, чтобы тепловая мощность радиатора отопления обеспечивала постоянную температуру в комнате в самое холодное время отопительного сезона. Определение мощности отопительного радиатора необходимо для того, чтобы определиться с требуемым числом сегментов (см.также статью «Как выполнить подключение радиаторов отопления в центральной или автономной системе»).

Обратите внимание! Для возможности плавной регулировки работы батареи отопления не лишней будет установка терморегулятора.

Весь процесс выполняется в несколько этапов:

  • подсчитываются потери тепла через ограждающие конструкции;
  • по технической документации выясняется теплоотдача одного сегмента выбранного радиатора;
  • вычисляется требуемое число сегментов батареи.

Подсчет теплопотерь

Это первое, с чего нужно начать, когда речь заходит о том, как определить мощность радиатора отопления.

Тепло расходуется через:

  • стены, как наружные, так и внутренние (если комната граничит с неотапливаемым помещением);
  • пол;
  • потолок;
  • окна и двери.

Подсчет потерь выполняется с учетом типа и толщины материала, используется формула

в этой формуле

  • Q – потери тепла;
  • S – площадь помещения, м2;
  • Δt – перепад температур внутри и снаружи помещения, ᵒС;
  • λ – справочная величина – коэффициент теплопроводности, Вт/м∙ᵒС;
  • v – толщина ограждающей конструкции, м.

С точки зрения теплопотерь верхние этажи находятся в невыгодном положении, ведь над ними располагается неотапливаемый чердак, да и ветер снаружи сильнее. Так что для них полученную величину потерь тепла можно увеличить примерно на 10%.

Обратите внимание! При подсчете нужно не забыть о вентиляции, ведь воздухообмен зимой не прекращается. Для этого вводится повышающий коэффициент 1,1 – 1,4. Большее значение принимается для интенсивного проветривания жилья.

Расчет радиатора

Имея на руках данные по тепловым потерям можно переходить к подбору батареи. При этом нужно учитывать эффективность прибора, например, мощность стальных радиаторов отопления уступает биметаллическим аналогам.

Требуемое число сегментов определяется как отношение тепловых потерь к теплоотдаче одного сегмента. А вот отдача тепла секцией – паспортная величина, производитель обязан указывать ее для каждой модели радиатора. Используется формула:

в этой формуле:

  • n – полное число секций батареи, шт;
  • Q – теплопотери, Вт;
  • N – мощность одной секции, Вт.

При этом нужно учитывать, что паспортные данные по мощности 1-го сегмента приведены для определенного перепада температур (чаще всего 90/70). Но довольно часто температура теплоносителя отличается, в таком случае и теплоотдача отопительной батареи изменяется. Например, мощность чугунных радиаторов отопления при изменении температурного напора с 80-100 до 50-60 падает примерно на 15-20%.

Для подсчета мощности сегмента при произвольном температурном напоре пользуются формулой

в этой формуле

  • k – теплопередача, паспортная величина, Вт/м2∙ᵒС;
  • А – площадь секции, м2;
  • ΔТ – температурный напор, ᵒС. Вычисляется по формуле

Тпод и Тобр – температура теплоносителя соответственно на входе в батарею и выходе из нее, ᵒС;

Ткомн – температура в помещении, ᵒС.

Упрощенная методика

Если все работы в доме выполняются своими руками, то довольно часто вместо подробного расчета люди довольствуются приблизительным подбором. Нужно отметить, что результат в таком случае хоть и не особо точный, но для подбора радиатора сойдет.

Есть несколько способов приблизительного расчета:

  • при стандартных параметрах (высота потолков в комнате до 3м, температура теплоносителя 85-90ᵒС, 1 окно и 1 дверь в помещении) можно использовать зависимость 100 Вт/1 м2 площади. Для комнаты площадью, например, 20 м2 нужна батарея, которая способна обеспечить тепловую мощность на уровне 2 кВт;

Обратите внимание! Для угловых комнат, а также квартир верхних этажей вводится повышающий коэффициент 1,2. Цена батарей не так уж и высока, поэтому лучше подстраховаться.

  • расчет можно вести и с учетом кубатуры помещения. В таком случае исходят из пропорции, что 200 Вт тепловой мощности способны обогреть 5 м3 пространства комнаты.

Обратите внимание! Практика показывает, что результат в этом случае получается завышенным примерно на 10%.

Результаты по обеим методикам должны получиться приблизительно одинаковыми. Удобнее сравнить их на конкретном примере. Пусть нужно подобрать радиатор для комнаты размерами 5х5х3 метра, в ней установлен 1 стеклопакет, 1 межкомнатная дверь, квартира находится на нижнем этаже.

Первая упрощенная методика расчета предполагает такую последовательность действий:

  • определяется площадь комнаты, 5х5 = 25м2;
  • учитывая пропорцию 100 Вт/1 м2, определяется мощность прибора, в нашем случае 2,5 кВт;
  • из паспортных характеристик выписывается мощность одной секции конкретного радиатора. Для примера выберем алюминиевую модель А350, 1 сегмент способен отдать 138 Вт тепловой энергии;
  • подсчитывается число сегментов, 2500/138 = 18,12≈19 штук.

Обратите внимание! Способ подключения также играет большую роль в равномерности его прогрева, а значит и величине теплоотдачи.

При работе по 2-й методике инструкция будет выглядеть так:

  • учитывая пропорцию 200 Вт/ 5 м3 определяем, какой объем воздуха нагреет 1 секция выбранной батареи. В нашем случае 1 секция прогреет 3,45 м3;
  • определяем объем комнаты 5∙5∙3 = 75 м3;
  • подсчитывается число секций 75/3,45 ≈ 22 секции.

Погрешность при расчете по 2-м упрощенным методикам составила 13,6%, что для приближенного расчета не так уж и плохо. Полученные результаты примерно согласовываются и с рекомендациями самого производителя (указаны в таблице).

Подведение итогов

Для поддержания нормального микроклимата в помещении необходимо добиться соблюдения баланса между поступлением и потерей тепла. Выполнить это условие можно только при грамотном расчете отопительной системы в целом и радиаторов отопления в частности. Предложенные в статье методы расчета вполне могут использоваться при подборе числа секций батареи отопления в квартире или частном доме (узнайте здесь, как устранить течь радиатора отопления подручными средствами).

Видео представляет собой краткую инструкцию по расчету батареи отопления.

Источник: gidroguru.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.