Расчет батарей отопления


Стальные радиаторы отопления: расчет мощности (таблица)От того, насколько правильно и грамотно был произведен расчет мощности стального радиатора, настолько же можно ожидать от него тепла.

В данном случае нужно учесть, чтобы совпали технические параметры отопительной системы и обогревателя.

 

 

 

 

Расчет по площади помещения

Чтобы теплоотдача стальных радиаторов была максимальной, можно воспользоваться расчетом их мощностей, исходя из размера комнаты.

Если взять в качестве примера помещение с площадью 15 м2 и потолками высотой 3 м, то, высчитав его объем (15х3=45) и умножив на количество требуемых Вт (по СНиП – 41 Вт/м3 для панельных домов и 34 Вт/ м3 для кирпичных), то получится, что потребляемая мощность равна 1845 Вт (панельное здание) или 1530 Вт (кирпичное).

После этого достаточно проследить, чтобы расчет мощности стальных радиаторов отопления (можно свериться с таблицей, которую предоставляет производитель) соответствовал полученным параметрам. Например, при покупке обогревателя типа 22 нужно отдать предпочтение конструкции, имеющей высоту 500 мм, а длину 900 мм, которой свойственна мощность 1851 Вт.


Стальные радиаторы отопления: расчет мощности (таблица)

Фото 1

Определение мощности с учетом теплопотерь

Кроме показателей, связанных с материалом, из которого построен многоквартирный дом и указанных в СНиП, в расчетах можно использовать температурные параметры воздуха на улице. Этот способ основан на учете теплопотерь в помещении.

Для каждой климатической зоны определен коэффициент в соответствии с холодными температурами:

  • при -10 ° C – 0.7;
  • — 15 ° C – 0.9;
  • при — 20 ° C – 1.1;
  • — 25 ° C – 1.3;
  • до — 30 ° C – 1.5.

Теплоотдача стальных радиаторов отопления (таблица предоставляется фирмой-производителем) должна быть определена с учетом количества наружных стен. Так если в комнате она одна, то результат, полученный при расчете стальных радиаторов отопления по площади, нужно умножить на коэффициент 1.1, если их две или три, то он равен 1.2 или 1.3.

Например, если температура за окном – 25 ° C, то при расчете стального радиатора типа 22 и требуемой мощностью 1845 Вт (панельный дом) в помещении, где 2 наружные стены, получится следующий результат:


  • 1845х1.2х1.3 = 2878.2 Вт. Этому показателю соответствуют панельные конструкции 22-го типа 500 мм высоты и 1400 мм длины, имеющие мощность 2880 Вт.

Так подбираются панельные радиаторы отопления (расчет по площади с учетом коэффициента теплопотерь). Подобный подход к выбору мощности панельной батареи обеспечит максимально эффективную ее работу.

Чтобы было легче произвести расчет стальных радиаторов отопления по площади, калькулятор онлайн сделает это в считанные секунды, достаточно внести в него необходимые параметры.

Процентное увеличение мощности

Можно учитывать теплопотери не только по стенам, но и окнам.

Например, прежде чем выбирать стальной радиатор отопления, расчет по площади нужно увеличить на определенное количество процентов в зависимости от количества окон в помещении:

  1. Процентное увеличение мощностиПри наличии двух наружных стен и одного окна показатель увеличивается на 20%.
  2. Если и окон, и стен, выходящих наружу по два, то прибавляется 30%.
  3. Когда стены внутренние, но окно выходит на север, то на 10%.
  4. Если квартира расположена внутри дома, а обогреватели закрыты решетками, то теплоотдача стальных панельных радиаторов должна быть увеличена на 15%.

Учет подобных нюансов перед установкой панельных батарей из стали позволяет правильно выбрать нужную модель. Это сэкономит средства на ее эксплуатации при максимальной теплоотдаче.

Поэтому не следует думать только о том, как подобрать стальные радиаторы отопления по площади помещения, но и учитывать его теплопотери и даже расположение окон. Такой комплексный подход позволяет учесть все факторы, влияющие на температуру в квартире или доме.

netholodu.com

Расчет отопительных радиаторов по площади

Расчет отопительных радиаторов по площади
Расчет отопительных радиаторов по площади

Это наиболее доступная методика, позволяющая определить мощность излучения тепла для полноценного обогрева помещения заданного размера. Зная площадь конкретного помещения, можно легко определить тепловую потребность по следующим строительным нормам СНиП:

  • на обогрев 1 кв. метр жилого помещения в средней климатической зоне требуется от 60 до 100 Вт энергии;
  • для регионов, расположенных выше 600, необходимо от 150 до 200 Вт энергии.

Принимая во внимание данные нормы, можно рассчитать, сколько тепла понадобится на обогрев помещения определенной площади, и с учетом этого выполнить расчет радиаторов, при этом, для областей с более теплым климатом берутся значения, близкие к нижней границе нормы, а для регионов с холодным или непостоянным климатом, соответственно, близкие к верхней границе.

Для качественного отопления комнаты требуется небольшой запас по мощности обогрева: чем большая мощность нужна для обогрева комнаты, тем большее количество радиаторов понадобится установить. В свою очередь, чем больше установлено радиаторов, тем большее количество теплоносителя циркулирует в системе. Это не имеет особого значения в случаях, когда квартира подсоединена к центральной отопительной системе, а вот при наличии индивидуальной отопительной системы большого объема требуется намного больше затрат на поддержание необходимой температуры теплоносителя.

После расчета тепловой потребности комнаты, можно рассчитать число секций батареи, учитывая, что каждый радиатор обеспечивает определенный объем тепла, о чем заявлено в паспорте. Показатель потребности в тепле делится на мощность батареи. При этом, для кухни полученное в итоге значение можно округлить до меньшего значения, а для торцевых/угловых помещений или комнат с большим окном/балконом – до большего.


Данная система расчета очень проста, однако, не лишена недостатков: при выполнении расчетов не учитываются материалы стен, высота потолков, наличие утепления, размер и тип окон, а также ряд других факторов. По этой причине расчет по СНиП можно считать ориентировочным, а для более точного результата требуется внести некоторые корректировки.

Расчет секций приборов по объему помещения

Расчет секций приборов
Расчет секций приборов

При данном типе расчета учитываются показатели площади и высоты потолков, что позволяет определить, какое количество тепла понадобится для нагрева всего воздуха внутри помещения. Для расчета отопительных батарей по этому методу нужно рассчитать объем помещения и затем определить оптимальное количество тепла для обогрева этого помещения по нормам СНиП:

  • на отопление 1 кубического метра воздуха в панельных домах требуется 41 Вт;
  • в кирпичных домах – 34 Вт.

Корректировка результатов расчета отопительных радиаторов

Корректировка результатов расчета
Корректировка результатов расчета

Для получения максимально точного результата необходимо учитывать все факторы, способствующие увеличению/уменьшению теплопотерь, включая материал стен, их утепление, размер окон, тип остекления, количество торцевых стен и т.д. Значения тепловых потерь помещения умножаются на определенные коэффициенты.
В частности, за счет окон происходит потеря 15-35% тепловой энергии. Точное значение зависит от габаритов и качества утепления окна. В связи с этим, предусмотрено два коэффициента:

  • остекление: стандартные двойные рамы – 1,27, стандартные двухкамерные стеклопакеты – 1,0, трехкамерные стеклопакеты/двухкамерные стеклопакеты с аргоном – 0,85;
  • соотношение площади окна и площади пола: 50% — 1,2, 40% — 1,1, 30% — 1, 20% — 0,9, 10% — 0,8.
    Что касается стен помещения, то для определения тепловых потерь с учетом этого фактора следует учитывать степень теплоизоляции и материал стен, а также число внешних стен, применяя следующие коэффициенты:
  • степень тепловой изоляции: хорошая – 0,8, недостаточная (отсутствующая) – 1,27, норма (кирпичная стена толщиной в 2 кирпича);
  • наличие внешних стен: три – 1,3, две – 1,2, одна – 1,1, внутреннее помещение (отсутствие потерь) – 1.

Кроме того, на тепловые потери влияет и то, какое помещение располагается сверху – отапливаемое или неотапливаемое. В данном случае используются следующие коэффициенты:

  • неотапливаемый чердак – 1;
  • отапливаемый чердак – 0,9;
  • отапливаемое помещение (квартира) – 0,7.

При расчете секций батарей также можно учитывать специфические параметры помещения и климатические особенности региона.

Если выполнять расчет по площади комнаты при наличии потолков, имеющих нестандартную высоту, то следует применять пропорциональное увеличение или уменьшение с помощью коэффициента, который рассчитывается следующим образом: реальная (фактическая) высота потолков делится на стандартную высоту (2,7 м).
Все перечисленные коэффициенты предназначены для расчета батарей в квартирах.

Чтобы рассчитать тепловые потери здания через фундамент или подвал и кровлю, полученный результат необходимо увеличить на 50%.

Кроме того, результат расчета можно скорректировать с учетом средних температур в зимний период:

  • -30 градусов – 1,5;
  • -25 градусов – 1,3;
  • -20 градусов – 1,1;
  • -15 градусов – 0,9;
  • -10 градусов и выше – 0,7.

Учитывая все корректировки, можно максимально точно определить число батарей, способных обеспечить обогрев помещения с заданными параметрами. Однако, существуют и другие факторы, влияющие на интенсивность теплового излучения.
Корректировка полученных результатов с учетом режима отопительной системы

В паспортах радиаторов указывается максимальная мощность приборов при функционировании в разных режимах:

  • режим высоких температур – 90/70/20, где 90 градусов – температура на подаче, 70 градусов – температура в обратке, 20 градусов — температура воздуха в помещении;
  • средний режим – 75/65/20;
  • режим низких температур – 55/45/20.

Таким образом, результат расчета можно скорректировать с учетом рабочего режима системы. Для этого определяют температурный напор внутри системы, то есть разницу между степенью нагрева батарей и воздуха, учитывая, что температура приборов отопления является средним арифметическим между показателями подачи и обратки.

Расчет в зависимости от типа батареи

Расчет в зависимости от типа батареи
Расчет в зависимости от типа батареи

Если планируется установка секционных батарей стандартного типа, то определение их числа не доставит проблем, так как известны все технические параметры таких батарей, включая тепловую мощность. В случае, если вместо мощности производителем указано значение расхода жидкости-теплоносителя, то рассчитать мощность достаточно легко: расход 1 литра теплоносителя в минуту приблизительно равен 1 кВт мощности.


Если же радиаторы отопления пока не выбраны, необходимо учесть, что батареи, имеющие одинаковые габариты, но произведенные из разных материалов, обладают разной тепловой мощностью, при этом, метод расчета секций чугунных батарей отопления аналогичен расчету радиаторов, выполненных из других материалов (алюминия, стали). Различаться может лишь мощность излучения одной секции.

Существуют усредненные значения мощностей, которые можно учитывать при расчете батарей из разных материалов. Так, одна секция батареи с осевым расстоянием 50 см излучает следующее количество тепла:

  • чугунный радиатор – 145 Вт;
  • биметаллический радиатор – 185 Вт;
  • алюминиевый радиатор – 190 Вт.

Однако, в продаже можно найти радиаторы другой высоты (примерно от 20 до 60 см), мощность которых может отличаться от стандарта, поэтому при расчете нестандартных радиаторов отопления понадобится внести коррективы. В частности, следует учесть, что тепловая отдача радиатора зависит от площади его поверхности. Чем меньше высота отопительного радиатора, тем меньше его площадь и, соответственно, ниже мощность теплового излучения. Определив соотношение между высотой прибора отопления и стандартом, можно скорректировать результат расчета с помощью полученного коэффициента.


Зависимость мощности приборов отопления от местоположения и подключения
Помимо остальных параметров, теплоотдача радиаторов отопления варьируется в зависимости от такого фактора, как тип подключения. Так, наиболее оптимальным можно считать диагональное подключение, при котором теплоноситель подается сверху — в данном случае отсутствуют потери тепловой мощности, а наибольшие потери тепловой мощности характерны для бокового подключения и достигают отметки 22%.

При всех остальных типах подключения наблюдаются средние потери.
Реальная мощность радиатора отопления снижается и в случае присутствия каких-либо заграждающих конструкций, к примеру, подоконника (при нависании — 7-8% потерь, при частичном нависании – 3-5% потерь) или сетчатого экрана (20-25%, если экран перекрывает радиатор полностью, и 7-8% потерь, если экран не достигает пола).

Расчет количества отопительных батарей для однотрубных систем

Батареи с однотрубными системами
Батареи с однотрубными системами

Все вышеперечисленное применимо к расчету радиаторов, подключенных к двухтрубной отопительной системе, где на вход каждого прибора подается теплоноситель, имеющий одинаковую степень нагрева. В однотрубной же системе в каждую последующую батарею поступает все более охлажденная вода. В таком случае наиболее оптимальным методом расчета отопительных батарей является определение мощности приборов по той же схеме, что и для двухтрубных систем, а затем добавление секций пропорционально уменьшению тепловой мощности с целью повышения тепловой отдачи радиатора в целом.

Обычно при расчете мощности котла, применяемого для нагрева теплоносителя в однотрубной системе, предусматривают определенный запас, подсоединяют батареи через устройство байпас и устанавливают запорную арматуру для регулирования теплоотдачи и компенсации снижения температуры жидкости-теплоносителя.
В целом, можно сделать вывод, что размеры и число батарей в однотрубных системах необходимо увеличивать, устанавливая все больше секций по мере отдаления от места входа теплоносителя в систему.

Итоги

Ориентировочный  расчет отопительных радиаторов выполняется достаточно быстро и легко, в отличие от расчета батарей с учетом вида подключения, габаритов, специфических характеристик помещения и ряда других факторов. Зато подробный расчет позволяет максимально точно рассчитать нужное число приборов отопления для создания максимально комфортной и уютной атмосферы в помещении в холодное время года.

pechiexpert.ru

Секция (радиатора отопления) — наименьший конструктивный элемент батареи радиатора отопления.

Обычно представляет собой полую литую из чугуна или алюминия двутрубчатую конструкцию, оребрённую для улучшения термопереноса способами излучения и конвекции.

Секции радиатора отопления соединяются между собой в батареи при помощи радиаторных ниппелей, подвод и отвод теплоносителя (пара или горячей воды) производится через ввёрнутые муфты, лишние (неиспользуемые) отверстия заглушаются резьбовыми заглушками в которых иногда вворачивается кран для дренажа воздуха из системы отопления. Окраска собранной батареи производится, как правило, после сборки.

Калькулятор количества секций в радиаторов отопления

Онлайн калькулятор для расчета необходимого количества секций радиатора для отопления заданного помещения с известной теплоотдачей

Формула расчета количества секций радиатора

N = S/t*100*w*h*r

где,

  • N — количество секций радиатора;
  • S — площадь комнаты;
  • t — количество тепла для обогрева комнаты;
  • w — коэффициент окон
    • Обычное остекление — 1.1;
    • Пластик (двойное остекление) — 1;
  • h — коэффициент высоты потолков;
    • до 2.7 метров — 1;
    • от 2.7 до 3.5 метров — 1.1;
  • r — коэффициент размещения комнаты:
    • не угловая — 1;
    • угловая — 1.

Необходимое количество для обогрева комнаты (t) рассчитывается умножением площади комнаты на 100 Вт. То есть для обогрева комнаты 18 м2, необходимо тепла 18*100=1800 Вт или 1.8 кВт

Синонимы: радиатор, отопление, тепло, батарея, sections of the radiator, radiator.

wpcalc.com

Рекомендации по расчету до начала работы

Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:

  • габариты комнаты, для которой выполняется расчет;
  • мощность всей батареи либо же каждой ее секции. Эта информация приводится в технической документации, прилагаемой производителем отопительного агрегата.

Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.

Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.

Стандартный расчет радиаторов отопления

Начнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.

В соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:

K=S/U*100

В этой формуле:

  • K – необходимое количество секций батареи для обогрева рассматриваемого помещения;
  • S – площадь этого помещения;
  • U – мощность одной секции радиатора.

Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.

Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.

Приблизительный расчет для стандартных помещений

Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.

Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.

Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.

Важно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.

Расчет для нестандартных комнат

Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:

A=Bx41,

где:

  • А – нужное число секций отопительной батареи;
  • B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.

Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.

Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.

Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.

Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.

Максимально точный вариант расчета

Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.

Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.

В целом расчетная формула имеет следующий вид:

T=100 Вт/м2 *A *B * C * D * E * F * G * S,

  • где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
  • S – площадь обогреваемой комнаты.

Остальные коэффициенты нуждаются в большее подробном изучении. Так, коэффициент А учитывает особенности остекления помещения.

Значения следующие:

  • 1,27 для комнат, окна которых остеклены просто двумя стеклами;
  • 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
  • 0,85 – если окна имеют тройной стеклопакет.

Коэффициент В учитывает особенности утепления стен помещения.

Зависимость следующая:

  • если утепление низкоэффективное, коэффициент принимается равным 1,27;
  • при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором), используется коэффициент равный 1,0;
  • при высоком уровне утепления – 0,85.

Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.

Зависимость выглядит так:

  • при соотношении равном 50% коэффициент С принимается как 1,2;
  • если соотношение составляет 40%, используют коэффициент равный 1,1;
  • при соотношении равном 30% значение коэффициента уменьшают до 1,0;
  • в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).

Коэффициент D указывает на среднюю температуру в наиболее холодный период года.

Зависимость выглядит так:

  • если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
  • при температуре до -25 градусов используется значение 1,3;
  • если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
  • жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
  • если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.

Коэффициент E указывает на количество внешних стен.

Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.

Коэффициент F учитывает особенности вышерасположенной комнаты. Зависимость такова:

  • если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
  • если чердак отапливаемый – 0,9;
  • если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.

И последний коэффициент формулы – G – учитывает высоту помещения.

Порядок следующий:

  • в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
  • если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
  • при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
  • комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
  • при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.

Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.

Калькулятор расчета радиатора отопления

Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:

Удачных расчетов!

stroyday.ru

Для чего необходим расчет

Прежде всего необходимо определиться, для чего необходим точный расчет количества секций радиаторов отопления. Как правило, он преследует две конкретные цели:

  • экономическая выгода;
  • комфортный уровень температуры в помещении.

Независимо от того, какой энергоноситель применяется для отопления, его излишний расход дает не только чересчур высокую температуру в доме, но и ведет к увеличению расходов. Поэтому правильный подбор и расчет секций радиаторов отопления дает возможность сэкономить на отоплении.

Финансовый вопрос важен, но куда более существенным фактором является гарантия комфортной температуры. Не будет большой бедой повышенная температура в комнатах – можно чаще и больше проветривать, выпуская тепло на улицу. Куда хуже будет в том случае, если количество секций меньше требуемого – низкая температура куда более некомфортна для организма и может привести к хроническим простудным заболеваниям.

Расчет по площади

Количество тепла, необходимое для обогрева помещения, этот способ вычисляет, отталкиваясь от его площади. Для этого необходимо умножить площадь помещения на нормативную величину:

  • для южной климатической зоны с мягкими зимами – 60 Ватт на квадратный метр;
  • для центральных областей с умеренными зимними температурами – 100 Ватт на квадратный метр;
  • для северных районов (выше 60 градусов северной широты) – 150-200 Ватт на метр.

Как видно, чем холоднее зимы в вашей местности, тем большее количество тепла потребуется на его отопление. Для комнаты в 20 квадратных метров в южных районах потребуется 60*20=1200 Ватт тепловой энергии, в центральных – 100*20=2000 Ватт, а в северных – 200*20=4000 Ватт тепла.

Вычислив требуемое количества тепла, можно подсчитать, сколько необходимо секций батареи для установки.

Мощность каждого отопительного прибора указывается в его техническом паспорте.

Если разделить потребное количество тепла на эту паспортную мощность, то получится количество секций, которое необходимо установить в помещении.

Например, пусть мощность одной секции равна 170 Ватт. Тогда для взятой нами комнаты в 20 квадратных метров расчеты будут таковы:

  • для южных районов – 1200/170=7,1;
  • для центральных – 1600/170=9,4;
  • для северных – 2000/170=11,8.

Результаты получились дробными, поэтому их необходимо округлить до ближайшего большего целого значения:

  • для южных районов 8;
  • для центральных 10;
  • для северных 12.

Расчет очень прост, но при внимательном подходе видны его недостатки. Не учитываются множество факторов, значительно влияющих на качество отопления. Поэтому для получения точного результата расчет по площади потребуется уточнить. Об этом поговорим чуть ниже.

Расчет по объему

Подбор радиаторов отопления по площади не единственный упрощенный метод расчета. Расчет по объему учитывает, кроме площади, высоту потолков помещения, ведь чем они выше, тем большее количество тепловой энергии придется потратить на его отопление.

Методика расчетов похожа на предыдущую – узнаем объем помещения и умножаем на нормативный коэффициент:

  • для кирпичного дома – на 34 Ватта;
  • для панельного – на 41 Ватт.

Рассчитаем радиаторы отопления для той же комнаты в 20 квадратных метров и высотой потолка 2,7 метра. Ее объем составляет 20*2,7=54 кубических метра:

  • Кирпичный дом. Тепло, необходимое для отопления, составляет 54*34=1836 Ватт. Если брать тот же радиатор с мощностью секции 170 Ватт, то потребуется 1836/170=10,8 или, округленно, 11 секций.
  • Панельный. Тепло, необходимое для отопления, составляет 54*41=2214 Ватт. Если брать те же секции мощностью 170 Ватт, то их потребуется 2214/170=13 штук.

Разница, как видите, существенная: 11 секций и 13 секций.

Корректировка результата

Чтобы скорректировать проведенный подбор радиаторов отопления по площади или объему, необходимо учесть множество дополнительных факторов, влияющих на отопление дома.

Для точного подсчета количества секций радиаторов, которое потребуются, чтобы обеспечить отопление помещения, необходимо учитывать все его теплопотери:

  • на окна приходится от 15-25% всех потерь;
  • на стены – 20-30%;
  • на вентиляцию – 30-40%;
  • на потолки и крышу – 10-20%;
  • на пол – 5-10%.

Для их учета разработаны коэффициенты, на которые необходимо умножить расчетное количество тепла, полученное в предыдущих методах.

Высота потолков

Чем выше высота потолков, тем больше тепла требуется для обогрева комнаты. Для учета этого фактора используются следующие коэффициенты:

  • 2,5 метра – 1;
  • 3 метра – 1,05;
  • 3,5 метра – 1,1;
  • 4 метра – 1,15.

Окна

Величина потерь через окна складывается из двух факторов:

  • площадь остекления;
  • качество стеклопакета.

Поэтому для расчета используются два коэффициента:

  1. отношение площади остекления к площади пола:
    • 60% – 1,3;
    • 50% – 1,2;
    • 40% – 1,1;
    • 30% – 1,0;
    • 20% – 0,9;
    • 10% – 0,8.
  2. стеклопакеты:
    • деревянные двойные рамы – 1,27;
    • двухкамерный стеклопакет – 1,0;
    • трехкамерный стеклопакет – 0,85;

Стены и крыша

Потери через стены зависят от их материала, толщины, качества утепления и других величин.

Для учета качества теплоизоляции используются следующие коэффициенты:

  • плохая теплоизоляция – 1,27;
  • стены из кирпича в два ряда (норма) – 1,0:
  • хорошая теплоизоляция – 0,8.

Тот факт, граничит ли комната с наружным воздухом, учитывает следующий коэффициент:

  • три наружных стены – 1,3
  • две – 1,2;
  • одна – 1,1;
  • внутреннее помещение без наружных стен – 1,0.

Также на теплопотери влияет, какое помещение находится над рассчитываемым помещением – отапливаемое или нет:

  • неотапливаемый чердак – 1,0;
  • отапливаемый чердак – 0,9;
  • сверху находится жилое отапливаемое помещение – 0,7.

Климатические факторы

Для учета места проживания можно ввести коэффициент, учитывающий температуру самой холодной недели в зимние месяцы:

  • -30 градусов — 1,5;
  • -25 градусов — 1,3;
  • -20 градусов — 1,1;
  • -15 градусов — 0,9;
  • -10 градусов и выше — 0,7.

Учитывая все эти показатели, можно более точно вычислить размер батарей, необходимых для отопления конкретного помещения. Но есть еще ряд тонкостей, которые необходимо учитывать.

Расчет различных типов радиаторов

Производители, как правило, указывают в документах на радиаторы отопления величину их тепловой мощности. Если же таких данных нет, то для упрощения расчетов можно использовать усредненные значения. Так, наиболее часто используемые секции с расстоянием между осями 50 сантиметров имеют следующие мощности:

  • чугунные – 150 Ватт;
  • биметаллические – 185 Ватт;
  • алюминиевые – 190 Ватт.

Если же радиатор имеет другое межосевое расстояние, то эти цифры необходимо скорректировать.

С уменьшением межосевого расстояния радиатора уменьшается и теплоотдача.

Для этого надо вычислить соотношение высот и на эту величину умножить указанное значение теплоотдачи.

Корректировка по типу системы отопления

Паспортная мощность радиаторов указывается из расчета использования его при максимальной температуре теплоносителя: подача 90 градусов, обратка – 70 градусов. При правильном расчете количества секций температура в комнате при этом должна быть около 20 градусов.

Обозначается такой показатель следующим образом — 90/70/20. Но такой режим работы у домашней системы может быть только в самые сильные морозы. Гораздо чаще отопление работает в режиме 70/65/20 или даже 55/45/20. Ясно, что предыдущий результат расчета необходимо скорректировать.

Для корректировки необходимо использовать показатель, называемый температурным напором системы. Он вычисляется как разница между средней арифметической температурой в линиях подачи и обратки и температурой воздуха в комнате.

Результат умножения этого показателя на количество радиаторов должен оставаться постоянным для любого состояния системы.

Посчитаем температурный напор для двух режимов системы:

  • высокотемпературный 90/70/20 – (90+70)/2 – 20=60 градусов;
  • низкотемпературный 55/45/20 – (55+45)/2 – 20=30 градусов.

Видно, что для того, чтобы отопление было одинаковым, во втором случае необходимо вдвое больше секций: 60/30=2.

С помощью этого показателя можно также рассчитать количество секций батарей отопления для поддержания температуры, отличной от 20 градусов. Например, в прихожей достаточно температуры в 12 градусов. Тогда температурный напор в ней будет составлять (90+70)/2-12=68 градусов. Находим отношение 60/68=0,88. То есть, чтобы обеспечить температуру в помещении, площадь которого 20 квадратных метров, в 20 градусов, по нашим расчетам требовалось 11 секций, а для температуры в 12 градусов достаточно 11*0,88=9,68, то есть 10 секций.

Зависимость мощности радиаторов от подключения и места расположения

Теплоотдача радиаторов зависит не только от перечисленных ранее факторов, но и от того, каким способом батареи подключены к системе отопления. Максимальная 100% теплоотдача достигается только при диагональном подключении. При прочих способах она существенно уменьшается:

  • одностороннее с верхней подачей – 97%;
  • двустороннее нижнее подключение – 88%;
  • диагональное с нижней подачей – 80%;
  • одностороннее с нижней подачей – 78%.

Радиатор снижает эффективность своей работы в зависимости и от места расположения:

  • частичное перекрытие батареи подоконником – на 3-5%;
  • полное перекрытие подоконником – на 7-8%;
  • сетчатый экран снижает эффективность на 7-8%;
  • сплошной экран – 20-25%.

domiotoplenie.ru

Цель расчетов

Нормативная документация по отоплению (СНиП 2.04.05-91, СНиП 3.05-01-85), строительной климатологии (СП 131.13330.2012) и тепловой защите зданий (СНиП 23-02-2003) требует от отопительной аппаратуры жилого дома выполнения следующих условий:

  • Обеспечение полной компенсации тепловых потерь жилища в холодное время;
  • Поддержание в помещениях частного жилища или здания общественного назначения номинальных температур, регламентированных санитарными и строительными нормами. В частности, для ванной комнаты требуется обеспечение температуры в пределах 25 градусов Ц, а для жилой – значительно ниже, всего лишь 18 градусов Ц.
Радиатор
Батарея отопления, собранная с излишним количеством секций

С помощью калькулятора  расчета отопительной системы определяется тепловая мощность радиатора для эффективного отопления жилой площади или подсобного помещения в установленном температурном диапазоне, после чего корректируется формат радиатора.

Методика расчета по площади

Алгоритм расчета радиаторов отопления по площади заключается в сопоставления тепловой мощности прибора (указывается производителем в паспорте изделия) и площади помещения, в котором планируется монтаж отопления. При постановке задачи, как рассчитать количество радиаторов отопления, сначала определяется количество тепла, которое нужно получить от отопительных приборов для обогрева жилья в соответствии с санитарными нормативами. Для этого теплотехниками введен так называемый показатель мощности отопления, приходящийся на квадратный или кубический метр в объеме помещения. Его усредненные значения определены для нескольких климатических регионов, в частности:

  • регионы с умеренным климатом (Москва и Моск. область) – от 50 до 100 Вт/кв. м;
  • районы Урала и Сибири – до 150 Вт/кв. м;
  • для районов Севера – необходимо уже от 150 до 200 Вт/кв. м.

Последовательность теплотехнических расчетов отопления частного жилища через площадь обогреваемого помещения следующая:

  1. Определяется расчетная площадь комнаты S, выраженная в кв. метрах;
  2. Полученная величина площади S умножается на показатель мощности отопления, принятый для данного климатического региона. Для упрощения расчетов его часто принимают равным 100 Вт на квадратный метр. В результате перемножения S на 100 Вт/кв. метр получается количество тепла Qпом , потребное для обогрева помещения;
  3. Полученное значение Qпом необходимо разделить на показатель мощности радиатора (теплоотдачу) Qрад .
  1. Определяется потребное количество секций радиатора по формуле:

N= Qпом  / Qрад . Полученный результат округляется в сторону увеличения.

Параметры теплоотдачи радиаторов

На рынке секционных батарей для отопления жилого дома широко представлены изделия из чугуна, стали, алюминия и биметаллические модели. В таблице представлены показатели теплоотдачи наиболее популярных секционных обогревателей.

Значения параметров теплоотдачи современных секционных радиаторов

Модель радиатора, материал изготовления Теплоотдача, Вт
Чугунный М-140 (проверенная десятилетиями «гармошка») 155
Viadrus KALOR 500/70? 110
Viadrus KALOR 500/130? 191
Стальные радиаторы Kermi до 13173
Стальные радиаторы Arbonia до 2805
Биметаллический РИФАР Base 204
РИФАР Alp 171
Алюминиевый Royal Termo Optimal 195
RoyalTermo Evolution 205
Биметаллический RoyalTermo BiLiner 171

Сравнивая табличные показатели чугунных и биметаллических батарей, которые наиболее адаптированы под параметры центрального отопления, нетрудно отметить их тождественность, которая облегчает расчеты при выборе способа обогрева жилого дома.

Радиаторы
Тождественность чугунных и биметаллических батарей при расчете мощности

Уточняющие коэффициенты

Для уточняющей корректировки калькулятора определения числа секций для обогрева комнаты в упрощенную формулу N= Qпом  / Qрад   вводятся поправочные коэффициенты, учитывающие различные факторы, влияющие на теплообмен внутри частного жилища. Тогда значение Qпом  определяется по уточненной формуле:

Qпом   = S*100*К1 * К234* К56 .

В этой формуле поправочные коэффициенты учитывают следующие факторы:

  • К1 – для учета способа остекления окон. Для обычного остекления К1=1,27, для двойного стеклопакета К1=1,0, для тройного К1=0,85;
  • К2 учитывает отклонение высоты потолка от стандартного размера 2,7 метра. Копределяется делением размера высоты на 2,7 м. Например, для комнаты высотой 3 метра коэффициент К2 =З,0/2,7=1,11;
  • К3 корректирует теплоотдачу в зависимости от места установки радиаторных секций.
Схема
Значения поправочного коэффициента К3 в зависимости от схемы установки батареи
  • К4 соотносит расположение наружных стен с интенсивностью теплоотдачи. Если наружная стена всего одна, то К=1,1. Для угловой комнаты уже две наружных стены, соответственно, К=1,2. Для обособленного помещения с четырьмя наружными стенами К=1,4.
  • К5 необходим для корректировки в случае наличия помещения над расчетной комнатой: если имеется сверху холодный чердак, то К=1, для обогреваемого чердака К=0,9 и для отапливаемого помещения сверху К=0,8;
  • К6 вносит коррективы по соотношению площадей окон и пола. Если площадь окон всего лишь 10% от площади пола, то К=0,8. Для окон витражного типа площадью до 40% от площади пола К=1,2.

aqueo.ru

Расчеты учитывая объем помещения.

Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м3. Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м3, то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

Таблица расчетов необходимого теплоснабжения.

Расчет радиаторов отопления

 

Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

 

Как получить максимально точный расчет.

Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.

 

Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

1. где П — общая площадь комнаты, указана в кв.м.;

2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

  • Если окно с двойным стеклопакетом — 1,0;
  • Если окно с тройным стеклопакетом — 0,85.

 

3. К2 — коэффициент теплоизоляции стен:

  • Очень низкая степень теплоизоляции — 1,27;
  • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
  • Высокая степень теплоизоляции — 0,85.

 

4. К3 — соотношение площади окон и пола в комнате:

  • 50% — 1,2;
  • 40% — 1,1;
  • 30% — 1,0;
  • 20% — 0,9;
  • 10% — 0,8.

 

5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

  • Для -35 градусов — 1,5;
  • Для -25 градусов — 1,3;
  • Для -20 градусов — 1,1;
  • Для -15 градусов — 0,9;
  • Для -10 градусов — 0,7.

 

6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

  • 1 стена— 1,1;
  • 2 стены— 1,2;
  • 3 стены— 1,3;
  • 4 стены— 1,4.

 

7. К6 — учитывает тип помещения, которое находится выше:

  • Очень холодный чердак — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8

 

8. К7 — коэффициент, который учитывает высоту потолков:

  • 2,5 м — 1,0;
  • 3,0 м — 1,05;
  • 3,5 м — 1,1;
  • 4,0 м — 1,15;
  • 4,5 м — 1,2.

 

Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

www.calc.ru

Тепловая мощность радиаторов отопления

Расчет радиаторов отопления частного дома начинается с выбора самих устройств. В ассортименте для потребителей представлены чугунные, стальные, алюминиевые и биметаллические модели, отличающиеся по своей тепловой мощности (теплоотдаче). Какие-то из них греют лучше, а какие-то хуже – тут следует ориентироваться на количество секций и на размеры батарей. Давайте посмотрим, какой тепловой мощностью обладают те или иные конструкции.

Расчет по площади

Как осуществляется расчет батареи отопления на квадратный метр обогреваемой площади? Для начала нужно ознакомиться с базовыми параметрами, учитываемыми в вычислениях, которые включают в себя:

  • тепловую мощность для обогрева 1 кв. м – 100 Вт;
  • стандартную высоту потолков – 2,7 м;
  • одну внешнюю стену.

Исходя из таких данных, тепловая мощность, необходимая для обогрева помещения площадью 10 кв. м, составляет 1000 Вт. Полученная мощность делится на теплоотдачу одной секции – в результате получаем необходимое количество секций (или подбираем подходящий стальной панельный или трубчатый радиатор).

Простой расчет

Расчет количества секций батарей отопления с помощью калькулятора дает неплохие результаты. Приведем простейший пример для обогрева помещения площадью 10 кв. м — если помещение не угловое и в нем установлены двойные стеклопакеты, требуемая тепловая мощность составит 1000 Вт. Если мы хотим установить алюминиевые батареи с теплоотдачей 180 Вт, нам понадобятся 6 секций – просто делим полученную мощность на теплоотдачу одной секции.

Соответственно, если вы купите радиаторы с теплоотдачей одной секции 200 Вт, то количество секций составит 5 шт. В помещении будут высокие потолки до 3,5 м? Тогда количество секций возрастет до 6 шт. В комнате две внешние стены (угловая комната)? В этом случае нужно добавить еще одну секцию.

Узнать информацию о теплоотдаче батарей можно из их паспортных данных. Например, расчет количества секций алюминиевых радиаторов отопления ведется из расчета теплоотдачи одной секции. То же самое относится к биметаллическим радиаторам (и чугунным, хоть они и неразборные). При использовании стальных радиаторов берется паспортная мощность всего прибора (мы приводили примеры выше).

Очень точный расчет

Выше мы привели в пример очень простой расчет количества батарей отопления на площадь. Он не учитывает многие факторы, такие как качество теплоизоляции стен, вид остекления, минимальная наружная температура и многие другие. Пользуясь упрощенными вычислениями, мы можем наделать ошибок, в результате чего некоторые комнаты получатся холодными, а некоторые – слишком жаркими. Температура поддается коррекции с помощью запорных кранов, но лучше всего предусмотреть все заранее – хотя бы ради экономии материалов.

Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты. Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85.

Стены в доме выложены в два кирпича или в их конструкции предусмотрен утеплитель? Тогда применяем коэффициент 1,0. Если обеспечить дополнительную теплоизоляцию, можно смело использовать понижающий коэффициент 0,85 – расходы на обогрев уменьшатся. Если теплоизоляции нет, применяем повышающий коэффициент 1,27.

Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон. В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9.

Высота потолков – не менее важный параметр. Применяем здесь следующие коэффициенты:

  • до 2,7 м – 1,0;
  • от 2,7 до 3,5 м – 1,1;
  • от 3,5 до 4,5 м – 1,2.

За потолком находится чердак или еще одна жилая комната? И здесь мы применяем дополнительные коэффициенты. Если наверху отапливаемый чердак (или с утеплением), умножаем мощность на 0,9, а если жилое помещение – на 0,8. За потолком обычный неотапливаемый чердак? Применяем коэффициент 1,0 (или просто не берем его в расчет).

После потолков примемся за стены – вот коэффициенты:

  • одна наружная стена — 1,1;
  • две наружные стены (угловая комната) – 1,2;
  • три наружные стены (последняя комната в вытянутом доме, хате) – 1,3;
  • четыре наружные стены (однокомнатный домик, хозпостройка) – 1,4.

Также в расчет берется средняя температура воздуха в самый холодный зимний период (тот самый региональный коэффициент):

  • холода до –35 °C – 1,5 (очень большой запас, позволяющий не замерзнуть);
  • морозы до –25 °C – 1,3 (подходит для Сибири);
  • температура до –20 °C – 1,1 (средняя полоса России);
  • температура до –15 °C – 0,9;
  • температура до –10 °C – 0,7.

Последние два коэффициента используются в жарких южных регионах. Но даже тут принято оставлять солидный запас на случай холодов или специально для теплолюбивых людей.

Получив итоговую тепловую мощность, необходимую для обогрева выбранного помещения, следует разделить ее на теплоотдачу одной секции. В результате мы получим требуемое количество секций и сможем отправиться в магазин. Обратите внимание, что данные расчеты предусматривают базовую мощность обогрева в размере 100 Вт на 1 кв. м.

remont-system.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.