Теплоотдача радиаторов


Теплоотдача батарей отопления: что это такое, её расчет по паспорту изделий

Количество тепла, которое передано в единицу времени определенному объему в единицу времени является теплоотдачей батареи отопления. Теплоотдачу иногда называют тепловой мощностью, потому что измеряется она в Ваттах.

Иногда теплоотдачу называют мощностью теплового потока, и поэтому можно встретить в паспорте на изделие единицу измерения теплоотдачи кал/час. Между Ваттами и калориями в час существует зависимость 1 Вт = 859, 85 кал/час.

В паспорте на радиатор производителем указывается номинальный параметр теплоотдачи. Исходя из этого параметра, можно рассчитать необходимое количество элементов для каждой индивидуальной комнаты или помещения. Если в паспорте указана мощность одной секции 150 Вт, то секция из 7 элементов будет отдавать более 1 кВт тепла.


Расчет реальной теплоотдачи в кВт

Для этого надо определиться с количеством наружных стен, окон. При одной наружной стене и одном окне на каждые 10 м² площади помещения потребуется 1 кВт тепла.

Если количество наружных стен две, то на каждые 10 м² потребуется 1,3 кВт тепловой энергии.

Точнее можно рассчитать необходимую мощность по формуле Sxhx41:

  • S — площадь комнаты;
  • h — высота помещения;
  • 41 — показатель минимальной мощности на 1 куб.м объема помещения.

Полученная тепловая мощность и будет являть собой необходимую полную мощность батареи отопления. Теперь остается только поделить на мощность одного радиатора и определить их количество.

Формулы для точного подсчета

КТ=1000 Вт/м²*П*К1*К2*К4…*К7.

Показатель КТ — количество тепла для индивидуального помещения.

П — Общая площадь помещения.

К1 — коэффициент учета оконных проемов. Если двойное окно, то К1 = 1,27.

  • Двойной стеклопакет — 1,0,
  • Тройной стеклопакет — 0,85.

К2 — коэффициент теплоизоляции стен:

  • Теплоизоляция очень низкая — 1,27;
  • Кладка стен в 2 кирпича и утеплитель — 1,0;
  • Высококачественная теплоизоляция — 0,85.

К3 — соотношение площади окон и пола в комнате:

  • 50%1,2;
  • 40%1,1;
  • 30% 1,0;
  • 20%0,9;
  • 10%0,8.

К4 — средняя температура воздуха в комнате в самый холодный период:

  • 35 °С1,5;
  • 25 °С 1,3;
  • 20 °С 1,1;
  • 15 °С0,9;
  • 10 °С0,7.

К5 — учет наружных стен:

  • 1 стена — 1,1;
  • 2 стены — 1,2;
  • 3 стены — 1,3;
  • 4 стены — 1,4.

К6 — тип помещения над комнатой:

  • Холодный чердак (неутепленный) — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8.

К7 — учет высоты потолков:

  • 2,5 м — 1,0;
  • 3,0 м — 1,05;
  • 3,5 м — 1,1;
  • 4,0 м — 1,15;
  • 4,5 м — 1,2.

При таком расчете учитывается максимальное количество особенностей помещения под отопление.

Расчет теплоотдачи по таблице

Многих потребителей мало интересует процесс расчета теплоотдачи, в большей степени для них важна эффективность. Об эффективности можно говорить, когда учитываются все параметры. Многие фирмы производители сводят показатели в таблицы, по которым проще подобрать батареи необходимой эффективности.

Фото 5

Фото 1. Пример таблицы для расчета теплоотдачи радиаторов таких марок, как DeLonghi, Kermi, Korado.


Пример работы

Из таблицы выбираем интересующую фирму производителя. Например, Kermi (Германия). В первой колонке выбираем тип радиатора. Допустим, это радиатор типа 22. Его размеры 400х100х300. Мощность изделия 510 Вт.

Если в нашем помещении расчетная необходимость требует батарею общей мощностью 2000 Вт, то таких батарей потребуется установить 2000/510 = 4 шт. Исходя из указанной цены, общая стоимость будет в пределах 12 тыс. руб.

Сначала необходимо уточнить — найдется ли место для установки такого количества батарей отопления. Если физического места для установки нет, то надо выполнить выбор из других типов рбатарей.

Фото 6

Фото 2. Пример таблицы мощности для радиаторов от производителя Kermi. Указано несколько моделей отопительных приборов.

Выбираем тип 22. Высота 600 мм, длина 1000 мм. В месте пересечения находим мощность батареи — 2249 Вт. Это означает, что одного элемента вполне достаточно, чтобы отопить нашу комнату с расчетной необходимостью в 2 кВт.

Когда у радиаторов тепловая мощность самая высокая, какие изделия лучше


Что касается отличий по размеру, то они очевидны — чем больше поверхность отдачи тепла, тем батарея будет более эффективна.

Биметаллические

Они состоят из двух металлов. Каналы циркуляции воды изготовлены из стали, а внешний контур из алюминия, что придает биметаллическим радиаторам свойства алюминиевых. Они имеют высокую теплоотдачу — быстро нагреваются и быстро отдают тепловую энергию. Рабочее давление в системе до 35 атм. Такие батареи могут эксплуатироваться до 20 лет.

Фото 7

Фото 3. Биметаллический радиатор, подключенный к системе отопления. Изделие белого цвета.

Алюминиевые

Радиаторы из алюминия имеют более высокую теплоотдачу и дешевле стальных собратьев. Основная проблема — высокая требовательность к чистоте теплоносителя. Щелочная среда быстро разрушает их, рН теплоносителя не должна превышать 7,5. Это условие невыполнимо в условиях централизованного отопления.

Стальные панельные

Батареи стальные панельные могут быть различной конструкции, что и определяет отдачу тепла. Стальные быстро нагреваются и быстро остывают. Имеют более высокую теплоотдачу, чем чугун, но подвержены коррозии.


Фото 8

Фото 4. Стальной отопительный радиатор панельного типа. Подобные изделия подвержены коррозии.

Чугунные

Радиаторы из чугуна имеют низкую теплоотдачу. Но есть и положительные качества. Радиатор из чугуна имеет низкую инерционность: долго нагревается и долго остывает. К тому же в него входит большое количество теплоносителя, что позволяет обеспечивать отдачу тепла продолжительное время. Чугун не реагирует на химические включения, не поддается коррозии, но тяжел, громоздок и хрупок.

Сравнение характеристик по другим параметрам

Большое значение имеют конструкционные особенности радиаторов.

Из таблицы видно, что чугунная секция имеет почти такие же параметры теплоотдачи, как и алюминиевая. Это зависит от конструкции и от развитости теплопередающей поверхности.

Особенности подключения радиаторов

Подключение батарей в систему отопления имеет большое значение только при естественной циркуляции.

В этом случае принцип заключается в том, чтобы все радиаторы были полностью заполнены носителем тепла и не образовывали встречных токов. Но при использовании принудительной циркуляции этот фактор не имеет значения.

Полезное видео

Посмотрите видео, в котором представлен один из вариантов расчета теплоотдачи батарей отопления.

Зависимость экономии от применяемых батарей


Большая группа людей стремится поставить в квартире радиаторы отопления с высокой эстетической внешностью. Но это не совсем оправдано. Конечно, чугунные батареи не имеют такого внешнего вида, как биметаллические. Но если они используются в индивидуальной системе отопления, то выигрыш будет заметен сразу. Они долго нагреваются, и котлу потребуется больше времени для нагрева теплоносителя.

Фото 10

Фото 5. Отопительный радиатор, изготовленный из чугуна. Изделие имеет изысканный дизайн, оно хорошо вписывается в интерьер.

Но котел будет включаться реже. Больше расходуется топлива в момент старта. Если поставить биметалл, который быстро нагревается, но быстро остывает, то котел будет включаться каждые пять минут. И каждые пять минут он будет терять определенную часть газа в стартовом режиме. Лучше медленно запрягать, но долго ехать.

Источник: ogon.guru

Зависимость теплоотдачи от различных факторов

Теплоотдача или тепловая мощность отражает количество тепла, которое передается отопительным прибором в единицу времени. Она влияет на микроклимат в помещении и обеспечивает создание комфортных условий.

Первичные факторы

Величина тепловой мощности одной секции батареи указывается в технической документации, прилагаемой производителями оборудования для водяной системы отопления. Она зависит от следующих факторов:


  • Материала изготовления. Каждый металл имеет определенный коэффициент теплопроводности, влияющий на теплоотдачу. Самыми высокими показателями отличаются медь и серебро, но их не используют для производства батарей из-за значительной стоимости.
  • Температуры теплоносителя, циркулирующего в сети обогрева. Чем она выше, тем больше тепла отдает прибор отопления.
  • Площади теплообмена. Ее величина определяется особенностями конструкции радиаторов, количеством секций и габаритными размерами.

Чтобы повысить эффективность функционирования сети обогрева, можно остановить свой выбор на радиаторах из металла, который имеет более высокую теплопроводность. Среди материалов, используемых для массового производства батарей, таким является алюминий. Еще один способ ускорить нагрев воздуха в помещениях до комфортных показателей — увеличить температуру теплоносителя. Его можно использовать в автономных сетях частных домов, учитывая при этом технические характеристики радиаторов и условия эксплуатации.

Подбирая изделия по площади теплообмена, следует отдавать предпочтение моделям с большим межосевым расстоянием и с ребристой поверхностью, которая значительно повышает эффективность обогрева.

Вторичные факторы

На уровень тепловой мощности приборов отопления и скорость нагрева помещений влияют и другие факторы, среди которых:

  • месторасположение;
  • способ подключения;
  • цветовое решение и вид покрытия батарей;
  • климатическая зона.

Поскольку на окна может приходиться до 26% от общих потерь тепла, то самый оптимальный вариант размещения радиаторов — под ними. Такое расположение отопительных приборов способствует созданию тепловой завесы и позволяет уменьшить утечку тепла из помещения. Использование декоративных экранов, закрывающих батареи, снижает их эффективность на 5-7% при наличии снизу пространства для доступа воздуха, и на 20% — при его отсутствии.

В целом общая тепловая мощность приборов отопления, установленных в помещении, должна быть больше потерь тепла примерно на 10-20%. В этом случае обеспечивается поддержание в комнатах комфортной температуры без лишних затрат.

Способ подключения радиаторов определяется их типом. Наиболее эффективными считаются модели с боковым односторонним и диагональным подключением. Первый вариант востребован, если количество секций не превышает 12, а второй целесообразно использовать при подсоединении более габаритных батарей. Изменение способа подключения, как и повышение температуры теплоносителя или увеличение габаритных размеров помогает повысить уровень теплоотдачи. Прежде чем воспользоваться одним из этих методов, следует произвести перерасчет мощности.

Эффективность обогрева системы также зависит от наличия пыли на поверхности, циркуляции воздуха в помещении и способа отделки стены. Чем больше отражающие свойства поверхности, тем лучше теплоотдача.

Сравнение теплоотдачи


При выборе радиаторов по материалу изготовления недостаточно оценивать их возможности по величине теплоотдачи. Сравнение приборов нужно проводить, учитывая особенности отопительной сети и ее основные технические параметры.

Стальные

У стальных батарей наименьший показатель тепловой мощности среди аналогичных изделий из других металлов. Это обусловлено низким коэффициентом теплопроводности, которым отличается конструкционная сталь. Кроме того, панельные приборы отопления имеют небольшую площадь теплообмена, которую нельзя увеличить путем добавления секций. Такой вариант изменения габаритных размеров можно использовать только для секционных моделей из стали. Для них также характерно следующее:

  • чувствительность к составу теплоносителя и склонность к заиливанию при использовании загрязненной воды;
  • низкая стойкость к гидравлическим ударам;
  • образование коррозии при сливе рабочей среды.

Стальные приборы отопления целесообразно применять при обустройстве автономной сети отопления.

Чугунные

Коэффициент теплопроводности чугуна составляет 50-56 Вт/(м*К), поэтому приборы из этого металла отличаются большей эффективностью обогрева, чем стальные аналоги. Затрудняет передачу тепла и повышенная толщина стенок. Мощность моделей старого образца составляла 60-80 Вт, а у новых изделий она варьируется в пределах 140-160 Вт. Передача тепла в основном осуществляется путем излучения, а на конвекцию приходится не более 20%. Чугунные модели отличаются большим весом и хрупкостью, которая приводит к разрушению изделий под воздействием гидравлических ударов. Они медленно нагреваются и также остывают. Радиаторы из чугуна не чувствительны к качеству теплоносителя, способны выдерживать до 9 атм и востребованы в автономных системах отопления частных домов и загородных коттеджей.

Алюминиевые

Самая лучшая теплопроводность у алюминия: она составляет 230 Вт/(м*К). Поэтому по теплоотдаче алюминиевые батареи превосходят аналогичные свойства приборов отопления, выпускаемых из других материалов. Максимальная эффективность обогрева достигается благодаря особым свойствам металла и значительной полезной площади, увеличенной за счет оребрения поверхности. Передача тепла осуществляется путем конвекции и излучения.

Выбирая алюминиевые приборы отопления, нужно учитывать следующие недостатки изделий:

  • склонность к появлению коррозии из-за электрохимических процессов, причиной которых является низкое качество теплоносителя;
  • неспособность выдерживать гидравлические удары и рабочее давление выше 9 атм.

Их используют при прокладке автономных сетей для малоэтажных домов. Батареи из алюминия отличаются малым весом и предоставляют возможность подобрать модель с нужным количеством секций.

Биметаллические

Биметаллические приборы отопления представляют собой конструкцию, для изготовления которой служат два металла. В результате получают изделия, которые почти не уступают по уровню теплоотдачи аналогам из алюминия. Причина снижения эффективности заключается в особой конструкции. Сердечник производят из конструкционной стали, поэтому он отличается сравнительно небольшой теплопроводностью. Однако стальной элемент быстро нагревает алюминиевые панели, что обеспечивает интенсивное распространение тепла и высокую теплоотдачу. К другим преимуществам биметаллических радиаторов относятся:

  • устойчивость к появлению ржавчины и низкая чувствительность к качеству теплоносителя;
  • высокое рабочее давление, достигающее не менее 20-35 атм;
  • способность сохранять свои параметры при возникновении гидравлических ударов в сети;
  • простая форма, благодаря которой значительно упрощаются уход и обслуживание.

Биметаллические изделия можно устанавливать в автономных системах частных домов, но наиболее эффективно их использование в центральных сетях многоквартирных зданий. Сравнение радиаторов на примере продукции Lammin представлено в таблице.

Сравнение приборов отопления с межосевым расстоянием 350 мм

Вид батарей

Теплоотдача секции, Вт

Максимально допустимая температура, °C

Биметаллические Eco

110

110

Алюминиевые Eco

115

110

Биметаллические Premium

130

110

Алюминиевые Premium

135

110

Подбор радиаторов по тепловой мощности

После сравнения теплопередачи разных типов батарей и оценки условий эксплуатации изделий подбирают оптимальный вариант. Однако в техническом паспорте приборов отопления этот параметр указывается по отношению к одной секции или к их общему количеству. Чтобы выбрать радиатор, который оптимально подойдет для помещения по габаритным размерам, нужно провести предварительный расчет. Для этого нужно воспользоваться формулой, позволяющей определить нужное количество секций с учетом обогреваемой площади помещения и величины теплоотдачи одной секции.

Особенности радиаторов Lammin

Приборы отопления, выпускаемые компанией Lammin, представлены алюминиевыми и биметаллическими моделями двух серий — Eco и Premium. Для них характерен высокий показатель тепловой мощности, который достигается:

  • в изделиях из алюминия благодаря использованию уникального сплава, содержащего помимо основного металла добавки в виде цинка, железа и кремния;
  • в биметаллических моделях за счет особой конструкции, состоящей из стальных труб и алюминиевого корпуса с высоким коэффициентом теплопроводности.

Среди других преимуществ радиаторов Lammin можно выделить надежную защиту внутренней поверхности в виде прочного и гладкого слоя, препятствующего оседанию частиц. Их окрашивают методом двухступенчатой окраски, что позволяет сохранить привлекательный вид на протяжении длительного времени.

Показатели теплоотдачи и другие характеристики радиаторов Lammin с разным межосевым расстоянием приведены в таблице.

Тип батарей

Межосевое расстояние, мм

Показатель теплоотдачи 1 секции, Вт

Рабочая температура,

°C

Биметаллические Premium

350

130

110

Биметаллические Premium

500

153

110

Алюминиевые Premium

350

135

110

Алюминиевые Premium

500

165

110

Биметаллические Eco

350

110

110

Биметаллические Eco

500

139

110

Алюминиевые Eco

200

115

110

Алюминиевые Eco

350

115

110

Алюминиевые Eco

500

133

110

Источник: lammin.org

Лучшие батареи по теплоотдаче

Благодаря всем проведённым вычислениям и сравнениям можно смело заявить о том, что самыми лучшими в теплоотдаче всё-таки являются биметаллические радиаторы. Но они весьма дорогостоящие, что является большим минусом для биметаллических батарей. Далее, после них идут батареи из алюминия. Ну и последними в показателях теплоотдачи являются чугунные обогреватели, которые стоит использовать в определённых условиях установки. Если же всё-таки определить более оптимальный вариант, который будет не совсем дешёвым, но и не совсем дорогим, а также весьма эффективным, то алюминиевые батареи будут отличным решением. Но опять же, стоит всегда учитывать то, где их можно использовать, а где нельзя. Также, самым дешёвым, зато проверенным вариантом остаются чугунные батареи, которые могут служить много лет, без проблем, обеспечивая дома теплом, пусть даже и не в таком количестве, как это могут сделать другие виды.

Стальные приборы можно отнести к батареям конвекторного типа. И по теплоотдаче они будут гораздо быстрее, чем все выше перечисленные приборы.

«Расчет с учетом» особенностей комнаты

Это самый сложный метод, но он даст практически точные цифры благодаря большому количеству различных коэффициентов. Они относятся не к системе отопления, а только к особенностям помещения, к способам установки батарей. Формулу используют ту же:

Теплоотдача радиаторов

Для получения требуемой теплоотдачи, которую потом придется делить на тепловую мощность одной секции, метраж (не объем!) комнаты сначала умножают на среднюю норму мощности для 1 м2. Она не зависит от региона и составляет 100 Вт. Затем результат по очереди перемножают с коэффициентами А, В, С, D, Е, F, G, H, I и J.

«А» — число внешних стен комнаты

В большей степени, именно от их количества сильно зависят теплопотери:

  • внешняя стена — лишь одна: 1,0;
  • две внешние стены — 1,2;
  • внешних стен — три: 1,3;
  • четыре стены — 1,4.

«B» — ориентация помещения

Минимум тепла сохраняется в комнатах, смотрящих окнами туда, где всегда мало солнечного света: на север или восток, где солнечные лучи «отмечаются» только по утрам:

  • окна выходят на восток либо на север — 1,1;
  • комната расположена на западной или на южной стороне — 1,0.

«С» — степень утепления

Теплоотдача радиаторов

Качественная теплоизоляция дает шанс максимально сохранить тепло в помещении:

  • кладка в 2 кирпича или утепленные наружные стены — 1,0;
  • нет утепления снаружи — 1,27;
  • очень высокий уровень утепления (если были проведены теплотехнические расчеты) — 0,85.

«D» — климат в регионе

Эти условия учитывает и СНиП, без их учета невозможно ни одно капитальное строительство. Тут используют средние показатели температуры декабря, его самой холодной декады. Эти данные необходимо узнать в гидрометеорологической службе города (района):

  • до -10° — 0,7;
  • до -15° — 0,9;
  • не ниже -20° — 1,1;
  • от -25° до -35° — 1,3;
  • от -35° или ниже — 1,5.

«Е» — высота потолков

Как уже было отмечено, и нормы СНиП (от 60 до 200 Вт на 1 м2), и среднее значение (100 Вт), использующееся в этом случае, подразумевают стандартную высоту потолков — 2700 мм. Если они не «дотягивают» до этой цифры, то выбирают коэффициент 1,0. Когда высота ее превосходит, то для умножения берут другой:

  • 1,05, если высота находится в пределах 2800-3000 мм;
  • 1,1 для 3100-3500 мм;
  • 1,15 для 3600-4000 мм;
  • 1,2, если высота потолка более 4100 мм.

«F» — помещение, находящееся выше

Теплоотдача радиаторов

Так как через потолок помещения с большей охотой уходит поднимающийся вверх теплый воздух, в этом случае большое значение имеет верхний этаж. Эти коэффициенты выглядят так:

  • сверху чердак или другое неотапливаемое помещение — 1,0;
  • утепленный чердак и кровля — 0,9;
  • отапливаемая комната — 0,8.

«G» — качество оконных конструкций

Разные пластиковые окна имеют неодинаковые характеристики. Особняком стоят обычные оконные конструкции, сильно повышающие коэффициент:

  • деревянные рамы старого образца с двойным остеклением — 1,27;
  • однокамерный стеклопакет с двумя стеклами — 1,0;
  • двойной стеклопакет либо однокамерный, но имеющий аргановое покрытие, — 0,85.

«H» — площадь остекления комнаты

Независимо от качества оконных конструкций большее количество теплопотерь происходит из-за впечатляющей площади окон. Этот коэффициент зависит от соотношения площади оконных проемов и общего метража помещения:

  • менее 0,1 — 0,8;
  • от 0,11 до 0,2 — 0,9;
  • 0,31-0,4 — 1,1;
  • от 0,41 до 0,5 — 1,2.

«I» — схема подключения радиаторов

Эффективность отопления зависит от того, каким образом батареи подключают к трубам — как к подающим, так и к обратным. Самый лучший вариант — диагональное подключение: первая сверху, вторая снизу. Он (на рисунке обозначен буквой А) соответствует коэффициенту 1,0.

Теплоотдача радиаторов

  • Б — 1,03;
  • В — 1,13;
  • Г — 1,25;
  • Д, Е — 1,28.

«J» — степень открытости батарей

Любая искусственная (либо имеющаяся) преграда может немного повлиять на теплообмен. В этом случае коэффициента 1,0 «заслуживает» радиатор, расположенный под подоконником. Другие отопительные приборы с «препятствием»:

  • находящиеся на стене безо всяких «ограничителей» — 0,9;
  • прикрытые сверху выступом ниши — 1,07;
  • имеющие ограждения из подоконника и из декоративного кожуха, но только с фронтальной стороны — 1,12;
  • батареи, полностью закрытые декоративным элементом, — 1,2.

Все коэффициенты сначала записывают на бумагу, затем, умножив метраж на среднюю норму (100 Вт), начинают по порядку умножать на коэффициенты. Получившийся результат делят на теплоотдачу 1 секции (для понравившейся модели), получая необходимое количество секций. Если такие вычисления не вдохновляют на «подвиги», то можно воспользоваться онлайн-калькуляторами. Однако эта работа только кажется трудной, на деле ничего сложного нет.

Также, вы можете воспользоваться нашим онлайн калькулятором для расчета отопления.

Какой способ выбрать, зависит лишь от силы желания хозяев основательно разобраться в вопросе. Подробную информацию можно почерпнуть из этого видео:

Зависимость экономии от применяемых батарей

Большая группа людей стремится поставить в квартире радиаторы отопления с высокой эстетической внешностью. Но это не совсем оправдано. Конечно, чугунные батареи не имеют такого внешнего вида, как биметаллические. Но если они используются в индивидуальной системе отопления, то выигрыш будет заметен сразу. Они долго нагреваются, и котлу потребуется больше времени для нагрева теплоносителя.

Фото 5. Отопительный радиатор, изготовленный из чугуна. Изделие имеет изысканный дизайн, оно хорошо вписывается в интерьер.

Но котел будет включаться реже. Больше расходуется топлива в момент старта. Если поставить биметалл, который быстро нагревается, но быстро остывает, то котел будет включаться каждые пять минут. И каждые пять минут он будет терять определенную часть газа в стартовом режиме. Лучше медленно запрягать, но долго ехать.

Обзор моделей и производителей

Рейтинг алюминиевых радиаторов отопления и обзор производителей поможет вам подобрать оптимальный вариант для загородного дома или квартиры с автономным отоплением:

  1. Итальянский производитель Faral выпускает изделия двух типов с расстоянием между осями 30 и 50 см. Глубина приборов составляет 8,5-9 см. Минимальное число секций – 3, максимальное – 16. Для соединения отдельных секций используются стальные ниппели. Герметичность соединений обеспечивается специальными прокладками. Популярные модели производителя:

    • GREEN HP 350 и 500 – предельное давление не выше 16 бар, вес 1,12-1,48 кг, мощность 136-180 Вт, вместительность 0,26-0,33 л;
    • TRIO HP 350 и 500 – максимальное давление не более 16 бар, вес 1,23-1,58 кг, мощность 151-212 Вт, вместительность 0,4-0,5 л.
  1. Итальянская фирма Radiatori 2000 для изготовления своей продукции использует современные технологии, поэтому изделия фирмы отличаются хорошей теплопередачей и устойчивостью к коррозии. Краска на поверхность наносится методом анафореза и фиксируется эпоксидно-полиэфирным напылением. Лучшие изделия этой фирмы:

    • Radiatori 350R – рабочее давление находится в пределах 16 бар, вес 1,4 кг, мощность 144 Вт, вместительность 0,43 л;
    • Radiatori 500R – рабочее давление не выше 16 бар, вес 1,6 кг, мощность 199 Вт, вместительность 0,58 л.

  1. Итальянская компания Fondital выпускает продукцию, специально разработанную для России и стран СНГ. В процессе производства соблюдаются российские ГОСТы и европейские стандарты. Радиаторы изготавливают методом литья под высоким давлением. Для производства используют алюминиевый сплав. Популярные изделия производителя:

    • Calidor модель Super 350 на 100 – предельное давление в районе 16 бар, вес 1,3 кг, мощность 144 Вт, вместительность 0,24 л;
    • Calidor модель Super 500 на 100 – максимальное давление не более 16 бар, вес 1,32 кг, мощность 193 Вт, вместительность 0,3 л.
  1. Продукция отечественного завода Rifar адаптирована под наши отопительные системы и соответствует всем стандартам ГОСТ. От импортных аналогов радиаторы отличаются большим рабочим давлением, которое доходит до 20 бар. Популярные модели:

    • Alum 350 – максимальное давление не выше 20 бар, вес 1,2 кг, мощность 139 Вт, вместительность 0,19 л.
    • Alum 500 – предельное давление составляет 20 бар, вес 1,45 кг, мощность 183 Вт, вместительность 0,27 л.

Подбор подходящего алюминиевого радиатора выполняется с учетом его технических характеристик. Отечественные модели ничем не уступают в качестве и производительности импортным аналогам, но имеют более приемлемую стоимость.

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

 V=15×3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Нормы теплоотдачи для отопления помещения

Теплоотдача радиаторов

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • обычные (в том числе и деревянные) двойные окна – 1,17;

  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Характеристики и особенности

Секрет популярности их прост: в нашей стране такой теплоноситель в сетях централизованного отопления, что даже металлы растворяет или стирает. В нем кроме огромного количества растворенных химических элементов содержится песок, частички ржавчины, отвалившиеся с труб и радиаторов, «слезы» от сварки, болты, забытые во время ремонта и еще уйма всяких вещей, неизвестно как попавших внутрь. Единственный сплав, которому все это нипочем — чугун. Также хорошо справляется с этим и нержавейка, но, сколько будет стоить такая батарея, можно только догадываться.

Теплоотдача радиаторов

МС-140 — неумирающая классика

А еще один секрет популярности МС-140 — это невысокая цена. У разных производителей она имеет существенные отличия, но примерная стоимость одной секции — около 5$ (в розницу).

Достоинства и недостатки чугунных радиаторов

Понятно, что товар, который многие десятилетия не сходит с рынка, имеет какие-то уникальные свойства. К достоинствам чугунных батарей относят:

  • Низкую химическую активность, которая обеспечивает длительный срок эксплуатации в наших сетях. Официально гарантийный срок от 10 до 30 лет, а срок эксплуатации — 50 лет и больше.
  • Малое гидравлическое сопротивление. Только радиаторы этого типа могут стоять в системах с естественной циркуляцией (в некоторых еще ставят алюминиевые и стальные трубчатые).
  • Высокая температура рабочей среды. Ни один другой радиатор не сможет выдержать температуры выше +130 o C. У большинства из них высший предел — +110 o C.
  • Невысокая цена.
  • Высокая теплоотдача. У всех остальных радиаторов из чугуна эта характеристика находится в разделе «недостатки». Только у МС-140 и МС-90 тепловая мощность одной секции сравнима с алюминиевыми и биметаллическими. Для МС-140 теплоотдача — 160-185 Вт (зависит от производителя), для МС 90 — 130 Вт.
  • Не подвергаются коррозии при слитом теплоносителе.

Теплоотдача радиаторов

МС-140 и МС-90 — разница в глубине секции

Некоторые свойства при одних обстоятельствах — это плюс, при других — минус:

  • Большая тепловая инерция. Пока прогреется секция МС-140, пройти может час и больше. И все это время комната не греется. Но с другой стороны, это хорошо, если отопление отключают, или в системе использован обычный твердотопливный котел: накопленное стенками и водой тепло долго поддерживает температуру в помещении.
  • Большое сечение каналов и коллекторов. С одной стороны даже плохой и грязный теплоноситель не сможет их забить и за несколько лет. Потому чистка и промывка может проводиться периодически. Но из-за большого сечения в одной секции «помещается» больше литра теплоносителя. И его нужно «гонять» по системе и нагревать, а это — лишние затраты на оборудование (более мощный насос и котел) и топливо.

«Чистые» недостатки тоже присутствуют:

Большой вес. Масса одной секции с межосевым расстоянием 500 мм от 6 кг до 7,12 кг. А так как нужны обычно от 6 до 14 штук на комнату, можно посчитать какова будет масса. И это придется носить, а еще навешивать на стену. Это еще одни недостаток: сложный монтаж. А все из-за того же веса.
Хрупкость и невысокое рабочее давление. Не самые приятные характеристики

При всей массивности с изделиями из чугуна нужно обращаться осторожно: при ударе они могут лопнуть. Та же хрупкость приводит к не самому высокому рабочему давлению: 9 атм. Опрессовочное — 15-16 атм.
Необходимость регулярного окрашивания

Все секции идут только грунтованные. Красить их нужно будет часто: раз в год или два.

Опрессовочное — 15-16 атм.
Необходимость регулярного окрашивания. Все секции идут только грунтованные. Красить их нужно будет часто: раз в год или два.

Теплоотдача радиаторов

Тепловая инерция — это не всегда плохо…

Область применения

Как видите, есть более чем серьезные достоинства, но и недостатки имеются. Если все суммировать, можно определить область их использования:

  • Сети с очень низким качеством теплоносителя (Ph выше 9) и большим количеством абразивных частиц (без грязевиков и фильтров).
  • В индивидуальном отоплении при использовании твердотопливных котлов без автоматики.
  • В сетях с естественной циркуляцией.

Как правильно рассчитывается реальная теплоотдача батарей

Начинать надо всегда с технического паспорта, что прилагается к изделию производителем. В нем вы точно обнаружите интересующие данные, а именно — тепловую мощность одной секции либо панельного радиатора определенного типоразмера. Но не спешите восхищаться отличными показателями алюминиевых или биметаллических батарей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.

Теплоотдача радиаторов

Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (tподачи + tобратки)/2 и в помещении равна 70 °С. С помощью формулы это выражается так:

(tподачи + tобратки)/2 — tвоздуха = 70 °С

Что означает, когда в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, только надо в нее подставить известное значение комнатной температуры – 22 °С и провести расчет в обратном порядке:

(tподачи + tобратки)= (70 + 22) х 2 = 184 °С

Зная, что разность температур в подающем и обратном трубопроводах не должна быть больше 20 °С, надо определить их значения таким образом:

  • tподачи = 184/2 + 10 = 102 °С;
  • tобратки = 184/2 – 10 = 82 °С.

Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что в подающем трубопроводе будет вода, нагретая до 102 °С, а в комнате установится комфортная температура 22 °С. Первое условие выполнить нереально, поскольку в современных котлах нагрев ограничен пределом 80 °С, а значит, батарея никогда не сможет отдать заявленных 200 Вт тепла. Да и редкий случай, чтобы теплоноситель в частном доме разогревали до такой степени, обычный максимум – это 70 °С, что соответствует DT = 38—40 °С.

Как точно рассчитать количество радиаторов отопления?

Теплоотдача радиаторов

За основу методики взята формула (1) с коэффициентами, учитывающими климатические особенности местности и параметры конструкций здания, от которых зависят теплопотери в рассчитываемом помещении.

Количество секций радиатора N при точном расчете определяется по формуле (5):

N = K1 х K2 х K3 х K4 х K5 х K6 х K7 х K8 х K9 х K10 х (100 х S)/Q (5)

  • N — количество секций (с округлением до ближайшего целого числа);
  • S — площадь комнаты, м²;
  • Q —тепловая мощность одной секции, Вт.
  • K1…K10 поправочные коэффициенты.

К1 — на число внешних стен в помещении

Коэффициент К1 равен:

  • 0,8 — помещение внутреннее;
  • 1,0 — комната с одной наружной стеной;
  • 1,2 — помещение угловое — две перегородки с улицей;
  • 1,4 — три стены на улицу.

К2 — на ориентацию по сторонам света

От расположения наружных перегородок в помещении зависит степень их нагрева солнечными лучами. Коэффициент К2 равен:

  • 1,1 — наружные стены ориентированы на восток или север;
  • 1,0 — стены комнаты «смотрят» на запад или юг.

К3 — на степень утепленности стен

Теплоотдача радиаторов

От характеристик утеплителя зависит термическое сопротивление стены, влияющее на теплопотери помещения. Коэффициент К3 равен:

  • 1,27 — наружная стена не утеплена;
  • 1,0 — перегородки комнаты в два кирпича без утеплителя;
  • 0,85 — стена с утеплителем, расчетное значение термического сопротивления всей стены соответствует нормам по СНиП.

Проверка соответствия нормам СНиП термического сопротивления стены, как многослойной конструкции, выполняется в следующей последовательности:

  1. Для каждого слоя рассчитывается свое термическое сопротивление Ri по формуле (6):

Ri = h / λ (6)

  • h — толщина слоя, м;
  • λ — коэффициент теплопроводности одного слоя.
  1. Полученные значения сопротивлений всех слоев суммируются.
  2. Вычисленная сумма сравнивается с нормированным значением для данной местности.

К4 — на особенности климатических условий региона

Теплоотдача радиаторов

Этот коэффициент зависит от того, в какой климатической зоне расположен дом. В зависимости от средней температуры Tср за пять самых холодных зимних дней коэффициент К4 равен:

  • 1,5: Тср ≤ -35°C;
  • 1,3: -30 °C ≥Тср > -35 °C;
  • 1,2: -25°C≥ Тср > -30 °C;
  • 1,1: -20°C≥ Тср > -25 °C;
  • 1,0: -15°C≥ Тср > -20 °C;
  • 0,9: -10°C≤ Тср > -15 °C;
  • 0,7: Тср > -10 °C.

К5 — коэффициент высоты потолков

Теплоотдача радиаторов

В зависимости от высоты Н потолков помещения величина коэффициента К5 равна:

  • 1,0: H 2,7 м;
  • 1,05: 2,7 м ≤ H 3,0 м;
  • 1,1: 3,0 м ≤ H 3,5 м;
  • 1,15: 3,5 м ≤ H 4,0 м;
  • 1,2: H ≥ 4,0 м.

К6 — на тип помещения, расположенного выше

Величина коэффициента К6 равна:

  • 1,0 — сверху комнаты — неутепленный чердак или крыша;
  • 0,9 — выше помещения — утепленный чердак;
  • 0,8 — верхнее помещение — отапливаемое.

К7 — на виды установленных окон

В зависимости от вида остекления коэффициент К7 равен:

  • 1,27 — деревянные окна с двойным остеклением;
  • 1,0 — пластиковые или деревянные окна современной конструкции с однокамерным стеклопакетом;
  • 0,85 — окна со стеклопакетом, число камер больше одной.

К8 — на площадь остекления

Теплоотдача радиаторов

Расчет коэффициента К8:

  1. Вычисляют суммарную площадь всех окон в комнате.
  2. Делят полученное число на площадь помещения, получают приведенное значение Sпр.

В зависимости от величины Sпр величина коэффициента К8 равна:

  • 0,8: 00,1;пр
  • 0,9: 0,110,2;пр
  • 1,0: 0,210,3;пр
  • 1,1: 0,310,4;пр
  • 1,2: 0,410,5.пр

К9 — на схему подключения радиаторов

Значение коэффициента К9 равно:

  • 1,0: диагональное подключение, труба подачи вверху, труба обратки внизу;
  • 1,03: одностороннее подключение, теплоноситель движется сверху вниз;
  • 1,13: прибор отопления подключен по нижним отверстиям, труба подачи входит в радиатор с одной стороны, труба обратки выходит с другой;
  • 1,25: диагональное подключение, труба подачи внизу, труба обратки вверху;
  • 1,28: одностороннее подключение, теплоноситель движется снизу вверх;
  • 1,28: труба подачи и обратки снизу прибора отопления рядом друг с другом (в специальном фитинге).

К10 — на степень открытости установленных батарей

Теплоотдача радиаторов

В зависимости от закрытия прибора отопления подоконником или экраном значение К10 равно:

  • 0,9: подоконник сверху радиатора и экран отсутствуют;
  • 1,0: сверху прибора расположена полка или подоконник;
  • 1,07: радиатор утоплен в стеновой нише;
  • 1,12: имеется подоконник и экран;
  • 1,2: прибор полностью закрыт декоративной панелью.

Расчет реального веса отопительных приборов

Теперь посчитаем, какой получится вес и число секций у чугунных обогревающих батарей, обеспечивающих теплоотдачу 2 кВт. Начнем со старого образца – МС-140, чья мощность составляет 160 Вт с одного ребра. Чтобы набрать 2000 Вт, нужно их поделить на 160 Вт, получим 12.5 секций, округленно 13 шт. Общий вес готовых батарей составит 13 х 7.12 = 92.6 кг, а с водой – 112 кг. То есть, на каждый киловатт теплоотдачи приходится 112 / 2 = 56 кг массы радиатора, наполненного теплоносителем.

Теплоотдача радиаторов

Тем же способом вычислим удельный вес представленных выше батарей из чугуна и узнаем, как далеко ушли вперед технологии изготовления подобных обогревателей. Результаты занесем в таблицу:

Бренд и модель радиатора Мощность 1 ребра, Вт Число секций, обеспечивающее 2 кВт тепла Вес с водой, кг Какой вес приходится на теплоотдачу 1 кВт, кг Цена радиатора на 2 кВт, у. е.
Viadrus KALOR 500/70 70.3 29 139 69.5 582
Viadrus Bohemia 450/220 110 19 234 117 1487
Demir Dokum Nostalgia 500/200 163 13 155 77.5 679
Retro Style Anerli 560/230 189 11 223 111.5 2526
EXEMET Modern 600/100 102 20 100 50 640
EXEMET Classica 500/176 145 14 158 79 1076

Теплоотдача радиаторов

На основании проведенного анализа можно сделать такие выводы:

  1. Тепловая мощность греющего прибора практически не зависит от его массы, только от площади поверхности.
  2. Производители изготавливают как массивные, так и более легкие модели чугунных батарей, которые крепятся к стенам.
  3. Наиболее тяжелые радиаторы из чугуна сделаны в стиле «ретро», облегченные – в стиле «модерн».
  4. Если сравнивать новые обогреватели от разных брендов с «гармошками» по объему теплоносителя, то становится ясно, что данный показатель почти не изменился.
  5. Массивность обеспечивается за счет толщины чугунных стенок. Это значит, что наиболее тонкие стенки – у изделий от турецких брендов EXEMET и Demir Dokum, а самые толстые – у российского производителя Retro Style.
  6. Заметьте, что вес чугуна влияет на конечную цену продукта. Чем тяжелее изделие, тем оно дороже.

Теплоотдача радиаторов

Теплоотдача радиаторов отопления

В чем измеряется и как считается теплоотдача радиаторов

Теплоотдача радиатора – показатель, который обозначает количество тепла, переданного радиатором помещению в единицу времени. Измеряется она в Ваттах (Вт). Также в интернете можно встретить другие названия этого показателя: тепловая мощность, мощность, тепловой поток. В качестве единицы измерения теплоотдачи можно встретить также кал/час, их можно перевести в Ватты и наоборот по зависимости: 1 Вт = 859,8452279 кал/ч.

Передача тепла помещению происходит двумя процессами: излучением и конвекцией. Конструкция современных отопительных приборов разработана так, чтобы, комбинируя оба процесса, достичь максимальной теплоотдачи.

Тепловая мощность радиаторов зависит кроме его конструкции от трех величин: температуры теплоносителя на входе радиатора, на выходе и температуры воздуха в помещении. Температурный напор (Δt, K) представляет разность температуры радиатора и помещения. Температура радиатора берется как средняя между температурами на входе и выходе из радиатора. Т.о., простая формула температурного напора следующая:

где
Δt – температурный напор, К;
tпод. – температура теплоносителя на входе в радиатор, K;
tобр. – температура теплоносителя на выходе, K;
tпомещ. – температура воздуха в помещении, K.

Эта формула широко используется как для расчетов, так и в справочной литературе. Но расчет температуры радиатора как среднеарифметическое значение не отражает действительной температуры радиатора. Более точное значение можно получить, пользуясь логарифмической зависимостью, тогда логарифмическая формула температурного напора будет выглядеть так:

В технической документации производителей радиаторов можно встретить значения теплоотдачи, полученные по трем основным методам испытаний: по стандартам EN-442, DIN 4704 и НИИСТ. EN 442 – общеевропейский стандарт, на который ориентируются все производители отопительных приборов. Испытания проходят при температурном режиме 75/65/20 в кабине, где охлаждаются потолок, пол и стены кроме противоположной радиатору. В соответствии со стандартом DIN 4704 отопительный прибор испытывается при режиме 90/70/20 и охлаждаются все ограждающие конструкции. По НИИСТ температурный напор составляет 70oC, не охлаждаются стена напротив радиатора и пол, радиатор отделен от стены теплоизолирующим экраном. Теплоотдача, полученная по разным стандартам может отличаться на 1-8%.

Если в системе отопления используется иной температурный режим, то теплоотдачу отопительных приборов нужно пересчитать. Это можно сделать по формуле пересчета теплоотдачи:

где Ф – теплоотдача при выбранном температурном режиме;
ФSL – нормативная теплоотдача (по EN-442: теплоотдача в режиме 75/65/20);
Δtln – фактический температурный напор, рассчитанный логарифмическим способом (для упрощения можно способом среднего арифметического);
Δtнорм – нормативный температурный напор, т.е исходный: EN 442 – 50o, DIN 4704 – 60o, НИИСТ – 70o (расчет средним арифметическим, для точности пересчитать);
n – экспонент (указывается производителем).

Показатель n характеризует конструкцию радиатора. Чем выше этот показатель, тем значительнее падает теплоотдача при низкотемпературных режимах отопления, и, наоборот, быстрее возрастает при высоких температурах теплоносителя.

Онлайн калькулятор для пересчета теплоотдачи стальных панельных радиаторов

В данной он-лайн программе учитывается влияние на теплоотдачу радиаторы таких факторов: атмосферное давление (влияет на теплоотдачу до 4%), способ подключения радиатора (влияет на теплоотдачу до 22%). Также программа позволяет пересчитывать фактическую теплоотдачу радиатора в зависимости от температурного напора и расхода теплоносителя, однако, для этой цели лучше пользоваться технической документацией производителя. Программу же можно использовать для дешевых и малоизвестных марок радиаторов, по которым недостаточно данных.

Тепловая мощность радиатора, Вт при Δt=oC

Температура теплоносителя (подача), oC.

Температура воздуха в помещении, oC.

Атмосферное давление, мм.рт.ст.

Расход теплоносителя через радиатор, кг/с

Подключение радиатора сверху внизснизу внизснизу вверх

Длина радиатора, мм 400500600700800900100012001400160018002000230026003000

Тип радиатора 1011122233

Пересчитанная мощность радиатора, Вт

Источник: xn--80ac1bcbgb9aa.xn--p1ai


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.