Тепловая мощность это


Что такое система отопления?

Отопительная система – это комплекс оборудования, предназначенного для доставки тепла посредством теплоносителя от теплогенератора до жилых помещений. Сюда входят:

  • теплогенератор – в частном доме эту функцию обычно выполняет электрический или газовый котел
  • насосное оборудование, обеспечивающее циркуляцию теплоносителя
  • трубопроводы и радиаторы
  • системы контроля и автоматики

Разработка, установка, наладка и пуск системы отопления – дело дорогостоящее и хлопотное. Для того чтобы эти затраты буквально не вылетели в трубу, необходим тщательный расчет всех элементов.

Тепловая мощность

Тепловая мощность – главный показатель системы отопления. Измеряется в киловаттах и показывает количество тепла, генерируемое отоплением. Как верно оценить необходимую тепловую мощность? Для идеально рассчитанной системы отопления верно равенство:


Wсист=Wтп или Wсист— Wтп=0, где:
Wсист – тепловая мощность системы отопления
Wтп — мощность теплопотерь здания

То есть система отопления в идеале должна вырабатывать ровно столько тепла, сколько здание теряет.

Для правильности расчетов надо знать площадь и высоту каждой комнаты, качество теплоизоляции и уровень теплоотдачи, которыми обладают все поверхности дома. Примечательно, что большую часть тепла здание теряет вовсе не через окна, как принято считать (конечно, при условии, что окна качественные и современной конструкции). Усредненная картина распределения тепловых потерь выглядит следующим образом:

  • стены – 35%
  • крыша – 25%
  • пол – 15%
  • окна – 10%
  • входные двери – 8%
  • вентиляция и воздухообмен – 7%

Очевидно, какую ошибку мы зачастую допускаем, усиленно утепляя окна и совершенно не заботясь об утеплении стен. Однако это отдельная тема, выходящая за рамки расчета отопительной системы.

На уровень теплопотерь также влияют используемые материалы, толщина внешней стены, высота фундамента, площадь остекленной поверхности.

На практике вместо тепловой мощности отопительной системы используют другую величину – удельную мощность котла. Эта величина показывает необходимую мощность отопительного котла на единицу площади помещения.

Важно! Если речь идет о частном доме, где котел находится в самом отапливаемом помещении, тепловую мощность системы вполне можно принимать равной мощности котла.

Существуют рассчитанные заранее значения удельной мощности котла на 10 м2 площади помещения для различных регионов России:


Регион Wуд кВт на 10 м2
Северные регионы 1,2-2
Центральные регионы (в т.ч. Москва и Подмосковье) 1,2-1,5
Южные регионы 0,7-0,9

При расчете удельной мощности считается, что утепление здания и прокладка элементов отопительной системы произведены в соответствии с требованиями СНиП. «Вилка» значений показывает различную высоту потолка в пределах 2,2-3м.

Отсюда нетрудно посчитать мощность котла. Например, рассчитаем необходимую мощность отопительного котла (Wкот) для здания, расположенного в Подмосковье и имеющего отапливаемую площадь 100 кв.м с высотой потолка 2,2м.

Wкот =100/10*1,2=12 кВт

Обратите внимание! Значения удельной мощности приводятся из расчета на 10 кв.м площади, поэтому при расчете мощности котла значение площади помещения в кв.м необходимо поделить на десять.


Рассчитываем мощность радиаторов

Для расчета радиаторов необходимо учитывать их габариты, тип и мощность. Это очень важно, так как от этого зависит, какая температура будет в помещении. Значительно облегчает расчет системы отопления частного дома тот факт, что сейчас в продажу обычно поступают наборные радиаторы, самостоятельно собираемые из секций.

Теплоотдача отдельной секции указана в прилагаемой документации. Поделите ее на сто — результатом деления станет та площадь, которую эта единица сможет обогреть. Теперь надо посчитать, какое количество секций потребуется на весь дом.

Например, единица секции с теплоотдачей 200 Ватт может обогреть 2 кв.м жилой площади. Значит, на помещение в 16 кв.м необходимо 8 секций. В случае, если расположение комнаты угловое, или в комнате присутствует балкон, то число элементов радиатора увеличивают на 2 или 3 штуки.

Важно! Нежелательно монтировать батарею, состоящую более чем из 8-10 секций — это значительно снижает эффективность радиатора. Поэтому для крупных залов, гостиных и салонов собираем радиатор в виде нескольких батарей из 8-10 секций.

Также необходимо учитывать следующие моменты:

  1. Установка радиатора в нише снижает уровень теплоотдачи приблизительно на 10%.
  2. Если планируется закрыть отопительное оборудование декоративным коробом, то потери увеличиваются до 20%.
  3. Покраска радиатора также снижает отдачу тепла. Причем с каждым новым слоем краски теплоотдача отопительных приборов еще уменьшается.

Требования, предъявляемые к установке радиаторов:


  • Радиаторные секции монтируют только под окном. Тепло, поднимающееся от батареи, станет надежной преградой для проникновения холодного уличного воздуха.
  • Середина ряда отопительной секции должна совпадать с серединой конструкции окна.
  • Устанавливайте радиаторы по уровню. Важно соблюдать строгую вертикаль. Только в этом случае отопительное оборудование будет работать максимально эффективно и без завоздушивания.
  • При установке радиаторов учитывайте высоту над полом. Во всех помещениях оборудование должно находиться на одном горизонтальном уровне.
  • Расстояние между поверхностью пола и нижним краем оборудования оставляйте более 6 см. Так будет удобнее проводить уборку. От верхнего края радиаторов до уровня низа подоконника должно быть более 5 см. Если вдруг потребуется замена отопительного оборудования, вам не придется демонтировать подоконные доски. Также такое размещение способствует хорошей циркуляции воздуха и помогает избежать «запотевания» поверхности стены за радиатором.

Выбор котла

Выбор котла зависит от общей мощности, расчет которой был рассмотрен выше. Если помимо отопления котел предполагается использовать и для подачи горячего водоснабжения, необходимо еще приплюсовать до 25 кВт к мощности. Для таких нужд, как подогрев бассейна или установка канальной вентиляционной системы с подогревом, прямо пропорционально увеличивается мощность котла.

Кроме мощности, важной характеристикой котла является вид используемого топлива. В зависимости от этой характеристики существуют следующие типы котлов:


  1. Газовые котлы. Данные приборы отличаются высокой безопасностью и хорошим КПД. Процесс управления современных моделей полностью автоматизирован. Оборудование идеально для жилья, подключенного к газовым магистралям. Прибор очень компактен и производителен. Современные модели газовых котлов оснащены циркуляционным насосом. Они работают беспрерывно, почти бесшумно, просты и надежны.
  2. Электрические котлы. Как бы ни были хороши газовые котлы, их использование требует обязательного подключения к газовой магистрали, а использование баллонного газа мгновенно сводит на нет все преимущества газовых котлов. При этом целесообразным может стать применение электронагревательных устройств.
  3. Оборудование на жидком топливе. Для работы оборудования применяют отработанное масло или дизельное топливо. Данные приборы не соответствуют экологическим нормам и для отопления жилых помещений практически не применяются
  4. Твердотопливные котлы. Это оборудование традиционно имело малую популярность, связанную с тем, что в течение дня необходимо несколько раз подбрасывать топливо. По этой причине температурный режим в доме будет колебаться в диапазоне 5 градусов. Но в последнее время все большее распространение получили котлы двойного горения, или пиролизные котлы, лишенные всех этих недостатков.

Пиролизные котлы отличаются простотой регулировки процесса горения и поддержания заданной температуры. Использование стандартизированного топлива (древесных гранул – пеллет и брикетов) делает возможным автоматизацию подачи топлива.

Трубопровод отопления

В завершение несколько слов о трубопроводе для отопления частного дома. Отсутствие большой этажности избавляет такую систему от необходимости поддержания высокого давления. Для циркуляции теплоносителя вполне достаточно сохранять рабочее давление на уровне 4-5 атмосфер для одного и 5-6 атмосфер для двух этажей. В этих условиях оптимальным выбором становится использование металлопластиковых труб, обладающих целым рядом преимуществ:

  • долгий срок службы
  • надежность
  • внутренняя поверхность трубы алюминиевая, значит, она не ржавеет, и на ней не откладывается осадок
  • удобный и легкий монтаж
  • низкая цена

Монтаж металлопластикового трубопровода не так уж сложно провести самостоятельно. Для этого вполне достаточно инструментов, имеющихся в наборе любого домашнего мастера. Из специального оборудования вам понадобятся:

  • ножницы для резки труб
  • плашка для торцовки трубы
  • паяльный аппарат

gidotopleniya.ru


Общая тепловая мощность системы теплоснабжения представля­ет собой сумму расчетных расходов по отдельным видам водопотребления. Она обеспечивает покрытие нагрузок систем отопления, вентиляции, горя­чего водоснабжения и технологических процессов. В общую тепловую мощность системы теплоснабжения должны входить также и потери тепло­ты при транспортировке по тепловым сетям. В общем виде это можно вы­разить следующим образом:

Q = k(Q0+QB+QrB+QT), (2.35)

где k — коэффициент, учитывающий потери при транспортировании в тру­бопроводах системы теплоснабжения.

В свою очередь, рабочая тепловая мощность источника тепло­снабжения складывается из максимальной мощности, подаваемой в тепло­вую сеть потребителям по всем видам энергоносителя мощности, расхо­дуемой источником теплоснабжения для выработки энергоносителя (т.е. мощности на собственные нужды) и потерь мощности. В общем случае:

Qит=(Q0+QB+Qra+QT+Qсн+AQ) (2-36)

Тепловой мощностью источника теплоснабжения называется сум-ма(Q0+QB+QrB+QT).

Она определяется в зависимости от типа системы теплоснабжения и типа источника теплоснабжения. Обычно Q0 , QB , QrB, , QT даются в исход-


ных данных на проектирование источников теплоснабжения.

Для источника теплоснабжения отопительного типа и закрытойсис­темы теплоснабжения (см. п.3.1) тепловая мощность определяется, как:

, (2.37)

где Qит — тепловая мощность источника теплоснабжения; Qo и QB — соот­ветственно тепловая мощность на отопление и вентиляцию при максималь­ном зимнем режиме; QrBmax — максимально-часовая мощность на горячее водоснабжение.

Если система теплоснабжения — открытая, то тепловая мощность ис­точника теплоснабжения отопительного типа определяется по формуле:

(2.38)

Тепловая мощность это (2.38)

где Тепловая мощность это — среднечасовая за отопительный период тепловая мощность на

горячее водоснабжение.

Для источника теплоснабжения производственно-отопительного типа тепловая мощность складывается из мощностей на отопление, венти­ляцию, горячее водоснабжение и мощности на технологические нужды:

Тепловая мощность это (2.39)

Тепловая мощность QrB задается в зависимости от типа системы тепло­снабжения (закрытой или открытой).


В зависимости от типа источника теплоснабжения и вида топлива, сжигаемого в топках котельных агрегатов, а также от типа системы тепло­снабжения, изменяется тепловая мощность, потребляемая источником теп­лоснабжения на собственные нужды. Она расходуется на подогрев воды перед установкой химводоочистки, деаэрацию воды, обдувку экономайзе­ров (для паровых котлоагрегатов), подогрев мазута (при использовании этого вида топлива) и др.

Ниже приведены формулы для ориентировочного (укрупненного) оп­ределения рабочей тепловой мощности источников теплоснабжения раз­личных типов [30]:

— для источников теплоснабжения отопительного типа с водогрейными
котлами:

Тепловая мощность это (2.40)

— для источников теплоснабжения производственно-отопительного ти­
па с паровыми котлами низкого давления (р =1,4 МПа) и отпуском теплоты
по закрытой схеме на отопление, вентиляцию и горячее водоснабжение в
размере 20% тепловой мощности источника теплоснабжения требуемая
массовая выработка пара, кг/с:

Тепловая мощность это (2.41)

— для источников теплоснабжения производственно-отопительного ти­
па при нагрузке на отопление, вентиляцию и горячее водоснабжение более
20% требуемая массовая выработка пара, кг/с:


Тепловая мощность это (2.42)

где Dn — расход пара на технологические нужды, кг/с; GK — возврат кон­денсата от потребителя, кг/с; ц — доля возврата конденсата (по заданию); tK — температура возвращаемого конденсата, ° С.

Коэффициенты А, Б и В в формулах (2.40) — (2.42), приведенные в табл. 2.10, учитывают затраты мощности на собственные нужды и потери в источниках теплоснабжения (ИТ).

Изменение мощности источников теплоснабжения во времени полу­чают суммированием расчетных расходов одновременно действующих по грабителей данного объекта в рассматриваемый период. Расчетный расход тепловой энергии на отопление 3, вентиляцию 1, горячее водоснабжение 2 и по объекту в целом 4 представляют графически (рис. 2.4,а) в зависимости

от tH.

На основании этого графика выявляют годовое теплопотребление объ­екта, по которому осуществляют регулирование отпускаемой тепловой энергии. Графическое изменение тепловой потребности объекта строят по продолжительности стояния в определенные периоды одинаковых темпера­тур tH, принимаемых по климатологическим данным [43].

Тепловая мощность это

 

Рисунок2.4. Графики расхода тепловой энергии объектом: а) часовой; б) годовой

Годовое теплопотребление объекта, так же, как и на отдельные нужды, изображают в осях координат справа от графика расчетных расходов (рис. 2.4, б). Так же, как и для отопительного графика, на оси абсцисс в масштабе откладывают продолжительность стояния tn, начиная с минимальной тем­пературы наружного воздуха. Для соответствующих значений tn общий расчетный расход теплоты из левого графика переносят на ординаты начала и окончания продолжительности стояния этих температур tn.

Точки пересечения, характеризующие расходы тепловой энергии в конце каждого периода стояния tn соединяют плавной кривой 5, которая

отражает потребление тепловой энергии данного объекта в течение года.

Годовой график теплопотребления можно построить и другим спосо­бом — на основе расчетных данных для каждого потребителя. Полученные значения в масштабе откладывают на соответствующих ординатах и соеди­няют плавной кривой.

Значения коэффициентов А, Б, В дня определения рабочей тепловой мощности ТГУ

Тип тепло-            
генерирую­щей уста- Система теп­лоснабжения Тип котла Топливо А Б В
новки            
Отопитель- Закрытая Водогрей­ный Мазут, твердое топливо, газ 1,0526 1,018 1,0526 1,018 _
ная Открытая Водогрей- Мазут, твердое 1,519 1,182 _
  (Qr.B=0,2QKB) ный топливо, газ 1,0172 1,182
Производст- Закрытая (Qr.B<0,2QK) Паровой Мазут, твердое топливо, газ 1,273 1,217 0,00168 0,00168  
венно-отопитель- Закрытая (Qr.B>0,2QK) Паровой Мазут, твердое топливо, газ 0,4375 0,4231 0,4375 0,4231 1,0184 0,9736
ная Открытая (Qr.B>0,2QKB) Паровой Мазут, твердое топливо, газ 0,4372 0,4227 0,4912 0,4912 1,0184 0,9736

Тепловая мощность это

helpiks.org

Определение

  1. Какой параметр называется тепловой мощностью?

Это количество тепла, выделяемое или потребляемое каким-либо объектом за единицу времени.

При проектировании систем отопления расчет этого параметра необходим в двух случаях:

  • Когда необходимо оценить потребность помещения в тепле для компенсации потери тепловой энергии через пол, потолок, стены и вентиляцию;
  • Когда нужно выяснить, сколько тепла способен отдать отопительный прибор или контур с известными характеристиками.

Факторы

Для помещения

  1. Что влияет на потребность квартиры, комнаты или дома в тепле?

При расчетах учитываются:

  • Объем. От него зависит количество воздуха, нуждающегося в нагреве;

Примерно одинаковая высота потолков (около 2,5 метров) в большинстве домов поздней советской постройки породила упрощенную систему расчета — по площади помещения.

  • Качество утепления. Оно зависит от теплоизоляции стен, площади и количества дверей и окон, а также от структуры остекления окон. Скажем, одинарное остекление и тройной стеклопакет будут сильно различаться по количеству теплопотерь;
  • Климатическая зона. При неизменных качестве утепления и объеме помещения разность температур между улицей и комнатой будет линейно связана с количеством теряющегося через стены и перекрытия тепла. При неизменных +20 в доме потребность дома в тепле в Ялте при температуре 0С и в Якутске при -40 будет различаться ровно втрое.

Для прибора

  1. Чем определяется тепловая мощность радиаторов отопления?

Здесь действует три фактора:

  • Дельта температур — перепад между теплоносителем и окружающей средой. Чем он больше, тем выше мощность;
  • Площадь поверхности. И здесь тоже наблюдается линейная зависимость между параметрами: чем больше площадь при неизменной температуре, тем больше тепла она отдает окружающей среде за счет прямого контакта с воздухом и инфракрасного излучения;

Именно поэтому алюминиевые, чугунные и биметаллические тепловые радиаторы отопления , а также все виды конвекторов снабжаются оребрением. Оно увеличивает мощность прибора при неизменном количестве протекающего через него теплоносителя.

  • Теплопроводность материала прибора. Оно играет особенно важную роль при большой площади оребрения: чем выше теплопроводность, тем более высокую температуру будут иметь края ребер, тем сильнее они нагреют контактирующий с ними воздух.

Расчет по площади

  1. Как максимально просто выполнить расчет мощности радиаторов отопления по площади квартиры или дома?

Вот самая простая схема вычислений: на 1 квадратный метр берется 100 ватт мощности. Так, для комнаты размером 4х5 м площадь будет равной 20 м2, а потребность в тепле — 20*100=2000 ватт, или два киловатта.

Помните поговорку «истина — в простом»? В этом случае она лжет.

Простая схема расчета пренебрегает слишком большим количеством факторов:

  • Высотой потолков. Очевидно, что комнате с потолками высотой 3,5 метра потребуется больше тепла, чем помещению высотой 2,4 м;
  • Теплоизоляцией стен. Эта методика расчета родилась в советскую эпоху, когда все многоквартирные дома имели примерно одинаковое качество теплоизоляции. С введением СНиП 23.02.2003, регламентирующего тепловую защиту зданий, требования к строительству радикально изменились. Поэтому для новых и старых зданий потребность в тепловой энергии может различаться весьма заметно;
  • Размером и площадью окон. Они пропускают куда больше тепла по сравнению со стенами;
  • Расположением комнаты в доме. Угловой комнате и помещению, расположенному в центре здания и окруженному теплыми соседскими квартирами, для поддержания одинаковой температуры потребуется весьма разное количество теплоты;
  • Климатической зоной. Как мы уже выяснили, для Сочи и Оймякона потребность в тепле будет различаться в разы.
  1. Можно ли вычислить мощность батареи отопления от площади более точно?

Само собой.

Вот сравнительно несложная схема расчета для домов, соответствующих требованиям пресловутого СНиП за номером 23.02.2003:

  • Базовое количество тепла рассчитывается не по площади, а по объему. На кубометр в расчеты закладывают 40 ватт;
  • Для примыкающих к торцам дома комнат вводится коэффициент 1,2, для угловых — 1,3, а для частных одноквартирных домов (у них все стены общие с улицей) — 1,5;
  • На одно окно к полученному результату добавляют 100 ватт, на дверь — 200;
  • Для разных климатических зон используются следующие коэффициенты:
Средняя температура самого холодного месяца Коэффициент
0 0,7
-5 0,9
-10 1
-15 1,2
-20 1,4
-25 1,5
-30 1,7
-40 2,0

Давайте в качестве примера подсчитаем потребность в тепле той же комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка 3 метра;
  • В комнате два окна;
  • Она угловая,
  • Комната расположена в городе Комсомольске-на-Амуре.

Приступим.

  • Объем помещения будет равным 4*5*3=60 м3;
  • Простой расчет по объему даст 40*60=2400 Вт;
  • Две общих с улицей стены заставят нас применить коэффициент 1,3. 2400*1,3 = 3120 Вт;
  • Два окна добавят еще 200 ватт. Итого 3320;
  • Подобрать соответствующий региональный коэффициент поможет приведенная выше таблица. Поскольку средняя температура самого холодного в году месяца — января — в городе равна 25,7, умножаем расчетную тепловую мощность на 1,5. 3320*1,5=4980 ватт.

Разница с упрощенной схемой расчета составила без малого 150%. Как видите, второстепенными деталями пренебрегать не стоит.

  1. Как рассчитать мощность отопительных приборов для дома, утепление которого не соответствует СНиП 23.02.2003?

Вот формула расчета для произвольных параметров здания:

Q=V*Dt*k/860.

В ней:

Q — мощность (она будет получена в киловаттах);

V — объем комнаты. Он вычисляется в кубометрах;

Dt — перепад температур между комнатой и улицей;

k — коэффициент утепления здания. Он равен:

Описание дома Коэффициент
Пенопластовая шуба, тройные или энергосберегающие стеклопакеты 0,6 — 0,9
Стены в два кирпича, окна с однокамерными стеклопакетами 1-1,9
Стены в один кирпич, одиночное остекление 2-2,9
Отсутствие теплоизоляции (стены из профлиста или листовой стали, одинарное остекление) 3-4

Как определить дельту температур с улицей? Инструкция довольно очевидна.

Внутреннюю температуру помещения принято брать равной санитарным нормам (18-22С в зависимости от климатической зоны и расположения комнаты относительно наружных стен дома).

Уличная берется равной температуре самой холодной пятидневки в году.

Давайте еще раз выполним расчет для нашей комнаты в Комсомольске, уточнив пару дополнительных параметров:

  • Стены дома — кладка в два кирпича;
  • Стеклопакеты — двухкамерные, без энергосберегающих стекол;
  • Средний минимум температуры, характерный для города — -30,8С. Санитарной нормой для комнаты с учетом ее углового расположения в доме будут +22С.

Согласно нашей формуле, Q=60*(+22 — -30,8)*1,8/860=6,63 КВт.

На практике лучше проектировать отопление с 20-процентным запасом по мощности на случай ошибки в расчетах или непредвиденных обстоятельств (заиливания отопительных приборов, отклонений от температурного графика и так далее). Уменьшить избыточную теплоотдачу поможет дросселирование подводок радиаторов.

Расчет для прибора

  1. Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?

Все просто: количество секций умножается на тепловой поток от одной секции. Этот параметр обычно можно найти на сайте производителя.

Если вас привлекла необычно низкая цена радиаторов неизвестного производителя — тоже не беда. В этом случае можно ориентироваться на следующие усредненные значения:

Тип радиатора Тепловой поток на секцию стандартного (500 мм по центрам ниппелей) размера
Чугунный 140-160
Биметаллический 180-190
Алюминиевый 190 — 200

Если вы выбрали конвектор или панельный радиатор, единственным источником информации для вас могут стать данные производителя.

Выполняя расчет тепловой мощности радиатора своими руками, учтите одну тонкость: производители обычно приводят данные для перепада температур между водой в батарее и воздухом в отапливаемом помещении в 70С. Она достигается, например, при комнатной температуре +20 и температуре радиатора +90.

Уменьшение дельты ведет к пропорциональному уменьшению тепловой мощности; так, при температурах теплоносителя и воздуха 60 и 25С соответственно мощность прибора уменьшится ровно вдвое.

Давайте обратимся к нашему примеру и выясним, сколько чугунных секций может обеспечить тепловую мощность в 6,6 КВт в идеальных условиях — при нагретом до 90С теплоносителе и комнатной температуре в +20. 6600/160=41 (с округлением) секция. Очевидно, что батареи такого размера придется разнести как минимум по двум стоякам.

Особый случай

  1. Системы отопления частных домов и гаражей нередко оборудуют самодельными приборами из соединенных перемычками труб — регистрами. Как подсчитать тепловую мощность стального регистра известных размеров?

Для одной секции (одной горизонтальной трубы) она вычисляется по формуле Q=Pi*D*L*K*Dt.

В ней:

  • Q -мощность. Результат будет получен в ваттах;
  • Pi — число «пи», его округленно берут равным 3,14;
  • D — наружный диаметр трубы в метрах;
  • L — длина секции (опять-таки в метрах);
  • K — коэффициент, соответствующий теплопроводности металла (у стали он равен 11,63);
  • Dt — разность температур между воздухом и водой в регистре.

При расчете мощности многосекционного регистра первая снизу секция рассчитывается по этой формуле, а для последующих, поскольку они будут находиться в восходящем теплом потоке (что влияет на Dt), результат умножается на 0,9.

Приведу пример расчета. Одна секция диаметром 108 мм и длиной 3 метра при комнатной температуре +25 и температуре теплоносителя +70 будет отдавать 3,14*0,108*3*11,63*(70-25)=532 ватта. Четырехсекционный регистр из таких же секций отдаст 523+(532*0,9*3)=1968 ватт.

Заключение

Как видите, тепловая мощность рассчитывается достаточно просто, но результат расчетов сильно зависит от второстепенных факторов. Как обычно, в видео в этой статье вы найдете дополнительную полезную информацию. Жду ваших дополнений. Успехов, камрады!

otoplenie-gid.ru

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь — это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Для чего нужен тепловой расчет?

теплорасчет теплообменникаКак умудрялись обходиться без тепловых расчётов строители прошлого?

Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены — потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше — ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

расчет теплопотерь

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» — разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» — коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.

Примерные величины коэффициента рассеивания для упрощенного расчёта

  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Пример расчета тепловой мощности

расчеты на бумагеВозьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Можем посчитать теплопотери в Вт на каждый м2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м2 – это может быть 8 х 10 м.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.

теплопотери домаФормула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 — стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич — 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.

Подставляем данные в формулу (R= H/ К.Т.):

  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.

Заключение

Приведённые формулы и примеры показываю, что при теплотехнических расчётах очень важно учитывать как можно больше факторов, влияющих на теплопотери. Сюда входит и вентиляция, и площадь окон, степень их утомлённости и т. д.

А подход, когда на 10 м2 дома берётся 1 кВт мощности котла – слишком приблизительный, чтобы всерьёз опираться на него.

microklimat.pro

Формулы и коэффициенты для теплового расчета

Номинальная тепловая мощность системы отопления для частного объекта определяется по формуле (все результаты выражаются в кВт):

  • Q = Q1 x b1 x b2 + Q2 – Q3; где:
  • Q1 – общие потери тепла в здании согласно расчетам, кВт;
  • b1 — коэффициент дополнительной тепловой энергии от радиаторов сверх того, что показал расчёт. Значения коэффициента отражены в таблице ниже:
Тепловая мощность это
Таблица коэффициента отдачи тепла для отопительных приборов в доме

 

  • b2 — коэффициент дополнительных тепловых потерь радиаторами, установленными у внешних стен без экранирующих кожухов. Показатели коэффициента отражены в таблице ниже:
Тепловая мощность это
Таблица коэффициента потерь тепла для наружного отопительного оборудования

 

  • Q2 – теплопотери в трубопроводах, уложенных в неотапливаемом пространстве;
  • Q– дополнительное тепло от осветительных приборов, бытовых приборов и техники, жильцов, и т.д. Для жилых зданий Qпринимается как 0,01 кВт/1 м2.

По какой формуле и как рассчитать потери тепла, обозначаемые как Q1? Эти параметры определяются следующим образом: Q= (Qa + Qb), где:

Qa– тепловая энергия, проходящая через ограждения и наружные стены;

Qb— потери тепла при прогреве воздуха вентиляционной системы.

Значение Qa и Qb рассчитывается для каждого отдельно взятого помещения с подключенным отоплением.

Тепловая энергия Qa определяется по формуле:

  • Q= 1 / R x A x (tb – tn) х (1 + Ʃß), где:
  • А — площадь ограждения (наружной стены) в м2;
  • R — теплопередача ограждения в м2•°С/Вт (справочная информация в СНиП II-3-79).
Тепловая мощность это
Точки тепловых потерь в отапливаемом здании

 

Сопротивление теплопередаче для подвального пола и цокольных стен рассчитывается по 2-х метровым участкам, проходящим параллельно наружным стенам дома. Формула подсчётов:

  • R = RC + δ / λ, где:
  • RC — сопротивление теплоотдаче, м2•°С/Вт:
    • 2,1 — для 1 тепловой зоны;
    • 4,3 — для 2 тепловой зоны;
    • 8,6 — для 3 тепловой зоны;
    • 14,2 — для 4 зоны поверхности пола;
Тепловая мощность это
Теплопотери по зонам пола

 

  • δ — толщина утеплителя в метрах, которая принимается в расчет при δ ≤ 1,2Вт/м2 0С;
  • tb — температура внутри помещения;
  • tn – температура снаружи;
  • n — коэффициент, зависящий от взаимоположения наружных поверхностей относительно воздушных потоков снаружи (справочная информация в СНиП II-3-79);
  • ß – дополнительные теплопотери:
  • для внешних вертикальных и диагональных поверхностей, установленных в направлении январского ветра со скоростью ≥ 4,5 м/с и цикличностью ≥ 15% (СНиП 2.01.01-82). Значение 0,05 для скорости ≤ 5 м/с, значение 0,10 для скорости ветра ≥ 5 м/с. Для типовых проектов домов при типовом проектировании коэффициент ß = 0,05 для всего объекта;
  • для внешних вертикальных и диагональных поверхностей высотных домов значение ß = 0,2 для 1 и 2 этажа, ß = 0,15 для 3 этажа; ß = 0,10 для 4 этажа при количестве этажей в доме ≥ 16, для 10-15 — этажных домов ß = 0,10 для 1 и 1 этажа, ß = 0,05 -для 3 этажа.
Тепловая мощность это
Потери тепла через пол и фундамент первого этажа дома

 

Потери дополнительного тепла Q3 выводятся по формуле: Qb= 0,337 x An x h x (tb — tn) x 10-3 для помещения с применением отопительного оборудования и окнами, где:

  • An — площадь поверхности пола;
  • H — высота помещения.

Помещения с вытяжкой или принудительной вентиляцией должны иметь подогрев воздуха. Проводя расчет отопления, разрешено подогревать наружные воздушные потоки, поступающие в помещения, если объем потока не превышает 2-х обменов за 60 минут.

Теплопотери Qb при нагреве наружных потоков воздуха от дверей, рассчитываются так:

  • Q= 0,7 X B х (H / 0,8P) х (tb – tn) х 10-3, где:
  • H — высота дома:
  • Р — количество жильцов;
  • В – коэффициент для тамбуров и холлов. Для 1 тамбура В = 1, для 2 тамбуров В = 0,6.

Рассчитать тепловую мощность для прогрева наружных потоков от дверей лоджий можно по формуле Q= 0,7 X B х (H / 0,8P) х (tb – tn) х 10-3, если количество жильцов Р = 0.

Тепловая мощность это
Тепловые потери от дверей дома

 

Тепловая температурная утечка от холлов, вестибюлей, коридоров с воздушной тепловой завесой, от лестничных клеток и помещений с принудительной вентиляцией не учитывает параметр Qb.

Потери тепловой энергии Qb на прогрев воздушных потоков от наружных гаражных ворот, вычисляются, принимая во внимание скорость ветра и время открывания воротных створок.

Потери тепловой энергии Q2 от трубопроводов, проложенных в помещениях без отопления, определяется следующим образом:

  • Q2 = Ʃql x 10-3, где:
  • l — длина отрезков теплоизолированных трубопроводов с разным диаметром, уложенных в неотапливаемых помещениях;
  • — нормативная линейная плотность теплого воздушного потока изолированного трубопровода.

Толщина теплоизоляции δиз вычисляется так:

δиз = 0,5 х d x (B — l) и ln B = 2 x ∏ x λ (∆tср / q – 0,1 | [∏ x (d / 0,2])), где:

d — внешний диаметр трубопровода;

λ — коэффициент теплопроводности утеплителя;

∆tср –разность температуры уличного воздуха и теплоносителя за отопительный период.

Тепловая мощность это
Таблица тепловой мощности

 

Проводя тепловой расчет системы отопления, необходимо принимать во внимание следующие параметры жилого здания:

  1. Функциональное назначение и геометрические размеры жилья;
  2. Архитектурные особенности в виде габаритов арок, размеров дверных и оконных проемов, площадь всех поверхностей здания;
  3. Соблюдение требований по температурному режиму, отраженному в СНиП 2.04.05-91, для каждого отдельного помещения дома;
  4. Стройматериалы и конструктивные особенности кровли, пола, стен и потолка, включая наружное и внутреннее утепление;
  5. Функциональное назначение жилых и нежилых помещений и пристроек;
  6. Специфическая информация (длительность отопительного периода, количество жильцов, и т.д.);
  7. Число точек разбора ГВС.

Проведение подобных вычислений должно учитывать все эти значения и факторы. Для более точных вычислений можно воспользоваться специальной программой – калькулятор, или онлайн-сервисами. Чтобы зарезервировать тепловую мощность для непредвиденных случаев, (например, аномально холодная зима), к результатам вычислений прибавляют 10-25% запаса.

Тепловая мощность это
Назначение тепловых вычислений

 

Необходимость тепловых расчетов для всего дома и отдельных отапливаемых помещений обосновывается экономией энергоносителей и семейного бюджета. В каких случаях проводят подобные вычисления:

  1. Чтобы точно вычислить мощность котельного оборудования для наиболее эффективного обогрева всех подключенных к отоплению помещений. Приобретая котел без предварительных расчетов можно установить совершенно неподходящее по параметрам оборудование, которое не справится со своей задачей, и деньги будут потрачены впустую. Тепловые параметры всей системы отопления определяются, как результат сложения всех расходов тепловой энергии в подключенных и неподключенных к котлу отопления помещениях, если трубопровод проходит по ним. Также необходим запас мощности по расходам тепла, чтобы уменьшить износ отопительного оборудования и минимизировать появление аварийных ситуаций при высоких нагрузках в морозы;
  2. Расчеты тепловых параметров системы отопления необходимы для получения на руки технического удостоверения (ТУ), без которого не получится согласовать проект по газификации частного дома, так как в 80% случаев монтажа автономного отопления устанавливают газовый котел и соответствующее оборудование. Для остальных типов отопительных агрегатов технические условия и документация на подключение не нужны. Для газового оборудования необходимо знать годовой расход газа, и без соответствующих вычислений точную цифру получить не удастся;
  3. Получить тепловые параметры отопительной системы также нужно для покупки правильного оборудования – труб, радиаторов, фитингов, фильтров, и т.д.
Тепловая мощность это
Расчетные данные отопительных приборов

 

Точные расчеты мощности и расхода тепла для жилых помещений

Уровень и качество утепления зависят от качества работ и архитектурных особенностей помещений ми всего дома. Бо́льшая часть тепловых потерь (до 40%) при отоплении здания происходит через поверхность наружных стен, через окна и двери (до 20%), а также через кровлю и пол (до 10%). Оставшиеся 30% тепла могут уходить из дома через вентиляционные отверстия и каналы.

Для получения уточненных результатов применяют следующие справочные коэффициенты:

  1. Q1 – используется при расчетах для помещений с окнами. Для ПВХ окон с двухкамерными стеклопакетами Q1=1, для окон с однокамерным остеклением Q=1,27, для трехкамерного окна Q=0,85;
  2. Q2 – используется при расчетах коэффициента утепления внутренних стен. Для пенобетона Q2 = 1, для бетона Q2 – 1,2, для кирпича Q2= 1,5;
  3. Q3 применяется при расчетах соотношений площадей пола и оконных проемов. Для 20% площади остекления стены коэффициент Q3 = 1, для 50% остекления Q3 принимается, как 1,5;
  4. Значение коэффициента Q4 варьируется в зависимости от минимальной уличной температуры за весь годовой отопительный период. При наружной температуре -200C Q4 = 1, далее — для каждых 50C в ту или иную сторону добавляют или отнимают 0,1;
  5. Коэффициент Q5 применяется при расчетах, учитывающих общее количество стен здания. При одной стене в расчетах Q5 = 1, при 12-х и 3-х стенах Q= 1,2, для 4-х стен Q5 = 1,33;
  6. Q6 используют, если при расчетах потерь тепла учитывается функциональное назначение помещения под той комнатой, для которой делаются вычисления. Если наверху находится жилой этаж, то коэффициент Q= 0,82, если отапливаемый или утепленный чердак, то Q6 — 0,91, для холодного чердачного помещения Q6 = 1;
  7. Параметр Q7 колеблется в зависимости от высоты потолков обследуемого помещения. При высоте потолка ≤ 2,5 м коэффициент Q= 1,0, если потолок выше 3-х м, то Q7 принимается, как 1,05.

После определения всех необходимых поправок проводят расчет тепловой мощности и тепловых потерь в отопительной системе для каждого отдельно взятого помещения по следующей формуле:

  • Qi = q х Si х Qх Qх Qх Qх Qх Qх Q7, где:
  • q =100 Вт/м²;
  • Si – площадь обследуемого помещения.

Результаты параметров будут увеличиваться при применении коэффициентов ≥ 1, и уменьшаться, если Q1- Q≤1. После расчетов конкретного значения результатов расчетов для конкретного помещения можно рассчитать общую тепловую мощность частного автономного отопления по следующей формуле:

Q = Σ х Qi, (i = 1…N), где: N – общее количество помещений в здании.

jsnip.ru

72 комментария на «О тепловой энергии простым языком!»

  1. Тамара 10 Ноя 2013 06:57
  2. Александр Воробьев 10 Ноя 2013 11:43
  3. Олег 25 Дек 2013 17:26
  4. Вячеслав 14 Янв 2014 15:42
  5. михаил 25 Сен 2014 22:44
  6. михаил 26 Сен 2014 07:38
  7. Александр Воробьев 27 Сен 2014 12:52
  8. Алексей 30 Апр 2015 13:15
  9. Михаил 05 мая 2015 19:34
  10. Шухрат 23 Июл 2015 11:25
  11. Александр Воробьев 23 Июл 2015 15:42
  12. Олег 24 Сен 2015 16:53
  13. Александр 06 Окт 2015 20:23
  14. Александр Воробьев 06 Окт 2015 21:09
  15. Сергей 13 Окт 2015 15:44
  16. Алексей 23 Окт 2015 15:48
  17. Александр Воробьев 24 Окт 2015 13:03
  18. Алексей 26 Окт 2015 13:57
  19. Александр Воробьев 26 Окт 2015 19:25
  20. Борис Кузнецов 17 Янв 2016 18:03
  21. Александр Воробьев 17 Янв 2016 18:29
  22. Александр 18 Янв 2016 02:29
  23. Vladimir 27 Фев 2016 15:50
  24. Татьяна 19 Апр 2016 14:47
  25. Александр Воробьев 23 Апр 2016 12:57
  26. Чолпон 10 Июн 2016 15:01
  27. Александр Воробьев 11 Июн 2016 12:03
  28. Костенко Игорь 11 Июл 2016 19:24
  29. Кирилл 22 Дек 2016 13:57
  30. Александр Воробьев 22 Дек 2016 18:02
  31. Кирилл 23 Дек 2016 02:02
  32. Андрей 08 Янв 2017 04:30
  33. Александр Воробьев 08 Янв 2017 11:05
  34. Dm 01 Мар 2017 00:42
  35. Сергей 12 Июл 2017 23:29
  36. Александр Воробьев 13 Июл 2017 18:02
  37. Сергей 17 Июл 2017 01:30
  38. Александр Воробьев 17 Июл 2017 20:41
  39. SM74 22 Авг 2017 22:28
  40. Александр Воробьев 23 Авг 2017 10:28
  41. Александр 13 Сен 2017 01:44
  42. Александр Воробьев 13 Сен 2017 19:41
  43. Александр 18 Окт 2017 15:51
  44. Александр Воробьев 18 Окт 2017 19:31
  45. Хамид 14 Ноя 2017 20:07
  46. Александр Воробьев 14 Ноя 2017 20:54
  47. Андрей 30 Ноя 2017 01:01
  48. Александр Воробьев 30 Ноя 2017 17:51
  49. Анатолий 30 мая 2018 13:25
  50. Александр Воробьев 30 мая 2018 13:43
  51. Евгений 16 Июн 2018 16:33
  52. Евгений 16 Июн 2018 16:40
  53. Евгений 16 Июн 2018 17:04
  54. Евгений 16 Июн 2018 17:05
  55. Александр Воробьев 16 Июн 2018 18:33
  56. Евгений 16 Июн 2018 20:26
  57. Александр Воробьев 17 Июн 2018 00:47
  58. Евгений 19 Июн 2018 14:16
  59. Сергей 22 Июн 2018 19:31
  60. Александр Воробьев 23 Июн 2018 13:18
  61. Анатолий 02 Авг 2018 21:29
  62. Артем 09 Окт 2018 01:43
  63. Александр Воробьев 09 Окт 2018 08:01
  64. Иосиф 10 Окт 2018 00:19
  65. Александр Воробьев 10 Окт 2018 11:22
  66. Андрей 31 Дек 2018 09:35
  67. Александр Воробьев 31 Дек 2018 16:42
  68. Константин 13 Янв 2019 13:14
  69. Александр Воробьев 13 Янв 2019 13:33
  70. Константин 13 Янв 2019 20:34
  71. Александр Воробьев 14 Янв 2019 10:26
  72. Константин 14 Янв 2019 12:15

Ваш отзыв




al-vo.ru

Что такое тепловая мощность?

Тепловая мощность водогрейного котла, это количество теплоты которое передаётся теплоносителю (воде) в процессе сгорания топлива в котле. Тепловая мощность измеряется в гигакаллориях(ГКал/час) или мегаваттах (МВт/час). 1 ГКал/час — это 40 кубометров воды (40 м3/час), нагретые на 25 градусов Цельсия(25С) за один час. 1 ГКал = 1.16 МВт.

Пиролизный котел 30 кВтЧто такое КПД котла?

Коэффициент полезного действия водогрейного котла(КПД), это разность между количеством теплоты которое содержится в топливе и количеством теплоты, которое передано теплоносителю(воде)

Как посчитать тепловую мощность.
Формулу для расчёта тепловой мощности в гКал/час можно представить в виде:
Q = (T1 — T2) * 40(м3/час) / 1000, где T1 – Т2 – разность температур в градусах Цельсия.

Таким образом, для того чтобы посчитать мощность, которую выдаёт котельная, необходимо расход воды умножить на разность температур (перепад между «подачей» и «обраткой» ) и разделить на 1000. У Вас получится мощность в гигакаллориях (ГКал).

Пример 1:

Температура воды на «подаче» (из котельной в тепловую сеть) – 55С

Температура воды на «обратке» (из тепловой сети в котельную) – 43С

Расход сетевой воды – 120 м3/час (по насосам)

(55 — 43) * 120 / 1000 = 1.44 ГКал. * 1.16 = 1.67 МВт

Пример 2:

Температура воды на входе в котёл – 43С

Температура на выходе из котла – 51С

Расход воды в котле – 40 м3/час

(51 — 43) * 40 / 1000 = 0.32 ГКал * 1.16 = 0.37 МВт

Как посчитать КПД котла?

Формулу для расчёта КПД котла можно представить в виде:

КПД = 100 – q2-q3-q4-q5-q6, где q2…q6 – тепловые потери котла.
Для того чтобы посчитать КПД – котла необходимо температуру уходящих газов котла (измеряется термометром на газоходе котла) разделить на 15 ( с понижением температуры уходящих газов на 12-15С, потери теплоты уменьшаются на 1%), прибавить 2 (потери с химическим недожогом в слоевой топке 0,5-3%), прибавить 3 (потери с механическим недожогом в слоевой топке 1-5%), прибавить 2 (сумма остальных потерь). Полученное значение — ориентировочная величина потерь КПД в процентах, вне зависимости от вида топлива и мощности котла.

Пример 3:

Температура уходящих газов котла – 320С

320 / 15 + 2 + 3 + 2 = 29,3% — суммарные потери КПД (q2…q6)

100 – 29,3 = 70,1% — КПД котла

Из чего складываются потери КПД котла.

Потери тепла с уходящими газами – q2 – составляют самую большую величину тепловых потерь котла. В современном котле величина потерь – q2 – находится в пределах 10 – 12%, при работе котла на номинальной нагрузке.

Потери тепла с химическим недожогом – q3 – возникает из-за неполного сгорания летучих компонентов топлива в топке котла. Причинами появления химического недожога могут быть: плохое смесеобразование, общий недостаток воздуха, низкая температура в топочном объёме котла, особенно в зоне догорания(верхняя часть топочного объёма). При достаточном коэффициенте избытка воздуха и хорошем смесеобразовании, химический недожог – зависит от теплонапряжения в топочном объёме (объём топки / мощность котла). В современном котле со слоевой топкой, при значениях теплонапряжения – qv = 0.23 — 0.45 МВт/м3, химический недожог составляет 0.5 – 2%, при увеличении qv (с 0.45 до 0.7), химический недожог резко возрастает и достигает 5%.

Потери тепла с механическим недожогом – q4 – сумма потерь теплоты с уносом, шлаком и провалом. Для слоевых топок величина потерь с уносом зависит от теплонапряжения(читай выдаваемая мощность) в топочном объёме (МВт) отнесённого к площади зеркала горения (qv / площадь решётки = qr ). С увеличением qr (т.е. с форсировкой котла), резко увеличивается доля несгоревшего топлива уносимого с продуктами сгорания (потери с уносом). Так, с увеличением qr с 0.93 до 1.63 (в 1.7 раза) величина потерь с уносом возрастает с 3 до 21% (в 7 раз). Потери теплоты со шлаком, возрастают, с увеличением зольности топлива и ростом теплонапряжения. Потери теплоты с провалом зависят от спекаемости топлива, содержания в топлива мелочи и от конструкции колосниковой решётки. При использовании охлаждаемой уголковой решётки потери теплоты с провалом не превышают 0.5%. В современном котле со слоевой топкой потери тепла с механическим недожогом – q4 — составляют 1-5%.

Потери тепла от наружного охлаждения – q5 – наблюдаются в связи с тем, что температура наружной поверхности котла всегда выше температуры окружающей среды. Котёл в лёгкой обмуровке имеет величину потерь – q5 – в пределах 0.5%

Прочие потери тепла – q6 – сумма потерь с физической теплотой шлака, на охлаждение панелей и балок, не включённых в циркуляционную систему котла – как правило, не превышают 0.5-2%

teplavdome.net

Сравнение радиаторов разных типов

Тепловая мощность – одна из главных характеристик, но существуют и другие, не менее важные. Подбирать батарею лишь на основании потребного теплового потока – неправильно. Нужно понимать, при каких условиях тот или иной радиатор выдает указанный поток и как долго он прослужит в вашей системе обогрева дома. Поэтому корректнее рассмотреть все основные технические характеристики секционных типов нагревателей, а именно:

  • алюминиевые;Тепловая мощность радиаторов отопления таблица
  • биметаллические;
  • чугунные.

Проведем сравнение радиаторов отопления по следующим основным параметрам, играющих важную роль при их подборе:

  • тепловая мощность;
  • допустимое рабочее давление;
  • давление опрессовки (испытания);
  • вместительность;
  • масса.

Примечание. Максимальную степень нагрева теплоносителя мы не принимаем во внимание, поскольку у батарей всех разновидностей она достаточно высока, что делает их пригодными к применению в жилых зданиях по данному параметру.

Показатели рабочего и испытательного давления важны для подбора батарей применительно к разным теплосетям. Если в коттеджах или загородных домах давление теплоносителя редко превышает 3 Бар, то при централизованном теплоснабжении оно может достигать от 6 до 15 Бар в зависимости от этажности здания. Не следует забывать и о гидроударах, нередких в центральных сетях при пуске их в работу. По этим причинам не всякий радиатор рекомендуется включать в такие сети, а сравнение теплоотдачи лучше проводить с учетом характеристик, указывающих на прочность изделия.

Вместительность и масса отопительных элементов играют важную роль в частном домостроительстве. Знание емкости радиатора поможет рассчитать общее количество воды в системе и оценить расход тепловой энергии на ее нагрев. Вес прибора важен для определения способа крепления к наружной стене, построенной, например, из пористого материала (газобетона) или по каркасной технологии.

Для ознакомления с основными техническими характеристиками мы приведем в таблице данные известного производителя радиаторов из алюминия и биметалла – фирмы RIFAR, а также параметры чугунных батарей МС-140.

Тепловая мощность радиаторов отопления таблица

Сравнительные выводы

Тепловая мощность радиаторов отопления таблица Как показывает приведенная таблица сравнения теплоотдачи радиаторов отопления, самыми эффективными в плане мощности являются биметаллические нагреватели. Напомним, что они представляют собой алюминиевый оребренный корпус с находящимся внутри прочным сварным каркасом из металлических трубок для протока теплоносителя. По всем параметрам этот вид нагревателей пригоден для установки как в теплосетях высотных домов, так и в частных коттеджах. Единственный их недостаток – высокая стоимость.

Немного ниже теплоотдача алюминиевых радиаторов, хотя они легче и дешевле биметаллических. По испытательному и рабочему давлению приборы из алюминия также можно ставить в зданиях любой этажности, но при условии: наличии индивидуальной котельной с узлом водоподготовки. Дело в том, что алюминиевый сплав подвержен воздействию электрохимической коррозии от некачественного теплоносителя, свойственного центральным сетям. Радиаторы из алюминия лучше устанавливать в отдельных системах.

Резко отличаются от других чугунные радиаторы. теплоотдача которых значительно ниже при большой массе и емкости секций. Казалось бы, при таком сравнении им не найдется применения в современных системах обогрева. Тем не менее традиционные «гармошки» МС-140 продолжают пользоваться спросом, их главный козырь – долговечность и стойкость к коррозии. И действительно, серый чугун, из которого методом литья изготавливаются МС-140, спокойно служит до 50 лет и более, при этом теплоноситель может быть каким угодно.

Тепловая мощность радиаторов отопления таблица

Кроме того, обычная чугунная батарея обладает большой тепловой инерцией в силу своей массивности и вместительности. Это значит, что при отключении котла радиатор остается теплым еще долгое время. Что же касается рабочего давления, то нагреватели из чугуна не могут похвастать высокой прочностью. Приобретать их для сетей с высоким давлением воды рискованно.

Расчет тепловой мощности

Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира.

Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

DT = (tпод + tобр) / 2 – tкомн, где:

  • tпод – температура воды в подающем трубопроводе;
  • tобр – то же, в обратке;
  • tкомн – температура внутри комнаты.

После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

Тепловая мощность радиаторов отопления таблица

Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

Заключение

Как и следовало ожидать, в сравнении отопительных элементов по теплоотдаче на высоте оказались биметаллические батареи, недалеко от них ушли и радиаторы из алюминия. Применение же чугунных нагревателей целесообразно лишь в определенных условиях эксплуатации.

Рекомендуем:

Тепловая мощность радиаторов отопления таблица Как сделать отопление в частном доме — подробное руководство Тепловая мощность радиаторов отопления таблица Как выбрать радиаторы отопления Тепловая мощность радиаторов отопления таблица Схемы подключения радиаторов отопления

Сравнение радиаторов отопления по теплоотдаче

Тепловая мощность радиаторов отопления таблица

Реальная теплоотдача радиаторов отопления различных видов продолжает служить предметом споров, что не утихают на различных интернет-площадках и форумах. Споры ведутся в контексте, какие из них лучшие по этому показателю, что в итоге оказывает влияние на выбор тех или иных приборов отопления пользователями. Поэтому есть смысл провести сравнение тепловой мощности радиаторов разных типов, оценив их реальную теплоотдачу. О чем и говорится в материале, представленном вашему вниманию.

Как правильно рассчитать реальную теплоотдачу батарей

Тепловая мощность радиаторов отопления таблица

Начинать надо всегда с технического паспорта, что прилагается к изделию производителем. В нем вы точно обнаружите интересующие данные, а именно — тепловую мощность одной секции либо панельного радиатора определенного типоразмера. Но не спешите восхищаться отличными показателями алюминиевых или биметаллических батарей, указанная в паспорте цифра — не окончательная и требует корректировки, для чего и нужно сделать расчет теплоотдачи.

Зачастую можно услышать такие суждения: мощность алюминиевых радиаторов самая высокая, ведь общеизвестно, что теплоотдача меди и алюминия – самая лучшая среди других металлов. У меди и алюминия наилучшая теплопроводность, это верно, но передача тепла зависит от многих факторов, о коих будет сказано далее.

Тепловая мощность радиаторов отопления таблица

Прописанная в паспорте отопительного прибора теплоотдача соответствует истине, когда разница между средней температурой теплоносителя (t подачи + t обратки)/2 и в помещении равна 70 °С. С помощью формулы это выражается так:

Для справки. В документации на изделия от разных фирм данный параметр может обозначаться по-разному: dt, Δt или DT, а иногда просто пишется «при разнице температур 70 °С».

Что означает, когда в документации на биметаллический радиатор написано: тепловая мощность одной секции равна 200 Вт при DT = 70 °С? Разобраться поможет та же формула, только надо в нее подставить известное значение комнатной температуры – 22 °С и провести расчет в обратном порядке:

Зная, что разность температур в подающем и обратном трубопроводах не должна быть больше 20 °С, надо определить их значения таким образом:

Тепловая мощность радиаторов отопления таблица

Теперь видно, что 1 секция биметаллического радиатора из примера отдаст 200 Вт теплоты при условии, что в подающем трубопроводе будет вода, нагретая до 102 °С, а в комнате установится комфортная температура 22 °С. Первое условие выполнить нереально, поскольку в современных котлах нагрев ограничен пределом 80 °С, а значит, батарея никогда не сможет отдать заявленных 200 Вт тепла. Да и редкий случай, чтобы теплоноситель в частном доме разогревали до такой степени, обычный максимум – это 70 °С, что соответствует DT = 38—40 °С.

Порядок расчета

Получается, что реальная мощность батареи отопления гораздо ниже заявленной в паспорте, но для ее подбора надо понимать, насколько. Для этого есть простой способ: применение понижающего коэффициента к начальной величине тепловой мощности нагревателя. Ниже представлена таблица, где прописаны значения коэффициентов, на которые надо умножить паспортную теплоотдачу радиатора в зависимости от величины DT:

Тепловая мощность радиаторов отопления таблица

Алгоритм расчета настоящей теплоотдачи отопительных приборов для ваших индивидуальных условий такой:

  1. Определить, какая должна быть температура в доме и воды в системе.
  2. Подставить эти значения в формулу и рассчитать свою реальную Δt.
  3. Найти в таблице соответствующий ей коэффициент.
  4. Умножить на него паспортную величину теплоотдачи радиатора.
  5. Подсчитать число отопительных приборов, нужное для обогрева комнаты.

Для приведенного выше примера тепловая мощность 1 секции биметаллического радиатора составит 200 Вт х 0.48 = 96 Вт. Стало быть, для обогрева помещения площадью 10 м2 понадобится 1 тыс. Вт теплоты или 1000/96 = 10.4 = 11 секций (округление идет всегда в большую сторону).

Представленная таблица и расчет теплоотдачи батарей надо использовать, когда в документации указана Δt, равная 70 °С. Но бывает, что для разных приборов от некоторых фирм – производителей дается мощность радиатора при Δt = 50 °С. Тогда пользоваться этим способом нельзя, проще набрать требуемое количество секций по паспортной характеристике, только взять их число с полуторным запасом.

Для справки. Многие производители указывают значения теплоотдачи при таких условиях: t подачи = 90 °С, t обратки = 70 °С, t воздуха = 20 °С, что соответствует Δt = 50 °С.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти характеристики мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, а тут конструкция и форма изделия играет большую роль. Поэтому идеально сравнить стальной панельный обогреватель с чугунным затруднительно, их поверхности слишком разные.

Тепловая мощность радиаторов отопления таблица

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдаст 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) такой же высоты и таким же числом секций сможет выдать только 530 Вт при тех же условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Характеристики алюминиевых и биметаллических продуктов с точки зрения тепловой мощности практически идентичны, сравнивать их нет смысла.

Тепловая мощность радиаторов отопления таблица

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Упомянутые 5 алюминиевых секций GLOBAL высотой 600 мм имеют общую длину около 400 мм, что соответствует стальной панели KERMI 600х400. Выходит, что даже трехрядный стальной прибор (тип 30) выдаст лишь 572 Вт при Δt = 50 °С. Но надо учитывать, что глубина радиатора GLOBAL VOX составляет всего 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминия дает о себе знать, что отражается на габаритах.

В условиях индивидуальной системы отопления частного дома батареи одинаковой мощности, но из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они возвращают более холодную воду в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего появляется небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Из всего вышесказанного напрашивается простой вывод. Не суть важно, из какого материала изготовлен радиатор, главное, чтобы он был верно подобран по мощности и подходил пользователю во всех отношениях. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой можно устанавливать.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже было упомянуто выше. Но для того чтобы сравнение радиаторов отопления было корректным, его надо производить не только по теплоотдаче, но и по другим важным параметрам:

  • рабочему и максимальному давлению;
  • количеству вмещаемой воды;
  • массе.

Ограничение по величине рабочего давления определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота столба воды может достичь сотни метров. Кстати сказать, это ограничение не касается частных домов, где давление в сети не бывает высоким по определению. Сравнение по вместительности радиаторов может дать представление об общем количестве воды в системе, которое придется нагревать. Ну а масса изделия важна при определении места и способа его крепления.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Тепловая мощность радиаторов отопления таблица

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Заключение

Если провести сравнение более широкого круга производителей, то все равно выяснится, что по теплоотдаче и другим характеристикам первое место прочно удерживают алюминиевые радиаторы. Биметаллические обойдутся дороже, что не всегда оправдано, так как они лучше только по рабочему давлению. Стальные батареи – это скорее бюджетный вариант, а вот чугунные, наоборот, — для ценителей. Если не принимать во внимание советские чугунные «гармошки» МС140, то ретро радиаторы – самые дорогие из всех существующих.

Рекомендуем:

Тепловая мощность радиаторов отопления таблица Какие краны лучше выбрать для радиаторов отопления Тепловая мощность радиаторов отопления таблица Какие радиаторы отопления лучше выбрать — алюминиевые или биметаллические Тепловая мощность радиаторов отопления таблица Кварцевый обогреватель для дома – решение вопроса или очередная проблема

Радиаторы и обогреватели > Сравнение радиаторов отопления по теплоотдаче

Мощность радиаторов отопления

При проведении системы отопления важным параметром является правильный выбор радиаторов, поскольку их количество и параметры должны быть походящими для формирования оптимального и равномерного обогрева. Поэтому мощность радиатора должна быть рассчитана заблаговременно с помощью правильного метода.

Расчет можно осуществить самостоятельно, если знать площади помещений, параметры выбранных батарей и некоторые иные показатели. Поэтому за этим процессом можно не обращаться к специалистам.

Нюансы создания системы

Система отопления должна быть такой, чтобы обогрев был достаточно быстрым и равномерным. В каждую комнату квартиры или дома устанавливаются батареи, количество и мощность которых должны быть обязательно просчитаны.
Тепловая мощность радиаторов отопления таблица

Тепло, которое получается помещением, должно быть равно потерям тепла. Можно выделить один упрощенный способ расчета, в соответствии с которым на 10 кв. м. площади нужно устанавливать радиатор, мощность которого должна быть равна 1 кВт. Однако в реальности лучше всего устанавливать конструкции с небольшим запасом, причем желательно увеличивать полученное значение на 15%. Этот приблизительный расчет КПД приборов считается оптимальным для частного использования. Обычно получается мощность, которая будет немного больше требуемого значения, но можно быть уверенным в надежности и качестве обогрева.

Профессионалы при расчете отопления пользуются более сложными и специфическими методами, которые могут даже определить мощности прибора на 1 квадратный метр.

Особенности приобретения радиаторов

При покупке различных батарей нужно обязательно изучить их технические параметры. которые имеются в сопроводительной документации. Здесь указывается их КПД и другие характеристики. К ним можно отнести:

  • Мощность. которая может быть указана в расходе воды или иного вида теплоносителя, или же может быть представлена в виде ватт.
  • Размеры батареи. которые могут быть совершенно разными. Высота обычно варьируется от 200 до 600 мм. Небольшие изделия обычно создаются из стали, а вот высокие чаще всего являются чугунными или выполненными из современных и уникальных материалов. Нужно ориентироваться на расстояние, которое имеется между полом и окном помещения.
  • Напор. для которого предназначен прибор. Каждая система отопления обладает своим напором. Он может быть низкотемпературным, среднетемпературным или высокотемпературным. Обычно в документации к изделиям указывается тепловая отдача, причем она может быть представлена, например, в таком виде 55/45. В этом случае применять батарею можно в случае, если теплоноситель, проходящий через него, будет иметь температуру 55 градусов, а охлаждается он до 45 градусов.

Как выполнить расчет радиаторов

Для того чтобы определить, какова должна быть мощность батарей и сколько их нужно приобрести, используется специальная формула. Она выглядит следующим образом:

Q — мощность изделия, k — коэффициент теплопередачи радиатора, А — площадь поверхности отопительного прибора, которая представлена в кв. м. ΔT – температурный напор теплоносителя.

Из этой формулы можно найти любое значение, если известны остальные показатели. В результате, определяется КПД батарей, а также их количество, которое необходимо для обогрева определенного помещения в зависимости от его площади и других параметров.

Пример определения показателей:

Тепловая мощность радиаторов отопления таблица Например, важно определить, сколько нужно купить изделий для площади в 15 кв. метров. Для этого выполняются следующие действия – 1,5*1,15=1,725 кВт. После этого нужно прийти в подходящий магазин, чтобы выбрать оптимальные радиаторы. Обращать внимание нужно на их размер, который должен подходить для определенного помещения. Дополнительно надо учитывать мощность изделий.

Если в паспорте изделия указано, что k*A=31,75 ватт на 1 градус, и если предполагается, что в имеющейся системе отопления напор будет равен 35 градусов, то Q=35*31,75=1111,75 ватт. Этот показатель меньше, чем 1,725, рассчитанный ранее для определенного помещения. Если установить только этот прибор на комнату с размером 15 кв. метров, то обогрев будет недостаточным и неравномерным. Выходом из этой ситуации может быть:

  • купить большее количество радиаторов, например 2;
  • добавить несколько секций к имеющемуся изделию;
  • выбрать другую батарею.

Другие особенности выбора прибора

Система отопления считается одной из самых важных, поэтому при подсчете важно учитывать каждый квадратный метр помещения. Надо помнить, что если прибор предназначается для низкотемпературного напора, то полученный в результате расчета показатель нужно удваивать.

Тепловая мощность радиаторов отопления таблица

На теплоотдачу изделий также оказывает воздействие то место, где они будут располагаться в комнате. Учитывать надо и метод, который будет применяться для их подключения.

Таким образом, можно разными способами определить КПД и другие параметры радиаторов. В этом случае можно решить, какое количество элементов должно быть приобретено. Для этого может применяться специальная таблица значений, упрощенный вариант расчета или сложный способ, предполагающий применение специализированной формулы. Последний вариант считается самым верным, поскольку он позволяет получить точное значение.

teplosten24.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.