Воздушный радиатор


Если при включении отопительной системы некоторые батареи остаются холодными, это является следствием их завоздушивания. То есть, в них образуются пузырьки воздуха, требующие обязательного удаления. В некоторых случаях система начинает заметно булькать и журчать, как это делают небольшие лесные ручьи. Все это указывает на то, что отопление необходимо развоздушить. Давайте посмотрим, как спустить воздух из батареи отопления и какие инструменты нам для этого понадобятся. Также мы расскажем, откуда берется воздух в системах закрытого типа и открытого типа.

Причины завоздушивания

Многие люди интересуются, почему в системах отопления появляется воздух. И это действительно вызывает удивление, ведь отопительные системы являются герметичными. На самом деле завоздушенность – это довольно частое явление, проявляющее себя в частных домах и в многоквартирных домах. Только в многоквартирных постройках проблемой развоздушивания занимаются профильные специалисты поставщика тепла. В собственном доме этим вопросом придется заниматься самостоятельно.

Прежде чем мы расскажем, как спустить воздух из радиатора отопления, поведаем об основных причинах образования воздушных пробок:


  • Естественное образование воздуха при использовании алюминиевых радиаторов и некоторых других видов батарей низкого качества. Воздушные пузырьки образуются здесь в результате протекающей реакции между металлами и водой;
  • Проникновение воздуха вместе с водой – здесь могут содержаться растворенные газы, не проявляющиеся при обычных условиях, но выделяющиеся при нагревании и контакте с металлическими поверхностями, из-за чего теплоноситель воздушится;
  • При проведении ремонтных работ – батарея действительно может оказаться завоздушена после последнего ремонта. Если не спустить воздух, батарея в месте проведения ремонта может оказаться холодной;
  • Нарушение технологий монтажа отопительной системы – воздух в системе отопления может появиться еще на этапе проведения монтажных работ. И если монтажники не соблюдали уклоны и не ставили клапаны, позволяющие спускать воздух из системы из батарей, то проблема становится постоянной;
  • Трещины или случайные щели в элементах системы – через них происходит засасывание воздуха снаружи.

Воздушная пробка в системе отопления – это не всегда признак того, что монтажники сделали свою работу некачественно. Если батареи завоздушиваются постоянно, это может указывать на проблемы с водой – нужно провести ее анализ и установить систему водоочистки. Чаще всего воздушит именно алюминиевые батареи, в то время как биметаллические радиаторы такому практически не подвержены.

На что влияет воздух


Наличие воздуха в батареях отопления является препятствием для их нормального функционирования. В том месте, где скапливаются воздушные пробки, образуется холодная область. В результате эффективность работы падает, в помещениях становится заметно прохладнее. Если не выпустить воздух, то обогрев не сможет работать в полную силу.

При запуске циркуляционного насоса от батарей и труб слышно легкое бульканье – это прямой признак того, что у вас завоздушило систему отопления. Насос не может продавить напором воздушные пробки, из-за чего те циркулируют на месте, вызывая образование журчащих звуков. И поднимать напор бесполезно, так как нужно либо провести стравливание, либо попытаться долить в систему воду – иногда это действительно помогает.

Как выгнать воздушную пробку из системы отопления

Специалисты-медики говорят, что болезни можно лечить, но еще лучше предупреждать их появление. То же самое относится к отоплению и пробкам из воздуха. Давайте посмотрим, как избавляться от уже возникших пробок, а также поговорим о том, как избежать их появления в дальнейшем.

Предупреждение образования воздушных пробок

Избежать появления воздуха в системе отопления можно еще на самом первоначальном этапе ее запуска. Для этого необходимо правильно заполнить трубы и батареи теплоносителем. В открытых системах это делается следующим способом:

  • Открываем все вентили, чтобы обеспечить беспрепятственное движение теплоносителя;
  • Сливной вентиль оставляем закрытым;
  • Начинаем аккуратно наполнять систему водой.

Обратите внимание, чтобы напор был не очень большим.

При наполнении отопления закрытого типа следует спускать воздух следующим способом:

  • Подключаем опрессовочный насос, позволяющий прокачать стабильное давление в отоплении;
  • Закрываем краны на радиаторах;
  • Дожидаемся заполнения системы.

Теперь необходимо заполнить водой батареи и избавиться от воздуха с помощью кранов Маевского. Последовательно обходим все отопительные приборы, аккуратно открываем вентили, впускаем теплоноситель, удаляем воздушные массы с помощью вышеуказанных кранов, после чего вентили закрываем. В трубах должно поддерживаться давление в одну атмосферу, поэтому выполнять операцию удобнее вдвоем. На завершающем этапе работы включаем обогрев, дожидаемся достижения заданной температуры, после чего повторяем процедуру с батареями.

Предупредить появление воздуха в отоплении помогут хорошие радиаторы, например, стальные или биметаллические – в них вероятность образования воздушных пробок снижается почти до нуля. При проведении монтажных работ необходимо уделять внимание герметичности, аккуратно и полностью затягивая все соединительные части. Также рекомендуется в обязательном порядке установить автоматические или ручные спускники воздуха.

Что делать при образовании воздушных пробок


Наша задача – правильно стравить воздух из системы отопления. Если в доме или в квартире с индивидуальным отоплением установлены привычные многим радиаторы из чугуна, то дело осложняется тем, что в них может и не быть средств для устранения воздушных пробок. Спуск воздуха с чугунной батареи производится несколькими способами:

  • Путем аккуратного откручивания заглушки с помощью газового ключа;
  • Путем удаления теплоносителя и встраивания клапанов, позволяющих спустить воздух в любое время;
  • С помощью высокого давления воды – позволяет пробить воздушную пробку.

Первый способ самый сложный. Во-первых, заглушка может быть закрашена многочисленными слоями краски – ее нужно как-то содрать. А во-вторых, заглушка может напрочь приржаветь к корпусу батареи – в этом случае следует воспользоваться какой-либо жидкостью, позволяющей ослабить хватку ржавчины.

Следующий способ заключает в том, чтобы установить в чугунную батарею автоматический или ручной спускник воздуха. Местом для его установки служит все та же заглушка. Нарезаем в ней резьбу и монтируем воздухоотводчик. Теперь, как только в отоплении возникнет воздушная пробка, воспользуйтесь отводчиком и ваша проблема будет решена.

Если нет крана Маевского, согнать воздух можно с помощью мощного напора воды. Подключите отопление к водопроводу, откройте водопроводный кран с водой и дождитесь, пока давление сможет устранить воздушную пробку. Этот способ хорошо подходит для старых отопительных систем, где над проблемой завоздушивания особо никто не задумывался.

Удаление воздушной пробки спускниками


Спустить воздух из батареи отопления, а заодно и из труб, помогут автоматические или ручные спускники (краны Маевского). Сегодня они монтируются на все радиаторы, так как завоздушенность может проявить себя где угодно, даже если соблюдаются все нормативы и правила проведения монтажных работ. Стоит воздушный кран для радиаторов недорого, а пользы от него много – он позволит в любой момент прогнать образовавшийся воздушный затор.

Для того чтобы спустить воздух из батареи с помощью крана Маевского, необходимо определить место возникновения воздушной пробки. Делается это на ощупь, нужно просто ощупать отопительные приборы после запуска котла. Там, где вы обнаружите холодные участки, располагаются пробки, мешающие работе отопления – именно их нам и нужно удалить с помощью крана Маевского.

После того как будет определена локация пробки, необходимо повернуть кран и добиться выхода обнаруженного там скопления воздуха. Не забудьте подставить ведро или таз, чтобы не залить полы. Сигналом того, что вся воздушная пробка благополучно вышла, является струйка воды, сочащаяся из-под клапана. Пока вода пузыриться, это значит, что воздушные массы все еще выходят. Аналогичную процедуру проводим и на других батареях, где обнаружены пробки.

Проще всего установить на батареях отопления автоматические спускники воздуха. Их основные преимущества:


  • Самостоятельная работа, не требующая вмешательства человека;
  • Компактное исполнение – они не испортят интерьер;
  • Надежность – будучи исправными, они не подведут.

Автоматические спускники позволяют спустить даже самые небольшие количества воздуха. То есть, они не допускают его накопления. А ведь накопившиеся воздушные массы не только препятствуют работе отопления, но и приводят к образованию коррозии.

Теперь вы знаете, как можно убрать воздух из батарей отопления – проще всего сделать это с помощью автоматических спускников. Если в вашей системе их все еще нет, ничто не мешает смонтировать их в летний сезон, когда обогрев будет отключен. При отсутствии возможности установить спускники на батареях, их можно смонтировать рядом, прямо на трубе, вырезав небольшой участок и смонтировав туда тройничок с клапаном.

remont-system.ru

Причины появления воздушных пробок

Прежде чем выяснить, как спустить воздух из системы отопления, разберемся, почему он там скапливается. Основные причины:


  • проведение ремонтных работ – во время разбора/сбора элементов в них неизбежно попадает воздух;
  • неправильный запуск системы отопления в многоквартирном доме – по нормативам трубы должны заполняться водой медленно с одновременным стравливанием лишнего воздуха;
  • неплотное прилегание частей системы или плохая герметизация стыков – теплоноситель незаметно вытекает и испаряется, а извне втягивается воздух;
  • пониженное давление в трубопроводе, приводящее к образованию пустот и их заполнению воздухом;
  • повышенное количество кислорода в теплоносителе – в воде всегда присутствуют пузырьки газа, но если их слишком много, то могут образовываться воздушные пробки;
  • неправильное подключение системы теплого пола – расположение веток на разной высоте;
  • некорректная работа или отсутствие воздухоотводчика на батарее.

Кроме того, к скоплению воздуха может привести низкое качество радиатора. Алюминиевые приборы отличаются доступной ценой и высокой теплопроводностью. Но металл активно вступает в реакцию с водой, в результате которой выделяется газ водород. Проблему быстрой коррозии частично решает пленка, которой покрывается изнутри алюминий, но она со временем исчезает. Более надежный, долговечный и дорогостоящий вариант – биметаллические батареи, в которых алюминий совмещен со сталью, не поддающейся воздействию воды.

Как правило, с проблемой, как развоздушить батареи, сталкиваются жители последних этажей в многоквартирных домах. При нагревании кислород, растворенный в воде, поднимается вверх, формируя пробки. В частных домах с открытой системой отопления пузырьки воздуха свободно выходят через расширительный бак в верхней точке системы, поэтому воздух обычно не скапливается, за исключением некоторых случаев.

Признаки воздушной пробки и ее вред


Заподозрить наличие воздушной пробке в радиаторе можно по следующим признакам:

  • температура воздуха в квартире существенно ниже, чем у соседей;
  • батарея нагревается неравномерно – часть, в которой есть воздух, остается холодной;
  • слышны шипящие и булькающие звуки.

как спустить воздух из системы отопленияИз-за скопления воздуха в радиаторе нарушается работа системы отопления. Возможные последствия:

  • снижение эффекта от работы батареи – воздух в комнате не прогревается до необходимого уровня при существенных затратах энергии;
  • повреждение элементов трубопровода из-за разницы в температурах – одни части остаются холодными, другие – перегреваются;
  • ускорение коррозии радиаторов из-за длительного контакта металла с воздухом;
  • выход из строя циркуляционного насоса под воздействием эффекта «сухого трения».

Совет: Обнаружить скопление воздуха можно, постучав по батарее металлическим предметом. В зоне пробки звук будет более высоким и звонким, чем в части, наполненной водой.

Как выпустить воздух из батареи?

Ответ на вопрос, как спустить воздух из радиатора отопления, зависит от типа установленного на нем воздухоотводчика. Эти устройства необходимы для облегчения удаления лишнего газа из системы. Их стоит монтировать в тех зонах, где есть риск образования пробок, либо, что еще удобнее, – на каждой батарее. Возможные варианты:

  • кран Маевского (ручной регулятор);
  • автоматическая (поплавковая) система.

Кроме того, на батарее может быть установлен водоразборный кран либо заглушка.

Кран Маевского

Кран Маевского представляет собой запорный клапан игольчатого типа. Он монтируется в торце радиатора вверху. Если необходимо спустить воздух, его следует открутить с помощью специального ключа, который можно купить в хозяйственном магазине, или обычной отвертки. Некоторые модели оснащаются пластиковой рукояткой, для их открытия не нужны инструменты.

как спустить воздух из радиатора отопления
Использование крана Маевского для избавления от воздушных пробок в батарее

Этапы работы по удалению воздуха:


  1. Поставить под запорный клапан емкость для сбора теплоносителя.
  2. Плавно открутить кран Маевского. При этом начнет выходить воздух, что будет сопровождаться шипением. Необходимо дождаться вытекания равномерной струйки воды – это признак устранения пробки. Обычно на это требуется 5-7 минут.
  3. Закрыть клапан.

В процессе развоздушивания вода может начать выходить под давлением, брызгая в разные стороны. Следует положить ветошь на воздухоотводчик, чтобы жидкость впитывалась в нее и плавно стекала в емкость. Стоит учитывать, что вода может быть достаточно горячей, важно избегать ее попадания на кожу.

Важно: Перед открытием крана Маевского не нужно перекрывать весь стояк отопительной магистрали или дожидаться остывания теплоносителя. Эти действия не только являются лишними, но и снижают эффективность развоздушивания из-за падения давления в системе отопления.

Автоматический воздухоотводчик

Если установлен автоматический воздухоотводчик, то вопрос, как правильно спустить воздух из батареи, не возникает. Это устройство, которое может иметь прямую или угловую конструкцию, работает в автономном режиме. Оно монтируется на радиатор строго вертикально или горизонтально.

Автоматический воздухоотводчик оснащен поплавком, который герметично закрывает клапан при условии достаточного уровня воды в системе. Как только в батарее скапливается воздух, поплавок опускается, отверстие открывается, и газ выходит. То есть развоздушивание происходит без участия человека.

как развоздушить батареи
Радиатор с автоматическим отводчиком воздуха

Недостатком такого прибора для отвода воздуха является восприимчивость к качеству воды. Наличие примесей в теплоносителе приводит к скорой поломке механизма. В связи с этим следует использовать фильтры. Кроме того, нужно периодически заменять уплотнительное кольцо и чистить иглу клапана. В противном случае вода может начать подтекать.

Заглушка

Непростая задача – выпустить воздух из батареи отопления, если воздухоотводчик отсутствует, а вместо него установлена заглушка. Перед началом работы следует перекрыть доступ теплоносителя к радиатору.

Современные секционные батареи оснащаются верхними заглушками. Полностью снимать фитинг не нужно. Достаточно осторожно медленно провернуть его, сделав несколько оборотов, и дождаться, пока воздух выйдет. Предварительно все смежные поверхности стоит защитить тряпками.

Развоздушить старый чугунный радиатор сложнее, так как обычно заглушка на нем надежно зафиксирована паклей и краской. Алгоритм действий:

  1. Нанести на место соединения фитинга и батареи немного растворителя. Подождать 10-20 минут.
  2. Поставить под отверстие ведро. Положить тряпки на полу.
  3. С помощью разводного ключа открутить заглушку (неполностью), чтобы начал выходить воздух.
  4. Обмотать резьбу уплотнительным материалом и закрутить заглушку.
чугунный радиатор
Удаление воздуха из старого чугунного радиатора может потребовать больше усилий

Важно делать все аккуратно. Если не перекрыть воду и снять фитинг полностью, то из отверстия польется горячая вода под давлением.

Определить, что воздушная пробка устранена, можно, оценив температуру батарей. Секции, которые раньше были холодными, должны потеплеть.

Кран

На многих старых батареях стоят обычные водоразборные краны. При откручивании вентиля из отверстия начинает течь вода, а вместе с ней выходит накопившийся воздух. Может потребоваться слить несколько ведер жидкости, чтобы убрать весь лишний газ.

Для облегчения работы, желательно использовать длинный гибкий шлаг: один конец присоединить к крану, а второй – опустить в унитаз. Вентиль необходимо открывать максимально, чтобы обеспечить высокую скорость вытекания воды.

Частный дом

При возникновении воздушной пробки в отопительной системе частного дома нужно не только работать с каждой батареей в отдельности, но и производить удаление из всей системы в целом. Процедура может несколько отличаться в зависимости от того, используется система отопления с открытым или закрытым расширительным баком. Но в целом она сводится к тому, что и батарей выпускается воздух с помощью одного из описанных выше способов.

Воздушные пробки снижают эффективность работы отопительных систем и повышают риск поломок. Удалить лишний воздух из радиатора можно самостоятельно. Проще всего это сделать, если установлен ручной воздухоотводчик. В дальнейшем важно выяснить причину возникновения проблемы и устранить ее. В сложных ситуациях лучше обращаться к сотрудникам жилищно-эксплуатационных контор.

При первом столкновении с проблемой, как стравить воздух из батарей отопления, видео помогут вам избежать ошибок.

okanalizacii.ru

История создания радиатора

Автомобиль Benz Velo

Водяная система охлаждения появилась на заре двигателестроения. Впервые концепцию радиатора применили на первом серийном автомобиле под названием Benz Velo, который оказался в свободной продаже в 1886 году. Данную идею устройства продолжил развивать Вильгельм Майбах, который сконструировал изделие с сотами. Разработка нашла применение в конструкции модели Mercedes 35HP.  За последующие десятилетия и до наших дней устройство радиатора не претерпело глобальных изменений, оставшись практически в том же самом виде, что и во времена Майбаха.

Благодаря такому эффекту охлаждающая жидкость попадала в радиатор. Эффект термосифона основывается на том, что плотность воды понижается при нагреве. Разогретая вода благодаря этому свойству устремляется вверх. В итоге нагретая жидкость оказывалась в устройстве, проникая туда посредством прохода через верхний патрубок.

Автомобиль Mercedes 35HP

Внутри радиатора происходило охлаждение воды, плотность жидкости снова возрастала. Это приводило к тому, что вода опускалась в нижнюю часть радиатора, а уже оттуда проникала обратно в рубашку двигателя через нижний патрубок. Главным недостатком систем с эффектом термосифона стало то, что они не могли обеспечить должного охлаждения на фоне постоянно растущей мощности ДВС. Такие системы достаточно быстро вытеснили решения, которые основывались на применении центробежного водяного насоса (помпы).

Радиатор в системе жидкостного охлаждения

Главной задачей элемента является отвод тепла от силовой установки в атмосферу путем охлаждения жидкости, которая проходит внутри по каналам. Для обеспечения лучшего отвода тепла устройство монтируется в таком месте, где отмечен наилучший обдув встречным воздушным потоком в процессе движения автомобиля. Типичным местом установки в подкапотном пространстве является область за радиаторной решеткой спереди автомобиля. Стоит отметить, что даже в автомобилях с задним расположением ДВС радиатор зачастую устанавливается спереди. Отличием становится прокладывание более длинных магистралей системы охлаждения к двигателю.

Радиатор в подкапотном пространстве

Существуют и другие места для монтажа устройства охлаждения, но встречаются реже. Автомобили с заднемоторной компоновкой могут иметь радиатор, который установлен вдоль боковой стенки. Такое решение можно встретить на спортивных автомобилях, которые имеют сразу два радиатора охлаждения, расположенные вдоль обеих стенок моторного отсека. Эффективный обдув воздухом реализован путем использования воздухозаборников. Указанный воздухозаборник располагают в задней части машины на боковых стенках.

 Устройство радиатора

Устройство радиатора

а – устройство; б – паровой клапан открыт; в – воздушный клапан открыт.

  • Радиатор конструктивно имеет верхний (1) и нижний (7) бачок.  Эти бачки соединены между собой трубками (5) из латуни или алюминия. К этим трубкам посредством пайки прикреплены пластины (6), которые увеличивают площадь поверхностного охлаждения элемента. Через эту поверхность тепло отводится от охлаждающей жидкости и отдается в окружающую среду.
  • Верхний бачок имеет заливную горловину для заправки охлаждающей жидкостью. Горловина перекрывается пробкой (3). В этой пробке имеются паровой (11) и воздушный (12) клапаны.
  • Верхний бачок также имеет патрубок (2) для того, чтобы соединить радиатор с рубашкой охлаждения мотора. Такое соединение реализовано посредством резинового шланга.  Дополнительно имеется пароотводная трубка (4), а также датчик  электрического термометра (13).
  • Нижний бачок (7) имеет патрубок (8) для соединения устройства с насосом (помпой). Еще имеется  дополнительный кран, который способен обеспечить слив охлаждающей жидкости. На раме автомобиля радиатор крепится специальными крепежными деталями (9).

Так называемые сердцевины (пластины радиатора)  являются основными элементами теплообмена. В зависимости от типа сердцевины выделяют следующие типы радиаторов:

  1. трубчатые;
  2. пластинчатые;
  3. трубчато-ленточные и т.д.

Бачки радиатора могут быть изготовлены из пластика или металла. Если взглянуть на устройство более детально, тогда  основная часть сердцевины, по сути, является набором бесшовных алюминиевых или латунных трубок. Трубки, соединяющие верхний и нижний патрубки, имеют толщину стенок до 0,15 миллиметра. Жидкость, проходящая через сердцевину радиатора охлаждения, расходится на большое количество микропотоков. Каждая такая трубка покрывается своеобразными ребрами, которые являются тонкой гофрированной медной или алюминиевой лентой.

Для того чтобы алюминиевый продукт приблизился по качеству охлаждения к латунной конструкции,  его необходимо изготавливать большим по размеру и увеличивать толщину элемента. В начале эпохи автомобилестроения активно использовались сотовые радиаторы. Такое устройство было выполнено из небольших отрезков латунных трубок, которые имели пятиугольное сечение. Жидкость внутри таких трубок не циркулировала принудительно, а весь процесс охлаждения осуществлялся посредством контакта металлических ребер со встречным потоком воздуха. 

Вернемся к устройству современного радиатора. Паровой клапан, изображенный на рисунке, нагружается специальной пружиной (10). Пружина имеет упругость 1250—2000 г. Это позволяет нарастить давление в радиаторе охлаждения и повысить температуру закипания охлаждающей жидкости в жидкостной охлаждающей системе до отметки 110-119°С. Такое решение обеспечивает уменьшение объема охлаждающей жидкости во всей системе, что означает параллельное снижение массы двигателя. При этом сохраняется необходимая интенсивность охлаждения силового агрегата. Еще одним плюсом становится уменьшение потерь, под которыми следует понимать испарение охлаждающей жидкости. 

Воздушный клапан также нагружают пружиной, но более слабой по силе противодействия. Упругость такой пружины находится на отметке 50-100 г. Задачей воздушного клапана является пропуск воздуха внутрь устройства в том случае, если произошла конденсация охлаждающей жидкости после того, как она закипела и была охлаждена.

Крышка горловины радиатора

Другими словами, внутри системы за счет явления парообразования может возникнуть избыточное давление. Точка кипения охлаждающей жидкости соответственно ему повышается, при этом нет зависимости от атмосферного давления, так как давление сброса задается клапаном в крышке. Такое свойство системы охлаждения незаменимо в процессе езды по горной местности. По причине пониженного атмосферного давления в горах охлаждающая жидкость закипает быстрее, чем в обычных условиях. Данное решение установки воздушного клапана позволяет таким образом предотвратить разрушение радиатора. который может быть попросту раздавлен атмосферным давлением.

Пробка, оснащенная клапанами, обеспечивает открытие выпускного клапана в случае закипания охлаждающей жидкости внутри системы и возникновения избыточного давления, которое приблизительно находится на отметке 0,5 кг/см2. Пар выводится в пароотводную трубку. Впускной клапан обеспечивает доступ воздуха тогда, когда давление внутри оказывается ниже атмосферного давления (ниже 1 кг/см2), что возникает в устройстве при остывании охлаждающей жидкости.

В закрытой системе охлаждения для слива охлаждающей жидкости нужно открыть сливные краны и извлечь пробку радиатора. Чтобы спустить жидкость из водяной рубашки двигателя, в нижней части блока отдельно предусмотрен соответствующий кран для слива. Существует также система охлаждения открытого типа. В открытой системе горловина устройства охлаждения закрыта пробкой без клапанов. В такой системе вода закономерно кипит при температуре 100°С.

Регулировка температуры охлаждающей жидкости

Термостат

За поддержание постоянной температуры в системе охлаждения  двигателя отвечает термостат. Данный элемент распределяет движение охлаждающей жидкости по контурам. Эти контуры называются малый и большой круг. Рубашку двигателя можно считать малым кругом, движение потока через радиатор-большой круг. Возникает такая ситуация, когда охлаждения  наружным воздухом при движении ОЖ по большому кругу в жаркую погоду или при нагрузках  оказывается недостаточно. Чтобы обеспечить эффективный отвод нагретого воздуха и поддерживать постоянную температуру охлаждающей жидкости дополнительно устанавливается один или целый ряд вентиляторов. Такие вентиляторы  могут иметь механический привод (вискомуфту) или электрический привод. 

 Регулирование теплового режима «шторкой»

Жалюзи радиатора

Жидкостная система охлаждения двигателя внутреннего сгорания может быть оснащена двойным регулированием теплового режима. Первым регулятором выступает термостат, о котором мы уже говорили. Вторым терморегулирующим элементом становится шторка-жалюзи.

Устройства с двойным регулированием конструктивно имеют жалюзи, установленные непосредственно перед радиатором. Благодаря такому решению в сильные морозы радиатор можно прикрыть, уменьшив интенсивность обдува наружным воздухом. Отвод тепла снизится, а само тепло можно более эффективно использовать для поддержания рабочей температуры ДВС и интенсивного отопления салона автомобиля.

Жалюзи представляют собой пластины из металла, которые соединены между собой шарнирами. Эти шторки могут иметь вертикальное или горизонтальное расположение перед устройством. Управление таким решением осуществляется рукояткой из салона автомобиля, а также может быть реализовано автоматически в отдельных конструкциях. Принцип действия механического устройства заключается в том, что задвигая или вытягивая рукоять в салоне, водитель осуществляет поворот пластин. Происходит изменение щели между жалюзи и происходит регулировка интенсивности обдува радиатора воздушными потоками. Результатом становится воздействие на температуру охлаждающей жидкости.

В условиях предельно низких температур на капот и радиаторную решетку дополнительно крепят специальный утеплительный чехол. Такой чехол изготовлен из водонепроницаемой пожаробезопасной ткани. Указанные меры способствуют поддержанию рабочего теплового режима двигателя в необходимых рамках.

Установка дополнительного радиатора

Появление мощных высокофорсированных атмосферных и турбодвигателей, которые работают в самых разных режимах нагрузки,  поставило перед разработчиками задачу установить дополнительные устройства охлаждения. Инженеры реализовали параллельную установку дополнительного радиатора. Такое решение получило свой отдельный электрический вентилятор. Не стоит путать дополнительный радиатор охлаждения с интеркулером, который устанавливается для охлаждения сжатого воздуха в системах с турбонагнетателем.

Принцип работы 

Для правильного функционирования современные жидкостные системы охлаждения в процессе работы учитывают множество важнейших параметров. Специальные датчики снимают показания температуры двигателя, температуры охлаждающей жидкости и моторного масла, температуры за бортом и т.д.

Радиатор в разрезе

Если вкратце описывать принцип работы системы охлаждения, тогда  за точку отсчета стоит принять жидкостной насос. Этот элемент заставляет охлаждающую жидкость постоянно двигаться  и циркулировать по кругу. При этом проход через рубашку охлаждения двигателя (малый круг) позволяет жидкости омывать горячие стенки головки блока и цилиндров.  Когда температура охлаждающей жидкости растет, тогда при определенных показателях срабатывает термостат и открывает доступ жидкости в большой круг (радиатор). Так удается избежать перегрева двигателя и эффективно отдать жидкости избыточное тепло от нагретых деталей мотора. Когда горячая жидкость попадает в устройство охлаждения, от неё происходит отвод тепла в окружающую атмосферу. Полный цикл заканчивается, а охлажденная жидкость движется аналогично по новому циклу.

krutimotor.ru

Радиатор

Назначение и устройство радиатора

Радиатор предназначен для передачи теплоты от охлаждающей жидкости потоку воздуха, т. е. он является основным теплообменным узлом системы охлаждения двигателя.
Общее устройство радиатора жидкостной системы охлаждения двигателя представлено на рисунке 3.
Более подробно устройство радиатора показано на рисунках 1 и 2.

общее устройство радиатора системы охлаждения двигателя

Верхний 9 (рис. 1,а) и нижний 15 бачки радиатора соединены с сердцевиной 12. В верхний бачок впаяны заливная горловина 8 с пробой 7 и патрубок для подсоединения гибкого шланга, который подводит нагретую охлаждающую жидкость к радиатору.
Сбоку заливная горловина имеет отверстие для пароотводной трубки.
В нижний бачок впаян патрубок отводящего гибкого шланга 13.
К верхнему и нижнему бачкам прикреплены боковые стойки 6, соединенные пластиной, припаянной к нижнему бачку. Стойки и пластины образуют каркас радиатора.

устройство и работа радиатора жидкостной системы охлаждения двигателя

Основным теплообменным элементом радиатора является его сердцевина, состоящая из многочисленных трубок, соединенных в соты с помощью металлических пластин или лент. Трубки радиатора могут иметь круглое, овальное или прямоугольное сечение. При этом чем меньше площадь проходного сечения и тоньше стенка трубки, тем выше ее теплообменная способность.
Для прохода охлаждающей жидкости применяют шовные или цельнотянутые трубки из латунной ленты толщиной до 0,15 мм.

Сердцевины радиаторов автомобилей могут быть трубчато-пластинчатыми или трубчато-ленточными.
В трубчато-пластинчатых радиаторах охлаждающие трубки располагаются относительно потока воздуха в шахматном порядке в ряд или под углом (рис. 2,а-г). Пластины оребрения выполняются плоскими или волнистыми. Для усиления теплоотдачи на них могут быть выполнены специальные турбулизаторы в виде отогнутых просечек, которые образуют узкие и короткие воздушные каналы, расположенные под углом к потоку воздуха (рис. 2,д).

В трубчато-ленточных радиаторах (рис. 2,е) охлаждающие трубки располагаются в ряд. Ленту для решетки изготовляют из меди толщиной 0,05…0,1 мм. Для усиления теплоотдачи создают завихрения воздушного потока путем выполнения на ленте фигурных выштамповок или отогнутых просечек (рис. 2,ж).

В последнее время получили широкое распространение радиаторы из алюминиевого сплава, которые легче латунных и дешевле, однако их надежность и долговечность уступает радиаторам из латунных сплавов. Кроме того, латунные радиаторы проще ремонтировать при помощи пайки. Детали и элементы конструкции алюминиевых радиаторов соединяются обычно завальцовкой с применением герметизирующих материалов.

Радиатор соединен с рубашкой охлаждения двигателя патрубками и гибкими шлангами, которые прикреплены к патрубкам стяжными хомутами. Такое соединение допускает относительное смещение двигателя и радиатора без нарушения герметичности системы жидкостного охлаждения.

Пробка 7, закрывающая горловину 8 радиатора, состоит из корпуса 18 (рис. 1,б), парового 22 и воздушного 25 клапанов и запирающей пружины 21.

На стойке 20, с помощью которой к корпусу прикреплена запирающая пружина, установлен паровой клапан, прижатый пружиной 19. Воздушный клапан 25 прижимается пружиной 26 к седлу 27.
Плотное прилегание клапанов к седлам достигается установкой резиновых прокладок 23 и 24. При повреждении резиновых прокладок система охлаждения становится открытой и охлаждающая жидкость закипает при температуре 100 ˚С.
При исправных клапанах давление в системе несколько больше давления окружающей среды и температура кипения охлаждающей жидкости составляет 108…119 ˚С.

В случае закипания охлаждающей жидкости в системе охлаждения давление пара в радиаторе возрастает. При давлении 145…160 кПа открывается паровой клапан 22, преодолевая сопротивление пружины 19. Система охлаждения сообщается с атмосферой, и пар выходит из радиатора через пароотводящую трубку 17.
После охлаждения жидкости пар конденсируется и в системе охлаждения создается разрежение.
При давлении 1…13 кПа открывается воздушный клапан 25 и в радиатор через отверстие 28, и клапан начинает поступать воздух из атмосферы. Паровой и воздушный клапаны предотвращают возможное повреждение радиатора вследствие высокого давления, как с внешней, так и с внутренней стороны.
В случае использования в системе охлаждения расширительного бачка, клапаны могут размещаться в его пробке.

ленточная и пластинчатая сердцевина радиатора

Для регулирования потока воздуха, проходящего через сердцевину радиатора, в системе охлаждения грузовых автомобилей и автобусов, а также легковых автомобилей устаревших конструкций применяют жалюзи с приводом из кабины водителя (рис. 1,а).
Жалюзи изготовляются из набора вертикальных или горизонтальных пластин-створок из оцинкованного железа, которые объединены рамкой и шарнирным устройством, обеспечивающим одновременный (или групповой) поворот пластин вокруг оси. При перемещении рукоятки 4 вперед до отказа створки жалюзи полностью открываются, и воздух свободно проходит между трубками радиатора, отбирая у них излишки теплоты. Для регулирования температурного режима рукоятку привода жалюзи можно установить на фиксаторе 5 в любом промежуточном положении.
В некоторых автомобилях применяются жалюзи в виде брезентовых или кожаных штор, подпружиненных в специальном тубусе и оснащенных механизмом подъема и опускания.

Современные легковые автомобили, как правило, не оснащаются жалюзи для регулирования воздушного потока к радиатору – чаще применяются системы автоматического включения и выключения вентилятора системы охлаждения с помощью электрических или гидравлических устройств. Это позволяет повысить комфорт управления автомобилем.

Эффективность обдува сердцевины радиатора воздухом повышается за счет применения направляющего кожуха – диффузора 16, который крепится к рамке радиатора и охватывает по кругу вентилятор системы охлаждения. Диффузор направляет воздушный поток через сердцевину, исключая его движение мимо радиатора.

***

Особенности эксплуатации радиаторов

Поскольку радиатор изготовляют из тонкостенных трубок и пластин, он является очень нежным и хрупким устройством. Поэтому при обслуживании и ремонте необходимо бережно обращаться с радиатором, чтобы не повредить детали сердцевины, патрубки или бачки.

В летний период времени водители нередко используют в качестве охлаждающей жидкости воду – она дешевле и эффективнее участвует в процессах теплообмена благодаря физическим свойствам. Но такая экономия может привести к повреждению и даже разрушению деталей и узлов двигателя.
Не следует забывать, что антифризы уменьшают образование накипи на стенках рубашки охлаждения блока и головки блока. Кроме того, в современных автомобилях низкозамерзающие жидкости зачастую служат не только для охлаждения двигателя, но и для смазки некоторых узлов, например, подшипников жидкостного насоса системы охлаждения. Вода такие функции выполнять не может.

При использовании воды в жидкостной системе охлаждения вместо низкозамерзающих жидкостей в холодный период времени года, ее следует тщательно удалять из радиатора и рубашки охлаждения двигателя при постановке автомобиля на хранение в не отапливаемых помещениях и на открытой стоянке. В противном случае замерзшая вода (как известно, вода расширяется при замерзании) может нарушить герметичность системы, повредив стыковые соединения деталей и даже разорвать трубки сердцевины и бачки радиатора, головку блока и блок-картер двигателя.
По этой причине необходимо убедиться, что вода полностью вытекла через открытые краники на блоке и радиаторе (крышка радиатора при этом должна быть снята), а затем продуть систему несколькими оборотами коленчатого вала при помощи стартера или даже на несколько секунд запустив двигатель без охлаждающей жидкости.
Краны после слива воды из системы охлаждения лучше оставить открытыми.

Иногда вода в системе охлаждения может привести к перегреву двигателя при запуске в очень холодное время года, если в системе охлаждения предусмотрены терморегулирующие клапаны – термостаты. В период прогрева двигателя термостат закрывает допуск охлаждающей жидкости в радиатор, и направляет ее по малому кругу. В это время часть воды, находящаяся в радиаторе двигателя, патрубках и гибких шлангах, а также в радиаторе отопителя кабины, остается неподвижной и может замерзнуть, образовав ледяные пробки в различных участках большого круга, чаще всего – в трубках радиатора и патрубках.
После прогрева двигателя и открывания клапана термостата в большой круг системы охлаждения эти пробки зачастую не удается растопить из-за отсутствия циркуляции воды, и она продолжает перемещаться лишь по малому кругу, нагреваясь все сильнее. Это может привести к перегреву двигателя. В таких случаях необходимо принять меры к ликвидации ледяных пробок в системе – автомобиль срочно поставить в теплый гараж, а патрубки и трубки радиатора проливать горячей водой, пока пробки не растают. Если при этом двигатель не заглушается, следует внимательно следить за его температурой.
Избежать подобных неприятностей можно используя в системе охлаждения специальные низкозамерзающие жидкости — антифризы.

***

Устройство жидкостного насоса

k-a-t.ru

Функции, выполняемые кранами

Рассмотрим, для каких целей используются краны радиаторные, так как их назначение может быть различным:

Отключение радиатора Иногда система отопления уже функционирует, а на улице очень тепло, в этом случае можно просто-напросто перекрыть доступ теплоносителя, тем самым снизив температуру в помещении, если в комнате два и более радиатора, то можно отключить один из них, и температура также придет в норму
Перекрытие потока на время ремонта Раньше системы собирались без кранов, чтобы провести ремонтные работы или заменить один из радиаторов приходилось перекрывать конструкцию на вводе и сливать весь теплоноситель. Если же вы установите краны на каждом радиаторе, то сможете отключать только один элемент, а остальная система будет функционировать в нормальном режиме
Удаление воздуха В процессе эксплуатации в верхней части батарей часто собирается воздух, и, если его количество будет большим, может образоваться даже воздушная пробка. Для того чтобы быстро развоздушивать систему, используется специальный тип кранов, его мы опишем ниже
Регулировка температуры Этот вид изделий появился относительно недавно, но его популярность просто огромна, так как с его помощью можно настраивать температуру в помещении, это позволяет поддерживать оптимальный микроклимат в помещении и снизить затраты энергоносителей за счет рациональной эксплуатации отопительной системы

Важно!
Чтобы изделия выполняли свои функции корректно и служили максимально длительный срок, следует выбирать только качественную продукцию.
Не следует экономить на этих элементах, так как разница в стоимости будет не очень большой, зато надежность и функциональность будет намного выше, особенно если речь идет о термостатических кранах.

Типы изделий

Рассмотрим, какие варианты конструкций используются в системах и чем они отличаются друг от друга.

Запорная арматура

Этот вариант изделий имеет следующие особенности:

  • При необходимости можно перекрыть подачу теплоносителя, это позволит быстро провести ремонт и замену своими руками без отключения всей системы.
  • Позволяет мягко наполнять систему, исключая перепады давления и гидроудары за счет того, что вентиль можно открывать постепенно.
  • Изделия имеют очень привлекательный внешний вид, поэтому они органично впишутся в обстановку. Главное – подобрать оптимальный вариант, сочетающийся с радиатором.
  • Не стоит использовать данный вариант для регулировки потока подаваемой жидкости, так как он предназначен не для этого, и необходимую точность настроек вряд ли обеспечит. Такие конструкции нужны для отсекания части контура в случае надобности.

Что касается вариантов, то их два:

  • Шаровый кран для радиатора отопления представляет собой конструкцию, внутри которой расположен шарообразный узел, в положении открыто отверстие в нем совмещается с полостью трубы, в закрытом — поток перекрывается. Главное отличие от стандартных вариантов – корпус, который часто закрывается пластиком и регулировочная головка, а не вентиль или рычаг, эти факторы обеспечивают более привлекательный внешний вид изделия.
  • Второй вариант – вентили, в них механизм представляет собой шток с прикрепленным конусом, который в зависимости от необходимости открывает или закрывает полость. Этот вариант подходит и для регулировки интенсивности циркуляции, но все же лучше использовать один из вариантов, описанных ниже.

Важно!
Все вышеописанные варианты выпускаются как в прямом, так и в угловом исполнении, поэтому вам необходимо заранее определить конфигурацию системы, чтобы приобрести именно тот вариант, который будет удобнее всего.

Регулировочные узлы

Здесь следует запомнить одну простую рекомендацию – регулирующий кран для радиатора всегда устанавливается за запорным.

Вариантов два:

  • Конструкции с ручным управлением, обычно на них есть цифры, обозначающие температурные режимы, чтобы разобраться в значении каждого из них, ознакомьтесь с информацией, которую дает инструкция, идущая в комплекте. Основными преимуществами таких решений являются простота конструкции и демократичная цена.
  • Автоматический термокран на радиатор – более удобное решение, которое позволяет поддерживать температуру в помещении на определенном уровне, это очень удобно и позволяет создать комфортный микроклимат в комнате. Самые современные модели могут настраивать температурные показатели по времени суток и дням недели, это позволяет сократить энергопотребление и снизить затраты на отопление.

Что касается устройства, то оно подобно классическому вентилю, но в отличие от него клапан не двигается по резьбе, а нажимается штоком, на который воздействует либо рукоятка, либо специальная термоголовка, которая реагирует на изменение температуры в помещении и регулирует поток подаваемого теплоносителя.

Воздушные краны

Такой тип изделий как воздушный кран для радиаторов является неотъемлемой частью любой современной системы и позволяет удалять из батарей излишки воздуха, которые время от времени накапливаются в конструкции.

Изделие представляет собой корпус, внутри которого расположен специальный игольчатый клапан, конструкция предусмотрена под отверстия диаметром ½ дюйма, то есть примерно 15 мм, они стандартны и, как правило, подходят под большинство используемых радиаторов.

Что касается его использования, то тут все очень просто: с помощью специального ключика вы проворачиваете шток, в итоге чего игольчатый клапан открывается, и весь воздух выходит наружу, когда из крана потечет вода, его необходимо закрыть.

Некоторые спрашивают, существуют ли воздушные краны радиаторов диаметром 25 мм, в этом случае самым простым решением будет шаровый кран с воздухоотводным клапаном, так как краны Маевского под такой диаметр не производятся.

Вывод

Выбор качественных кранов во многом предопределяет надежность системы и ее функциональность, ведь с помощью современных систем можно поддерживать в доме оптимальный микроклимат практически в автономном режиме. Видео в этой статье поможет разобраться в некоторых важных нюансах получше.

gidroguru.com

 

Изобретение относится к авиадвигателестроению, самолетостроению.

Повышение температуры газа перед турбиной является приоритетным направлением развития авиадвигателестроения. Повышение температуры может быть достигнуто двумя путями: применением жаропрочных материалов и охлаждением элементов двигателя.

В авиационных газотурбинных двигателях (ГТД) используются системы воздушного охлаждения (П.К. Казанджан, Н.Д.Тихонов, А.К. Янко. Теория авиационных двигателей. М.: Машиностроение, 1983, с. 188÷193). Эффективность указанных систем зависит от температуры и расхода охлаждающего воздуха (там же с. 195, рис. 11.8, 11.9).

Для понижения температуры охлаждающего воздуха в авиационных ГТД используют теплообменные устройства, расположенные внутри газовоздушного тракта двигателя (Теория, расчет и проектирование авиационных двигателей и энергетических установок. Под ред. В.А. Сосунова, В.М. Чепкина — М.: Изд-во МАИ, 2003, с. 656, рис. 22.1). Однако технические возможности таких устройств ограничены хладоресурсом воздуха, проходящего через двигатель, а также размерами газовоздушного тракта двигателя.

Целью изобретения является расширение технических возможностей теплообменных устройств, используемых для охлаждения элементов ГТД.

Известны воздухо-воздушные радиаторы, которые устанавливают в крыле самолета и используют для охлаждения воздуха, поступающего из центробежного нагнетателя в цилиндры поршневого двигателя. Указанные радиаторы имеют воздушные каналы, расположенные под обшивкой крыла, входной и выходной ресиверы, к которым подводится и отводится воздух (Жовинский Н.Е. Силовые авиационные установки. М.: Воениздат, 1948, с. 289, рис. 219).

Поставленная цель достигается тем, что воздухо-воздушный радиатор выполнен в виде воздушного канала, расположенного под обшивкой летательного аппарата, например, в крыле. На входе и выходе из воздушного канала размещены входной и выходной ресиверы соответственно, к которым подводится и отводится воздух. Ресиверы соединены между собой нагнетателем, который перекачивает часть воздуха из выходного ресивера во входной.

Предпочтительно в качестве нагнетателя использовать центробежный либо струйный нагнетатели. Воздушный канал конструктивно может состоять из нескольких отдельных каналов.

Сущность изобретения заключается в том, что, во-первых, хладоресурс воздуха не ограничивается хладоресурсом воздуха, проходящего через двигатель, во-вторых, время пребывания воздуха в теплообменнике за счет его циркуляции и размеров летательного аппарата (того же крыла) многократно возрастает, в-третьих, интенсивность теплообменных процессов (за счет высоких скоростей движения воздуха в воздушных каналах благодаря той же циркуляции) остается высокой. Согласно законам теплопередачи и то, и другое, и третье ведет к увеличению количества теплоты, передаваемой внешней среде (атмосфере).

Эффективность охлаждения воздуха в воздухо-воздушном радиаторе с увеличением скорости полета уменьшается вследствие кинетического нагрева обшивки летательного аппарата. На скоростях полета более трех чисел Маха температура воздуха в радиаторе превышает 700 К.

Подача воды во внутреннюю полость радиатора (воздушный канал) снижает температуру воздуха в радиаторе. Наибольший эффект достигается, если воду подавать в смеситель, установленный на выходе из выходного ресивера.

Сущность изобретения заключается в том, что критической температурой воды является температура 650 К. Мгновенный переход воды из жидкой фазы в газообразную сопровождается мгновенным поглощением теплоты (более 2700 кДж/кг).

На фиг. 1 изображен воздухо-воздушный радиатор;

на фиг. 2 изображен воздухо-воздушный радиатор.

Воздухо-воздушный радиатор (фиг. 1) состоит обшивки крыла 1, входного ресивера 2, выходного ресивера 3, центробежного нагнетателя 4, входного воздушного канала 5, выходного воздушного канала 6, воздушного канала, расположенного под обшивкой крыла, соединяющего ресиверы (для обеспечения жесткости канала между обшивкой крыла и его силовой частью установлены ребра жесткости, в которых имеются отверстия для прохода воздуха в поперечном направлении).

Горячий воздух высокого давления, забираемый за компрессором ГТД, через канал 5 поступает во входной ресивер 2 и далее движется по воздушному каналу, расположенному между силовой частью крыла и обшивкой, делает вокруг крыла оборот. Обшивка крыла омывается с двух сторон: горячим воздухом изнутри и холодным воздухом снаружи (потоки движутся в перекрестном направлении). Между горячим и холодным воздухом устанавливается тепловой поток, определяемый коэффициентом теплопередачи, градиентом температур и площадью крыла, омываемой воздушными потоками. Охлаждаемый воздух попадает в ресивер 3, откуда часть воздуха через центробежный нагнетатель 4 возвращается в ресивер 2, а часть через выходной канал 6 — в систему охлаждения двигателя. Воздух, попавший в ресивер 2 через нагнетатель 4, и горячий воздух, попавший через канал 5, смешиваются, в результате температура горячего воздуха понижается. Далее идет повторение цикла охлаждения воздуха в радиаторе, но уже с меньшей начальной температурой. Через несколько циклов температура воздуха в выходном ресивере устанавливается на минимальном уровне в зависимости от доли воздуха, перепускаемого через нагнетатель (так называемый коэффициент циркуляции воздуха — отношение расхода воздуха, проходящего через нагнетатель, к расходу воздуха, проходящему через воздушный канал, расположенный под обшивкой крыла).

Исследования показывают, что при коэффициентах циркуляции воздуха более 0,9 температура охлажденного воздуха приближается к температуре обшивки летательного аппарата (разница в температурах 20÷30 град).

На скоростях полета более трех чисел Маха температура обшивки летательного аппарата, и соответственно, температура охлажденного воздуха растут независимо от характеристик радиатора: коэффициента теплопередачи, коэффициента циркуляции, площади обшивки и т.д. В этих условиях для понижения температуры охлаждаемого воздуха (если это необходимо) используется вода, которая подается во внутреннюю полость (воздушный канал) радиатора, а лучше — в смеситель 7, установленный на выходе из выходного ресивера (фиг. 2). Испарение воды, которое в этих условиях происходит мгновенно, понижает температуру воздуха до заданной величины при достаточно умеренных расходах воды (исследования показывают, что в диапазоне скоростей полета до четырех Махов расход воды составляет не более 30% от расхода топлива).

Для привода центробежного нагнетателя требуется специальный привод и дополнительная мощность в пределах 1% от мощности турбины ГТД. Если коэффициент циркуляции небольшой, то можно обойтись струйным нагнетателем 8, который работает по принципу эжектора, у которого в качестве активного рабочего тела используется воздух высокого давления, поступающий для охлаждения в воздухо-воздушный радиатор (фиг. 2).

Воздухо-воздушный радиатор как энергетическая система позволяет при современном уровне технологий производства ГТД (жаропрочность и способы охлаждения лопаток) снять ограничение по температуре лопаток ГТД в диапазоне скоростей полета до четырех чисел Маха (расчетная температура газа перед турбиной — 2400 К).

Сопутствующим результатом является то, что воздухо-воздушный радиатор решает проблему обледенения летательного аппарата на принципиально новом уровне (обледенение исключается как явление).

1. Воздухо-воздушный радиатор, разделительной поверхностью которого является обшивка летательного аппарата, под которой размещен воздушный канал, соединяющий входной и выходной ресиверы, к которым подводится и отводится воздух, отличающийся тем, что ресиверы соединены между собой нагнетателем, который перекачивает часть воздуха из выходного ресивера во входной ресивер.

2. Воздухо-воздушный радиатор по п. 1, отличающийся тем, что в качестве обшивки летательного аппарата используется обшивка крыла.

3. Воздухо-воздушный радиатор по п. 1, отличающийся тем, что в качестве нагнетателя используется центробежный нагнетатель.

4. Воздухо-воздушный радиатор по п. 1, отличающийся тем, что в качестве нагнетателя используется струйный нагнетатель.

5. Воздухо-воздушный радиатор по п. 1, отличающийся тем, что воздушный канал конструктивно состоит из нескольких отдельных каналов.

6. Способ повышения эффективности воздухо-воздушного радиатора, разделительной поверхностью которого является обшивка летательного аппарата, под которой размещен воздушный канал, соединяющий входной и выходной ресиверы, к которым подводится и отводится воздух и которые соединены между собой нагнетателем, перекачивающим часть воздуха из выходного ресивера во входной, заключающийся в том, что на скоростях полета летательного аппарата более трех чисел Маха в воздушный канал подается вода.

7. Способ повышения эффективности воздухо-воздушного радиатора, разделительной поверхностью которого является обшивка летательного аппарата, под которой размещен воздушный канал, соединяющий входной и выходной ресиверы, к которым подводится и отводится воздух и которые соединены между собой нагнетателем, перекачивающим часть воздуха из выходного ресивера во входной, заключающийся в том, что на скоростях полета летательного аппарата более трех чисел Маха в смеситель, установленный на выходе из выходного ресивера, подается вода.

www.findpatent.ru

Назначение радиатора

Изучая, что такое радиатор, необходимо вникнуть в суть устройства двигателя автомобиля. Мотор представляет собой систему, внутри которой благодаря электрической искре происходит возгорание топливной смеси. При этом в цилиндрах наблюдается образование тепловой энергии, которая впоследствии преобразовывается в механическую движущую силу машины. Она действует в момент старта автомобиля.

Имея такое устройство, двигатель быстро нагревается. Уровень поднятия температуры требует постоянного контроля. Если нагрев превысит допустимое значение, мотор перегреется и перестанет работать. Чтобы избежать подобного исхода, применяется система охлаждения. Ее частью и является радиатор.

Это оборудование отводит тепло от жидкости системы охлаждения. В зимний период радиатор печки нагревается от тепла двигателя. Жидкость перед тем, как вернуться в систему охлаждения, воздействует на нее. Так нагревается салон. Поэтому замена радиатора печки также периодически требуется при эксплуатации автомобиля.

Устройство радиатора

Радиатор состоит из металлических многослойных пластин и трубочек. Благодаря такому устройству у прибора увеличивается площадь соприкосновения с атмосферным воздухом. Сам же прибор расположен чаще всего в передней части машины под капотом. Во время движения автомобиля радиатор способен пропускать через себя много воздуха.

Радиатор имеет несколько основных элементов. В первую очередь — это сердцевина. Она составляет охлаждающий отсек. Также у конструкции есть бачки (коробочки) с патрубками. Есть у них вид верхний и нижний. Радиаторы имеют в сердцевине овальные трубки из латуни. Они расположены в шахматном порядке. Трубки соединены с ребрами.

Верхняя коробка имеет горловину, а нижняя – кран. Он сливает жидкость для охлаждения. Она проходит через весь двигатель, забирая излишнее тепло и вынося его в радиатор. Здесь антифриз снова охлаждается.

Обслуживание радиатора

Рассматривая, что такое радиатор, нужно сказать о принципах его обслуживания. В некоторых моделях автомобилей почистить радиатор будет просто. В некоторых марках машин этот процесс потребует больших финансовых затрат. Поэтому проще купить сразу новый радиатор.

В летний период система охлаждения автомобиля требует особого внимания. Именно в этот отрезок времени велика вероятность его загрязнения пылью, пухом и т. д. Помимо внешних факторов, радиатор может накапливать масляную пленку. Именно она приводит к снижению циркуляции воздуха, а также снижению охлаждающих способностей системы.

Зная особенности радиатора своей машины, можно будет принять правильное решение в процессе его техобслуживания. Со временем любая система охлаждения потребует ремонта. Чтобы этого не произошло как можно дольше, необходимо правильно настраивать систему охлаждения в летний период, беречь ее от загрязнений.

Ремонт радиатора

Ремонт системы охлаждения может потребоваться по разным причинам. Самыми частыми из них являются загрязнение внутренних полостей или течь хладагента. В любом случае причину точно может установить только специалист. Если удалось понять, чем вызвана неисправность, можно выполнить ремонт самостоятельно.

Сначала нужно узнать, как снять радиатор. Для этого сливается весь антифриз из системы. В некоторых моделях есть сливные отверстия в нижней части радиатора. Во всех остальных автомобилях этот процесс требует снять гибкий шланг с нижнего патрубка.

Очистку сердцевины лучше проводить при помощи специальных средств. Их применяют согласно инструкции производителя.

Устранение течи

Более сложной поломкой считается устранение течи антифриза. Если это явление определяется возле пластмассового патрубка, который входит в радиатор, решить проблему самостоятельно не получится. Если трещины появляются в трубках устройства, их можно устранить при помощи специального герметика.

При масштабных поломках (например после аварии) может потребоваться сварка. В некоторых случаях водителя может спасти от замены радиатора специальное вещество. Оно называется «холодной сваркой».

Определить качество ремонтных работ поможет только подключение радиатора. Антифриз заливают в систему и дают двигателю поработать около 30 мин. Только после этого станет ясно, удалось ли устранить течь.

Рассмотрев, что такое радиатор, какими функциями и особенностями он обладает, можно самостоятельно произвести обслуживание системы охлаждения. Не имея достаточного опыта, такую работу лучше доверить специалисту.

fb.ru

РЕКОМЕНДАЦИИ Для полноценной реализации технических характеристик нашей продукции и гарантии её длительной эксплуатации убедительно просим Вас внимательно ознакомиться с параметрами продукции и рекомендациями по её применению при выборе термоэлектрического решения.

Онлайн заказ продукции в наличии с сайта

 

КАК ЗАКАЗАТЬ Заказать продукцию в наличии можно с сайта в режиме онлайн, после оформления заказа Вам будет направлен счет на оплату.

ОПЛАТА Поставка продукции осуществляется на условиях 100% предоплаты по безналичному расчету, произвести оплату необходимо в соответствии с присланным Вам коммерческим счетом. Продукция резервируется под Ваш заказ на 5 рабочих дней на время ожидания оплаты.

СРОКИ Ваш заказ будет готов к отгрузке в срок не более чем 10 рабочих дней с момента поступления оплаты на наш расчетный счет.

ДОСТАВКА Стоимость доставки определяется на этапе оформления заказа в корзине,  рассчитывается в зависимости от службы доставки и выбранного региона доставки.

Ориентировочные сроки получения груза после отгрузки с нашего склада: Почта России – 3-4 недели(возможна доставка посылки курьером); Деловые Линии – 1-2 недели, Экспресс-доставка (Major exspress) – 2-5 дней. Внимание, доставка с помощью Деловых линий происходит до ближайшего к Вам терминала этой транспортно-логистической компании. Возможна поставка товара другой транспортной компанией или курьерской службой после согласования с Покупателем. Оригинал счета, накладная и счет-фактура, высылаются вместе с товаром.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА Гарантийный срок — 12 месяцев с момента начала эксплуатации, но не свыше 18 мес. с момента отгрузки. Средний ресурс работы термоэлектрических модулей — не менее 10 лет, при соблюдении условий монтажа и эксплуатации. Гарантии не распространяются на продукцию, вышедшую из строя из-за нарушений условий хранения, транспортировки, распаковки, монтажа и эксплуатации.

 

Заказ продукция под запрос

 

КАК ЗАКАЗАТЬ Любую продукцию представленную на сайте можно заказать через отдел продаж — заполните форму обратной связи, напишите письмо на почту или позвоните нам.

ОПЛАТА Поставка продукции осуществляется на условиях 100% предоплаты по безналичному расчету, произвести оплату необходимо в соответствии с присланным Вам коммерческим счетом.  Договора на поставку оформляются на заказы от 100000 рублей.

СРОКИ При отсутствии продукции на складе срок поставки составит от 6 до 12 недель в зависимости от количества (минимальный заказ 100 штук) и дополнительных опций. В случае наличия на складе заказ   будет готов к отгрузке в срок не более чем 10 рабочих дней с момента поступления оплаты на наш расчетный счет.

ДОСТАВКА Стоимость доставки определяется на этапе формирования счета,  рассчитывается в зависимости от службы доставки и выбранного региона доставки. Может быть включена в счет по желанию Покупателя.

Ориентировочные сроки получения груза после отгрузки с нашего склада: Почта России – 3-4 недели(возможна доставка посылки курьером); Деловые Линии – 1-2 недели, Экспресс-доставка (Major exspress) – 2-5 дней. Внимание, доставка с помощью Деловых линий происходит до ближайшего к Вам терминала этой транспортно-логистической компании. Возможна поставка товара другой транспортной компанией или курьерской службой после согласования с Покупателем. Оригинал счета, накладная и счет-фактура, высылаются вместе с товаром.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА Гарантийный срок — 12 месяцев с момента начала эксплуатации, но не свыше 18 мес. с момента отгрузки. Средний ресурс работы термоэлектрических модулей — не менее 10 лет, при соблюдении условий монтажа и эксплуатации. Гарантии не распространяются на продукцию, вышедшую из строя из-за нарушений условий хранения, транспортировки, распаковки, монтажа и эксплуатации.

В случае выявления брака Доставка товара в наш офис осуществляется Покупателем самостоятельно.

При получении товара в транспортной компании в случае выявления несоответствия поставляемого оборудования товарораспорядительным документам, Покупатель уведомляет об этом Поставщика и составляет соответствующий акт. Мы обязуемся в согласованные с Покупателем сроки, устранить выявленные недостатки.

Претензии к комплектации, документации, внешнему виду после подписания товарораспорядительных документов не принимаются.

Другие вопросы можно решить, позвонив нам по телефону: +7 (812) 339-8997.

ecogenthermoelectric.com


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.