Клапан напорный


Принцип работы предохранительного клапана

На рисунке показан предохранительный клапана седельного типа.

Предохранительный клапан седельного типа

Основными элементами предохранительного клапана являются:

  1. корпус;
  2. пружина;
  3. запорно-регулирующий элемент;
  4. седло.

В исходом состоянии усилие Fпр пружины 2 прижимает запорно-регулирующий элемент (конус) 3 к седлу 4. Напорная линия отделена от сливной.

В случае если сила Fг давления потока на запорно-регулирующий элемент превысит силу Fпр, конус сместится вверх, пропуская поток из напорной линии в сливную.

При отсутствии давления в линии слива величина усилия Fг определяется по формуле:



Регулировка давления настройки предохранительного клапана осуществляется путем изменения предварительного поджатия пружины.


Предохранительные клапаны прямого действия

Клапан предохранительный прямого действия золотникового типа

В клапанах прямого действия на запорно-регулирующий с одной стороны действует усилие пружины с противоположной — сила давления жидкости.

Пружину в таких клапанах называют силовой, т.к. именно она оказывает силовое воздействие, удерживающее запорно-регулирующий до момента открытия.

Предохранительный клапан седельного типа, рассмотренный ранее, является примером клапана прямого действия. К этому же типу относят клапаны золотникового типа.

В исходном состоянии золотник 3, установленный в корпусе 1, перекрывает каналы в напорной и сливной линиях. При увеличении силы давления до величины превышающей усилие пружины 2, золотник будет перемещаться вверх, открывая канал для прохода потока из напорной линии в сливную.

Характеристика клапана прямого действия


Характеристика предохранительного клапана прямого действия

Характеристика предохранительного клапана прямого действия имеет достаточно большой подъем.

Капаны прямого действия склонны к автоколебаниям. При больших расходах и высоких давлениях размеры пружины должны быть очень большими.



Устройство демпфирования

Клапан с демпфером

На работу предохранительного клапана влияют не только статические, но и динамические нагрузки.

Для снижения негативного влияния автоколебаний подпружиненного запорно-регулирующего элемента в предохранительных клапанах прямого действия используют устройства демпфирования.

Наиболее распространенным устройством демпфирования является — демпфирующий поршень, который жестко связан с запорно-регулирующим элементом.

Для демпфирования в поршне может быть выполнен узкий канал или снята лыска, как в примере показанном на рисунке.

Во время движения поршня жидкость движется в малом зазоре. При этом возникает демпфирующее усилие направленное в сторону противоположную движению поршня.

В конструкции большинства современных гидравлических предохранительных клапанов прямого действия присутствует демпфирующий поршень.

Предохранительные клапаны непрямого действия


При увеличении расхода через предохранительный клапан необходимо увеличивать и диаметры подводных каналов и запорно-регулирующего элемента. Вследствие увеличения площади уплотняемой поверхности потребуется и увеличение усилия поджатия пружины, а значит и увеличение самой пружины.

Для обеспечения относительно небольших габаритов клапана при больших значениях расхода используют предохранительные клапаны непрямого действия, состоящие из основного и управляющего клапана.



Предохранительный клапан непрямого действия

Клапан управления представляет собой классический предохранительный клапан прямого действия. Этот клапан способен пропустить лишь небольшой расход. Однако при его открытии за счет возникшего перепада давления на постоянном дросселе 6 запорно-регулирующий элемент 5 переместится вверх соединив напорную линию со сливом.

Пружина 4 в этом клапане мягкая, она предназначена для возвращения запорно-регулирующего элемента в исходное состояние.


Настройка клапана осуществляется регулировочным винтом 1, который позволяет изменить предварительное поджатие силовой пружины 2.

www.hydro-pnevmo.ru

Общие сведения

Клапаны давления

Регулиpующая гидpоаппаpатуpа

 

Регулирующие аппараты управляют давлением, расходом и направлением потока масла путём частичного открытия рабочего проходного сечения. К ним относятся клапаны давления, дроссели, регуляторы и синхронизаторы расходов, дросселирующие распределители.

 

Клапаны давления – это аппараты, предназначенные для управления давлением рабочей среды.

Различают клапаны прямого и непрямого действия. У первых размеры рабочего проходного сечения изменяются в результате непосредственного воздействия потока масла на запорно-регулирующий элемент, у вторых эти размеры изменяются основным запорно-регулирующим элементом в результате воздействия потока масла на вспомогательный запорно-регулирующий элемент. Клапаны прямого действия применяют при небольших расходах масла и рабочих давлениях.

По назначению клапаны давления разделяют следующим образом:

1) напорные гидроклапаны (предохранительные и переливные),

2) редукционные клапаны,

3) клапаны соотношения давлений (или пропорциональные),

4) клапаны разности давлений (или дифференциальные).


Существуют также комбинированные аппараты, которые могут выполнять в гидросистемах одновременно функции редукционного и переливного клапанов (в зависимости от направления потока), редукционного клапана и реле давления.

 

 

Напорные клапаны используются в гидросистемах в функции предохранительных клапанов или переливных.

Предохранительные клапаны являются аппаратами эпизодического действия, предназначенными для защиты гидросистемы от повышения давления масла сверх установленной величины. При повышении давления сверх допустимого клапан открывается и избыток масла сливается в бак. Обычно клапан срабатывает редко.

Предохранительные клапаны используются в системах машинного регулирования.

Переливные клапаны предназначены для поддержания определенного давления в гидросистеме, а также для предохранения системы от перегрузок. Обычно через переливные клапаны постоянно сливается – "стравливается" – часть масла, нагнетаемого насосом. Используются в системах дроссельного регулирования.

Условное обозначение напорных клапанов и место их установки в системе показано на рис. 4.1,б.

 

Клапан напорный В качестве предохранительных и переливных используют одни и те же конструкции напорных клапанов прямого (например, клапан плунжерного типа – рис. 4.1 и 4.2) и непрямого (например, клапан по рис. 4.3) действия.
5.1.2.1 Для клапана давления прямого действия (рис. 4.1) уравнение равновесия сил на плунжере (если пренебречь трением) можно представить в виде: p×F = Pпр , где p – давление масла в системе; F – площадь торца плунжера; Рпр – сила пружины. Когда p < Рпр/F, клапан закрыт. Когда p > Рпр/F, клапан открывается и масло идет на слив, при этом, чем кольцевая щель между правым буртом плунжера и расточкой А корпуса больше, тем сильнее падает давление p.

При колебаниях давления плунжер двигается вправо или влево до тех пор, пока не установится такой размер щели, при котором восстанавливается равновесие сил на плунжере.



Для различных целей клапан может быть применён в одном из четырёх исполнений (рис. 4.2). Переход от одного исполнения к другому осуществляется соответствующим разворотом правой и левой крышек.

Клапан напорный Рассмотрим одно из исполнений (рис. 4.2,а). Если масло находится под давлением p1 в подводимом к клапану потоке и p2 в отводимом, то клапан поддерживает постоянную разность давлений: p1×F = Pпр+p2×F, откуда p1–p2 = Pпр/F = const. При этом масло проходит только в одном направлении, то есть аппарат выполняет также функцию обратного клапана. Клапан может использоваться для дистанционного управления потоком (рис. 4.2,б,в), а также для обеспечения последовательности работы двух рабочих органов (рис. 4.2,г).

 

5.1.2.2 Для напорного гидроклапана непрямого действия (рис. 4.3,а,б,в) уравнение равновесия сил на поршне (без учета сил инерционных, трения и колебаний жёсткости пружины) можно представить в виде:

p1×(FВ+FГ) = pД×FД+Pпр+G,

где р1 – давление в подводимом потоке масла;

pД – давление в полости Д;

FВ, FГ, FД – площади торцев поршня в соответствующих полостях, при этом FВ+FГ = FД;

Pпр – сила пружины;

G – вес поршня.

Рассмотрим работу клапана.

1) Клапан в качестве предохранительного действует следующим образом. Если давление в напорной линии меньше того, на которое настроен клапан, то p1= pД, сумма сил, действующих на поршень сверху, больше сил, действующих снизу, поршень находится в крайнем нижнем положении и проход маслу из полости А в полость Б закрыт.

При возрастании давления в системе выше давления "настройки" клапана шарик поднимается и полость Д соединяется со сливной линией, в результате pД резко падает. Его возрастание не может произойти мгновенно, т.к. на пути масла из полости В в полость Д имеется гидравлическое сопротивление – демпфер 7. В результате силы, действующие на поршень снизу, превысят сумму сил, действующих сверху, поршень поднимется и откроет щель для выхода масла из полости А в полость Б и сливную линию. После снижения давления пружина 8 возвращает поршень, а пружина 3 – шарик в первоначальные положения.

 


Клапан напорный 2) При работе в качестве переливного клапан непрерывно пропускает часть масла из напорной линии в сливную, обеспечивая при этом поддержание постоянного давления в системе. Так, при увеличении p1 открывается шариковый клапан, равновесие сил на поршне нарушается и он перемещается вверх, увеличивая щель, связывающую полости А и Б. Давление p1 при этом уменьшается, и когда восстановится равновесие сил на поршне, его перемещение прекращается. При уменьшении p1 поршень идет вниз, уменьшая щель, связывающую полости А и Б. Давление увеличивается и когда оно достигает величины, на которую настроен клапан, перемещение поршня прекращается. Т.о., при работе системы под нагрузкой насос будет подавать масло под постоянным давлением, определяемым настройкой переливного клапана.   3) Если полость Д через отверстие 11 соединить каким-либо образом со сливной линией, например, с помощью направляющего распределителя (рис. 4.3,г, а также на рис. 7.1 – аппараты К1 и Р3, на рис. 7.2 – клапан К2 и линия 6, клапан К3 и линия 5), то можно разгружать систему от давления, пуская все масло от насоса через клапан в бак. В этом случае клапан работает в качестве направляющего аппарата.

 

studopedia.su

Они предназначены для ограничения или поддержания давления на определенном уровне в гидролиниях путем непрерывного или эпизо­дического слива рабочей жидкости. Это в основном предохранительные и переливные клапаны.

Переливные и предохрани­тельные клапаны имеют идентичную конструкцию, но последние предназна­чены для предохранения гидропривода от давления, превышающего установ­ленное, путем слива жид­кости в моменты увеличе­ния этого давления (эпизо­дический слив жидкости), а переливные — непрерывного слива рабочей жидкости во время работы.

Клапан напорный В клапанах непрямого действиях (рис) имеются основ­ной 7 и вспомогательный 1 клапаны. Необходимая величина давле­ния устанавливается с помощью винта 3 и пружины 2 первого кас­када. Основной клапан 7, который садится в седло, размещенное в корпусе 4, выполнен вместе с поршнем 6.
рез постоянный дроссель 8 напорный поток Q жидкости подводится к клапану 1 первого каскада и надпоршневую (междроссельную) полость 9. Пружина 5 прижимает клапан 7 к седлу. Потребляемый поток обозначен через Qn Если напорное давление жидкости выше необходимого (настраи­ваемого), то вначале открывается клапан 1 первого каскада и осевое отверстие в клапане 7 в бак. При дальнейшем повышении напорного давления и Q создается разность давлений на дросселе 8, а следова­тельно, и на поршне 6. Последний перемешается вверх, и открывается основной клапан, поэтому жидкость сливайся в бак через зазор между основным клапаном 7 второго каскада и седлом в корпусе 4.

Делитель потока.

Для обеспечения определенного соотношения или равенства скоростей, например, двух гидродвигателей, расположенных на значительном расстоянии друг от друга, если абсолютной величине этих скоростей не предъявляется жестких требований, применяются гндроклапаны соотношения расходов, предназначенных для под­держания заданного соотношения расходов рабочей жидкости в двух или более параллельных потоках.

К гидроклапанам соотношения расходов относятся делители по­тока, которые предназначены для разделения одного потока жидко­сти на два и более и поддержания расходов в разделенных потоках в определенном соотношении. На рис. а приведена схема делителя потоков с клапанным и запорно-регулирующими элемен­тами. Он состоит из блока подвижных сопел 2, способных переме­щаться в осевом направлении относительно корпуса 3, и двух упо­ров-заслонок 1 и 4. Положение блока сопел 2 определяется перепа­дом давления на его горцах. В случае увеличения давления на од­ном из торцов блока сопел, например, на левом, что соответствует уменьшению расхода жидкостей из него, блок сместится вправо и уменьшит правый зазор между соплом и заслонкой 4, что приведет к уменьшению расхода в гидролинии, подключенной к правой тор­цовой полости, то есть расходы через последнюю и левую торцо­вую полости выравниваются.

Для разделения потоков на два неравные потока необходимо диа­метры соответствующих сопел выполнять в отношении, которое требу­ется от соотношения разделяемых потоков. Более высокую точность соотношения можно получить делителем потока (рис. б), со­стоящего из двухщелевого золотникового распределителя 3 и двух постоянных дросселей 1 и 2, смонтированных в корпусе 4. При из­менении одного из разделяемых потоков в торцовой полости золот­ника 3 изменяется и давление в этой полости. Поэтому последний перемещается в сторону с меньшим давлением. Расходы через ра­бочие щели золотника выравниваются. Если необходимо получить соотношение двух неравных потоков жидкости, то необходимо ус­тановить дроссели 1 и 2 с разными гидравлическими сопротивле­ниями или использовать Клапан напорный регулируемые дроссели и установить на них необходимые перепады давлений.

Условное обозначение синхронизаторов расходов по ГОСТ 2.781 -96:

· делитель потока (рис. в);

· сумматор потока (рис. г)

 

Гидрораспределители.

Гидравлический распределитель – гидроаппарат, предназначен­ный для изменения направления (распределения) потоков жидкости, пуска и остановки этих потоков, а также для регулирования давления и расхода (подачи) жидкости. Основными конструктивными элементами являются корпус 1 и запорно-регулирующий элемент 2, например, золотник 2 (рисунок 5.1). В зависимости от их функционального назначения распределители делят на:

· Направляющие распределители, используемые для изменения направления, пуска и остановки потока рабочей жидкости в зависи­мости от наличия определенного внешнего управляющего воздей­ствия Х. Запорно-регулирующий элемент (золотник) 2 занимает все­гда крайние (левое и правое) рабочие положения (рис. а), называемые рабочими позициями. При прохождении жидкости че­рез рабочие проходные сечения (рабочие щели) 3, 4, 5, 6 распреде­лителя параметры потока жидкости (давление и расход) не изменя­ются. На рис. б показана рабочая щель 4 при сдвинутом зо­лотнике 2 вправо.

· Дросселирующие распределители, используемые не только для изменения направления потока рабочей жидкости, но и регулирова­ния расхода и давления рабочей жидкости в соответствии с измене­нием внешнего воздействия Х. Запорно-регулирующий элемент (зо­лотник) 2 такого гидрораспределителя может занимать бесконечное множество промежуточных рабочих положений, образуя опреде­ленные величины дросселирующих щелей 3, 4, 5, 6. Характеристика сигналов управления — непрерывная (аналоговая). Чем больше внешний управляющий сигнал Х, тем больше рабочее проходное сечение 4 (рис. б) и перемещение У. Таким образом, эти распределители имеют следящее действие — выходной сигнал изме­няется с учетом величины поступившего сигнала.

Схема подключения распределителя к напорной линии и к гид­родвигателю 7 (каналами А и Б) на рис. а. При перемеще­нии золотника 2 вправо жидкость из напорной линии поступает в полость Р и через рабочее проходное сечение 4, полость А в левую камеру гидроцилиндра 7, а из правой камеры последнего жидкость вытекает через полость Б, рабочее сечение б в бак. Поршень гидроцилиндра 7 перемещается вправо. Аналогично происходит переме­щение поршня влево при сдвиге золотника 2 влево. При отсутствии управляющего сигнала х пружины 8 и 9 устанавливают золотник 2 в нейтральное положение, показанное на рис. а. Поток жид­кости через гидрораспределитель прекращается.

Если принимается, что между всеми тремя поясками 10 золотника 2 и корпусом 1 зазоров нет, а следовательно, отсутствуют утечки жидкости через эти радиальные зазоры, то такой распределитель называется иде­альным. В действительности же этот зазор неизбежен, поэтому всегда будут иметь утечки жидкости, например, из полостей А и Б в полости, в которых установлены пружины 8 и 9. Следовательно, необходимо обра­зовать дренажные линии 11и 12, чтобы отвести эти утечки в бак и не нарушить работоспособность распределителя. Если учитываются ука­занные выше утечки, то в этом случае гидрораспределитель реальный.

Клапан напорный

megalektsii.ru

См. также[править | править код]

  • Гидропривод
  • Гидрозамок
  • Регулятор расхода
  • Гидродроссель

ru.wikipedia.org

Обратные клапаны предназначены для свободного пропускания рабочей жидкости в одном направлении и для перекрытия движения жидкости в обратном направлении. Обратный клапан конструктивно подобен предохранительному клапану с той лишь разницей, что в нем применяется пружина с малым усилием, предназначенная лишь для преодоления сил трения при посадке запорного элемента на седло.

Установка в гидроприводе машины обратного клапана исключает самопроизвольное опускание рабочего оборудования под действием внешней нагрузки, а также при случайном включении гид рораспределителя. Обратные клапаны применяются также: в схемах, состоящих из нескольких насосов, из насоса и гидропневмо-аккумулятора для исключения взаимного влияния при их одновре-менной работе; в блоках фильтрации, устанавливаемых в реверсивных гидролиниях, для обеспечения движения жидкости через фильтр только в одном направлении; в гидроприводах с замкнутой циркуляцией как подпиточные клапаны. Обратные клапаны бывают с шариковыми и конусными запорными элементами.

Обратный клапан с конусным запорным элементом (рис. 5.9) состоит из корпуса 2, конического клапана 3, цилиндрической пружины 4, седла 5 и крышки 1с уплотнительным кольцом 6.

Клапан напорный

При подводе рабочей жидкости в полость А клапан 3 отходит от седла 5 и обеспечивает движение жидкости в полость Б и далее в гидролинию. При обратном направлении потока рабочей жидкости клапан 3 под действием давления жидкости и усилия пружины плотно прижимается к седлу и перекрывает проход жидкости в полость А.

На корпусах обратных клапанов наносят стрелку, указывающую направление движения рабочей жидкости через клапан. На дорожно-строительной технике наибольшее распространение получили обратные клапаны с условным проходом 16, 20, 25 и 32 мм, параметры которых приведены в табл. 5.6.

Клапан напорный

Напорным клапаном называют клапан давления, предназначенный для автоматического ограничения давления в подводимом к нему потоке рабочей жидкости. По назначению они подразделяются на предохранительные и переливные.

Предохранительные клапаны служат для предохранения гидроприводов от давлений рабочей жидкости, превышающих установленные. Они относятся к клапанам эпизодического действия. По конструкции запорно-ре-гулирующих элементов предохранительные клапаны подразделяют на шариковые, конические и золотниковые (рис. 5.10).

Клапан напорный

Принцип работы предохранительного клапана основан на уравновешивании силой пружины силы давления Рдав на запорно-ре гулирующий элемент, определяемой без учета сил трения по формуле

Клапан напорный

Шариковые предохранительные клапаны применяются для невысоких давлений и малых расходов в системах с резким срабатыванием гидроклапана. Достоинством шариковых клапанов является малая чувствительность к загрязнению рабочей жидкости, а недостатком —вибрация в процессе перепускания жидкости, создающая характерный шум.

Конические гидроклапаны надежнее в эксплуатации, чем шариковые, лучше центрируются в седле, имеют незначительные утечки, но также подвержены вибрации, которая устраняется демпфированием.

Предохранительные клапаны, предназначенные для длительного и частого перепуска рабочей жидкости, чаще делают золотниковыми. Они работают надежно, без вибрации и шума.

В конструктивной схеме предохранительного клапана непрямого действия (рис. 5.11) в корпусе 1 кроме основного конического клапана 2 имеется вспомогательный шариковый клапан 4 с пружиной 5. Для уменьшения усилия пружины 3 основного клапана полость Г соединена через дроссель Б с напорной (входной) полостью Л. Давление настройки клапана 4 регулируется винтом 6. Полость Д каналом Е соединена со сливной (выходной) полостью Ж.

Принцип работы клапана заключается в следующем. На основной клапан 2 действуют сила пружины Рпр и сила давления Р2 в полости Г, которые прижимают клапан 2 к седлу корпуса.

Клапан напорный

Этот клапан закрыт до тех пор, пока закрыт вспомогательный клапан 4 и выполняется условие Рпр + Р2>Р1. При давлении рабочей жидкости в полости А больше допустимого увеличивается сила Р2 в полости Г. При этом открывается шариковый клапан 4 и рабочая жидкость из полости Г поступает через клапан 4 в полость Д и по каналу Е— в сливную полость Ж. Давление в полости Г уменьшается и под действием силы давления P1 клапан 2 смещается вправо, открывая проход рабочей жидкости в сливную полость Ж. Клапан 2 может разгружаться также дистанционно. Для этого достаточно соединить канал В со сливной линией с помощью вентиля.

Предохранительные клапаны непрямого действия имеют свои параметры, приведенные в табл. 5.7.

Клапан напорный

Переливные клапаны предназначены для поддержания заданного давления в напорной линии путем непрерывного перепуска рабочей жидкости в сливную линию при резких изменениях нагрузок, т. е. это предохранительный клапан для длительного перепуска рабочей жидкости.

Принцип работы переливного клапана прямого действия (рис. 5.12, а) заключается в следующем. При подводе к клапану рабочей жидкости под давлением, превышающем давление, на которое клапан отрегулирован, золотник 2 под действием разности сил давления рабочей жидкости и пружины перемещается вверх. При этом образуется рабочее проходное сечение (щель) между острыми кромками цилиндрической расточки корпуса и золотника. Чем больше расход рабочей жидкости, поступающей (сливающейся) из напорной линии, тем больше величина открытия клапана. При этом изменение давления в напорной линии пропорционально подъему золотника и жесткости пружины.

В переливном клапане с дифференциальным золотником (рис. 5.12,6) золотник имеет два цилиндрических пояска разных диаметров d1 и d2. Пружина клапана воспринимает давление жидкости на эффективную площадь, равную разности площадей торцов золотника. Использование в клапане дифференциального золотннка, работающего по принципу гидравлического уравновешивания, позволяет уменьшить размеры пружины. Как и предохранительные, переливные клапаны подключают к. напорным линиям параллельно. В сливных линиях переливные клапаны иногда устанавливают последовательно. В этих случаях они выполняют функцию подпорных клапанов.

Клапан напорный

Редукционным клапаном называют клапан давления, предназначенный для поддержания давления в отводимом от него потоке рабочей жидкости более низкого, чем давление в подводимом потоке. Редукционные клапаны применяют в гидроприводах, в которых от одного источника питаются несколько потребителей, работающих при разных давлениях.

При работе клапана (рис. 5.13) рабочая жидкость под давлением p1 подводится в полость А, а затем дросселируется через рабочее проходное сечение Б клапана. Вследствие этого давление на выходе клапана р2 (редукционное давление) в полости В понижается и поддерживается в заданных пределах. При повышении редукционного давления сверх расчетного золотник 2 клапана автоматически перемещается вправо, сжимая пружину 3. При этом рабочее проходное сечение (дросселирующая щель) Б уменьшится, гидравлическое сопротивление увеличится и давление снизится до расчетного значения. При понижении редукционного давления ниже расчетного значения золотник переместится влево под действием пружины 3. При этом рабочее проходное сечение увеличится, гидравлическое сопротивление уменьшится и давление увеличится до расчетного значения.

Клапан напорный

Редукционные клапаны с регулятором типа Г52-2 изготовляют ь трех исполнениях по величине давления (без индекса — от 0,3 до 6,3 МПа. с индексом «А» — от 1 до 10 МПа, с индексом «Б» — от 2 до 19 МПа), в двух исполнениях по присоединению (без индекса — резьбовое, с индексом «П» — стыковое), четырех условных проходов (10, 16, 20 и 32 мм).

Тормозные клапаны (табл. 5.8) применяют в приводах механизмов опускания груза кранов, пневмоколесного хода экскаваторов, погрузчиков и других строительных и дорожных машин для исключения противообгонного скоростного режима при действии нагрузок, направление которых совпадает с направлением вращения двигателя.

Клапан напорный

Тормозной клапан, установленный в линиях управления механизмами подъема (опускания) груза и стрелы и телескопиро-вания стрелы крана КС-4571 (рис. 5.16), работает следующим образом. При подъеме груза (стрелы) или выдвижении стрелы крана рабочая жидкость по напорной линии (от насоса) подается в канал Л корпуса 6 клапана.

Клапан напорный

Преодолевая сопротивление пружины 4 и отжав обратный клапан 5, рабочая жидкость свободно проходит в канал В и далее к исполнительным механизмам крана. Одновременно часть жидкости попадает в полость золотника 16, проходит по каналу в этом золотнике и заполняет пространство, занимаемое пружиной 10, перемещая золотник влево.

При опускании груза (стрелы) или втягивании стрелы рабочая жидкость под давлением по напорной линии подводится одновременно в каналы Б и В. Жидкость, поступающая в канал Б, помогает пружине 4 поджать обратный клапан 5 и одновременно прижимает золотник 17 к крышке 2. Поступающая в канал В рабочая жидкость преодолевает сопротивление пружины 10 и, перемещая золотник 16, открывает доступ жидкости из канала Б вокруг фаски золотника 16 в канал Д. Плавность опускания груза (стрелы) или втягивания стрелы обеспечивается конусной рабочей фаской золотника 16. Золотник 17, калиброванные отверстия во втулке 7 и крышке 2 (в канале В) служат для гашения автоколебаний золотника 16. Давление, при котором открывается доступ жидкости из канала Б в канал Д, регулируется винтом 14.

Подпиточные клапаны предназначены для компенсации неизбежных утечек рабочей жидкости и исключения разрыва сплошного потока, вызывающего явление кавитации в подводящих гидролиниях гидромоторов. По своему конструктивному исполнению и принципу действия подпиточные клапаны подобны обратным клапанам (рис. 5.9).

Клапаны имеют сквозные отверстия, одно из которых соединяется с рабочим отводом к гидродвигателю, а другое — со сливной гидролинией. Такое исполнение вызвано тем, что подпиточные клапаны обычно применяются в сочетании с другими типами клапанов (предохранительными или переливными). В этом случае подпиточный клапан устанавливают между корпусом гидрораспре-делителя и установленным под ним другим клапаном. Если клапан применяют отдельно, тогда отверстия закрывают сверху пластиной с уплотнениями.

Подпиточные клапаны с условными проходами 16, 20 и 32 мм рассчитаны на номинальный поток 25, 63 и 100 дм3/мин. Давление, Тфи котором клапан начинает открываться, составляет 0,038. . . 0,087 МПа.

helpiks.org

Напорные гидроклапаны предназначены для ограничения давления в подводимых к ним потоках рабочей жидкости. На рис.6.1 приведены принципиальные схемы напорных клапанов прямого действия с шариковым, конусным, плунжерным и тарельчатым запорно-регулирующими элементами.

Клапан напорный

Рис.6.1. Принципиальные схемы напорных клапанов с запорно-регулирующими элементами: а — с шариковым; б — с конусным; в — с золотниковым; г — с тарельчатым

Клапан состоит из запорно-регулирующего элемента 1 (шарика, конуса и т.д.), пружины 2, натяжение которой можно изменять регулировочным винтом 3. Отверстие 5 корпуса 4 соединяется с линией высокого давления, а отверстие 6 — со сливной линией. Часть корпуса, с которой запорно-регулирующий элемент клапана приходит в соприкосновение, называется седлом (посадочным местом).

При установке клапана в гидросистему пружина 2 настраивается так, чтобы создаваемое ею давление было больше рабочего, тогда запорно-регулирующий элемент будет прижат к седлу, а линия слива будет отделена от линии высоко давления. При повышении давления в подводимом потоке сверх регламентированного запорно-регулирующий элемент клапана перемещается вверх, преодолевая усилие пружины, рабочее проходное сечение клапана открывается, и гидролиния высокого давления соединяется со сливной. Вся рабочая жидкость идет через клапан на слив. Как только давление в напорной гидролинии упадет, клапан закроется, и если причина, вызвавшая повышение давления не будет устранена, процесс повторится.

Возникает вибрация запорно-регулирующего элемента, сопровождаемая ударами о седло и колебаниями давления в системе. Вибрация и удары могут служить причиной износа и потери герметичности клапанов.

Для уменьшения силы удара и частоты колебаний клапана о седло применяют специальные гидравлические демпферы (рис.6.1, б, г). Устройство состоит из камеры 7, в которой перемещается плунжер 8. Камера заполнена жидкостью. С линией слива эта камера соединяется тонким калибровочным отверстием 9 диаметром 0,8…1 мм. При открывании клапана плунжер вытесняет жидкость из камеры демпфера. Создаваемое при этом гидравлическое сопротивление, пропорциональное скорости движения плунжера, уменьшает частоту колебаний, силу удара запорно- регулирующего элемента и частично устраняет его вибрацию.

Достоинство клапанов прямого действия — высокое быстродействие. Недостаток — увеличение размеров при повышении рабочего давления, а также нестабильность работы.

При конструировании напорных клапанов их габарит и массу можно уменьшить, если применить дифференциальные клапаны или клапаны непрямого действия.

Дифференциальный клапан (рис.6.2) состоит из плунжера 1, который имеет два пояска диаметрами D и d, на которые воздействует жидкость.

Клапан напорный

Рис.6.2. Принципиальная схема дифференциального клапана

Благодаря наличию поясков с разными диаметрами уменьшается активная площадь запорно-регулирующего элемента клапана, на которую воздействует жидкость, и он оказывается частично разгруженным. Это позволяет уменьшить размеры пружины и всего клапана в целом. Начальная сила натяжения пружины 2 определяется из уравнения

Клапан напорный

С уменьшением разности площадей поясков хотя и уменьшается усилие пружины, но одновременно уменьшается и соотношение действующих на запорно-регулирующий элемент клапана сил давления жидкости и сил трения этого элемента о корпус клапана. При определенных соотношениях D и d эти силы могут оказаться несоизмеримы между собой и клапан перестанет работать. Поэтому в реальных конструкциях дифференциальных клапанов принимают следующее соотношение:

Клапан напорный

Недостатком дифференциальных клапанов является скачкообразное изменение давления и расхода через клапан в момент его открытия. Поэтому величину хода запорно-регулирующего элемента клапана ограничивают величиной

Клапан напорный

Еще большего уменьшения размеров пружины и всего клапан в целом при одновременном повышении его герметичности можно достигнуть в клапанах непрямого действия (рис.6.3).

Клапан напорный

Рис.6.3. Напорный клапан непрямого действия:
а — принципиальная схема; б — условное обозначение

Клапан состоит из основного запорно-регулирующего элемента — золотника 1 ступенчатой формы; нерегулируемой пружины 2 и вспомогательного запорно-регулирующего элемента 3 в виде шарикового клапана прямого действия. Усилие пружины 4 шарикового клапана регулируется винтом 5. Каналами в корпусе клапана полости 7 и 8 соединены с гидролинией 10 высокого давления. Полость 6 соединена с полостью 8 капиллярным каналом 9 в золотнике. Пружины шарикового клапана 3 настраивается на давление PК (на 10…20% больше максимального рабочего в гидросистеме).

Если при работе машины давление в гидросистеме PН < PК, шариковый клапан закрыт, в полостях 6, 7, 8 устанавливается одинаковое давление PН, золотник 1 под воздействием пружины 2 занимает крайнее нижнее положение, а гидролиния высокого давления 10 отделена от гидролинии слива 11 (положение клапана соответствует изображенному на рис.6.3). Изменение давление в гидросистеме вызывает изменения давления в полостях 6, 7, 8 клапана. В тот момент, когда давление P Н превысит PК, шариковый клапан 3 откроется и через него жидкость в небольшом количестве начнет поступать на слив. В капиллярном канале золотника создается течение жидкости с потерей давления на преодоление гидравлических сопротивлений. Вследствие этого давление жидкости в полости 6 станет меньше давления в полостях 7 и 8. Под действием образовавшегося перепада давлений золотник 1 переместится вверх, сжимая пружину и соединяя линию 10 с линией 11. Рабочая жидкость будет поступать на слив, и перегрузки гидросистемы не произойдет. Однако как только линия высокого давления соединится со сливом, давление жидкости в гидросистеме уменьшится до PН < PК, шариковый клапан закроется и течение жидкости по капиллярному каналу прекратится. Давление в полостях 6, 7 и 8 выровняется и под воздействием пружины 2 золотник возвратится в исходное положение, снова отделив линию высокого давления от слива. Если причина, вызвавшая повышение давления в гидросистеме, не будет устранена, процесс повторится и золотник в конечном итоге установится на определенной высоте, при которой давление в гидросистеме будет поддерживаться постоянным.

Когда клапан находится в работе, золотник совершает колебательные движения. Уменьшению колебаний золотника способствует полость 7, оказывающая на него демпфирующее влияние.

Для разгрузки системы или какого-либо ее учатка клапаны непрямого действия могут управляться дистанционно. Для этого полость 6 посредством канала 12 и крана 13 необходимо соединить со сливом. В результате давление в полости 6 резко упадет, золотник 1 поднимется вверх, а линия высокого давления 10 соединится со сливом 11.

По сравнению с клапанами прямого действия клапаны непрямого действия обладают рядом преимуществ:

1. Плавность и бесшумность работы.

2. Повышенная чувствительность.

3. Давление на входе в клапан поддерживается постоянным и не зависит от расхода рабочей жидкости через клапан.

studopedia.ru

78. Напорные клапаны

Общие сведения.

По характеру регулирования клапаны давления делятся на напорные клапаны, которые могут использоваться в качестве предохранительных или переливных клапанов, редукционные и клапаны разности давлений. Существуют также комбинированные аппараты, которые могут выполнять в гидросистемах одновременно функции редукционного и переливного клапанов (в зависимости от направления потока), редукционного клапана и реле давления.

Типы напорных клапанов

Напорные клапаны обеспечивают регулирование давление в гидравлической системе.

В зависимости от назначения данные клапаны делятся на три группы:

  • предохранительные клапаны;

  • клапаны подключения давления и отключения давления;

  • редукционные клапаны.

Напорные клапаны могут быть с прямым и предварительным управлением. Тип применения определятся количеством жидкости, проходящей в единицу времени через клапан.

Предохранительные клапаны

Предохранительные клапаны предназначены для предохранения гидропривода от давления, превышающего установленное. Они действуют эпизодически лишь в аварийных режимах работы гидропривода (пропускают масло из напорной линии в сливную) в отличие от переливных клапанов, предназначенных для поддержания заданного давления путем непрерывного слива масла во время работы.

Клапан напорный

Рис. 1. — Схема действия предохранительного клапана

При незначительных расходах масла и рабочих давлениях применяют предохранительные клапаны прямого действия, в которых давление масла воздействует на шарик или плунжер, нагруженный с противоположной стороны усилием от пружины. Схема действия простейшего предохранительного клапана шарикового типа показана на рисунке. Насос 2 всасывает масло из резервуара 1 и подает его в гидросистему по трубопроводу 6. Давление масла действует на шарик 5 предохранительного клапана 3, прижатый к седлу пружиной 4. Когда сила давления масла на шарик превышает усилие пружины, шарик отходит влево, и масло через образовавшуюся щель между шариком и седлом сливается в резервуар, причем вследствие дросселирования потока давление в трубопроводе б поддерживается постоянным и примерно равно отношению усилия пружины 4 к площади шарика 5, на которую действует давление масла. Такая конструкция проста и надежна в работе, однако при увеличении расхода масла и рабочего давления резко увеличиваются размеры пружины. Поэтому в гидросистемах чаще используют аппараты непрямого действия, в которых небольшой вспомогательный клапан управляет перемещением переливного золотника, подключенного к напорной и сливной линиям.

Предохранительные клапаны должны поддерживать постоянным установленное давление в возможно более широком диапазоне изменения расходов масла, проходящих через клапан. В динамических режимах аппараты должны быть достаточно быстродействующими. Если при включении насоса или резком торможении гидродвигателя клапан вовремя не откроется, в системе может возникнуть резкий пик давления, приводящий к поломке насоса или разрыву трубопроводов. Однако повышение быстродействия часто вызывает потерю устойчивости, сопровождающуюся шумом и колебаниями давления в гидросистеме. Таким образом, конструкция клапана должна обеспечивать оптимальную величину демпфирования. В современных клапанах пик давления при резком измерении расхода не превышает 15-20%.

Клапан напорный

Клапан напорный

Клапан напорный

Рис. 1. – предохранительный клапан

Где 10 – рукоятка; 4- пружина ; 5 – стержень; 13 – втулка; 12 – крышка; 3 – гнездо.

Клапан напорныйКлапан напорный

Рис. 2 . – схема предохранительного клапана открытого

Пружина прижимает конус к гнезду. Усилие пружины может регулироваться бесступенчато с помощью вращающейся ручки. Точка подключения Р соединена с системой. Давление в системе действует на поверхность конуса. Когда конус выходит из гнезда, открывается канал Т.

Клапан напорный

Рис. 3.- условное обозначение клапана с непрямым управлением

На рис. 3. Показано условное обозначение предохранительного клапана с непрямым управлением. Отличительной особенностью данной конструкции является использование 2/2 распределителя (двухлинейного, двухпозиционного). Он обеспечивает разгрузку и безнапорный слив жидкости в бак в исходном положении гидросистемы, когда гидродвигатель не работает.

Клапаны подключения и отключения давления

Данные клапаны имеют конструкцию аналогичную конструкциям предохранительных клапанов. Они устанавливаются в основных линиях гидросистемы и включают или отключают гидропривод.

Клапаны подключения давления

Могут быть с прямым и предварительным управлением.

На рис. 4. Представлено условное обозначение клапана подключения давления с предварительным управлением.

Клапан напорный

Рис. 4.- клапан подключения давления с предварительным управлением

Для свободного движения жидкости в обратном направлении в данном устройстве используется обратный клапан.

Клапаны отключения давления

Клапан напорный

Рис. 5. – Клапан отключения давления

Данные клапаны применяют наиболее часто в гидросистемах совместно с гидроаккумуляторами. На рис. 5 представлен клапан отключения давления. Он состоит из основного клапана с предварительным управлением и обратного клапана. Клапаны осуществляют подачу жидкости из насоса в систему аккумулятора до тех пор, пока аккумулятор не наполнится. Первоначально жидкость поступает через обратный клапан. По мере увеличения давления в гидроаккумуляторе открывается основной клапан и жидкость сливается в бак.

Редукционные клапаны

Данные клапаны называют клапанами регулирования давления. Их отличительной особенностью является то, что они нормально-открытые. С их помощью производится ограничение давления на выходе. Давление на выходе остается постоянным, даже если давление на входе превышает установленные значения.

Клапан напорный

Рис. 6. – Редукционный клапан с прямым управлением

Редукционные клапаны бывают с прямым и предварительным управлением. Условное обозначение редукционного клапана с прямым представлено на рис. 6.

Редукционные клапаны служат для создания установленного постоянного давления в отдельных участках гидросистемы, сниженного по сравнению с давлением в напорной линии.

При рабочих давлениях до 10 МПа (в некоторых случаях до 20 МПа) для предохранения гидросистем от перегрузки, поддержания определенного постоянного давления или заданной разности давлений в подводимом и отводимом потоках масла, а также для дистанционного управления потоком и различных блокировок широко применяют гидроклапаны давления (напорные золотники). В этих аппаратах на торец золотника действует давление масла в одной линии управления, а на противоположный — давление в другой линии управления и регулируемое усилие пружины. Аппараты имеют две основных линии и две линии управления, причем, используя эти линии независимо или соединяя их, можно получить четыре исполнения клапана, имеющих различное функциональное назначение. Многофункциональность гидроклапанов давления не позволяет отнести их к какой-либо группе гидроаппаратов, поскольку они могут выполнять как функции регулирования, так и функции направления (работать в режиме предохранительного или переливного клапанов, а также регулируемых клапанов разности давлений и последовательности).

Клапан напорный

Рис 7. – Типовые схемы применения предохранительных клапанов с непрямым управлением: 1- насос; 2- манометр; 3- предохранительный клапан; 4- распределитель; 5- цилиндр.

К группе комбинированных аппаратов относятся регуляторы давления для уравновешивающих цилиндров и клапаны усилия зажима. Первые предназначены для поддержания установленного давления в отводимом потоке независимо от его направления и являются аппаратами непрямого действия, работающими в режиме редукционного или переливного клапанов. Вторые аналогичны по функциональному назначению, однако являются аппаратами прямого действия и могут дополнительно оснащаться микровыключателем, контролирующим осевое положение золотника в корпусе.

Исполнения. Клапаны давления имеют различные исполнения по конструкции, типу управления, диаметру условного прохода, присоединению и номинальному давлению.

Отечественными специализированными заводами выпускаются для станко-строительной промышленности клапаны нескольких конструктивных исполнений, основными из которых являются: клапаны типа Г(ПГ) с присоединительными размерами, принятыми в практике отечественного станкостроения; и МПГ с международными присоединительными размерами, а также предохранительные и редукционные клапаны по ГОСТ 21148 — 75 и ГОСТ 21129 — 75* с международными присоединительными размерами.

Большинство клапанов имеют ручное управление и лишь некоторые исполнения предохранительных клапанов имеют дистанционное электрическое управление разгрузкой.

9

studfiles.net

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

В рубрике «Принадлежности» рассмотрим обратные клапана для воды. Обратный клапан – это защитная арматура прямого действия, пропускающая проток жидкости, газа или пара в одном направлении. Направление протока рабочей среды указывается стрелкой на корпусе изделия. В случае изменения потока рабочей среды на обратное направление, происходит надежное запирание этого потока. Корпуса обратных клапанов могут быть изготовлены из бронзы или латуни, пластика, углеродистой стали или чугуна, нержавеющей стали. Отдельные конструктивные элементы клапанов изготавливаются из нержавеющей, легированной или ферритной стали, разных типов чугуна, а также различных жаропрочных или коррозионно-устойчивых сплавов. Для герметизации седла клапанов используются разные уплотнители, которые в зависимости от условий эксплуатации и назначения могут быть изготовлены из резины, пластика или специальных сплавов. По конструкции изделия делятся на типы шаровые, подъемные, поворотные и т. д. Такое многообразие применяемых материалов и видов конструкций позволяет применять обратные клапана для воды в различных инженерных системах. Они используются в системах водоснабжения и теплоснабжения, кондиционирования и вентиляции, канализации и т. д. Широко применяется данная арматура и в промышленности для различных технологических процессов. Также как и любая арматура,   обратные клапана изготавливаются с различными способами присоединения к трубопроводам. В зависимости от типоразмера это может быть муфтовое фланцевое или межфланцевое подсоединение. Такую высокую популярность применения клапанов обратных можно объяснить их надежностью и безотказностью в работе, простотой конструкции, а также относительно невысокой стоимостью и ремонтопригодностью.

Типы, устройство и конструкция клапанов

Рассмотрим основные типы обратных клапанов, устройство и их конструкцию. Муфтовые и фланцевые осевые обратные клапана без сеточки и с сеточкой (Рис. 1).

Применяется данная арматура в установках повышения давления воды, в гидравлических и пневматических промышленных системах. Они идеально подходят для горячего, холодного водоснабжения и отопления. Монтируются арматура в горизонтальном и вертикальном положениях, она имеет малое сопротивление протоку и тихую работу. Наиболее часто используемые типоразмеры данной арматуры это 3/8″, 1/4″, 1/2″, 3/4″, 1″, 1 1/4″, 1 1/2″, 2″. Выпускаются промышленностью муфтовые клапана до 4″ включительно, но наиболее широко они применяются только на трубопроводах до 2″. На диаметры трубопроводов больше 2″ чаще всего применяются фланцевая арматура.

Устройство осевого латунного муфтового клапана обратного (Рис. 2). Клапан состоит из корпуса (Поз. 5). Корпуса изготавливаются или из латуни или бронзы. В корпус устанавливается шток с тарелкой или диском (Поз. 2). Шток и тарелка изготавливаются из нитрил-нейлона, латуни или бронзы. В качестве уплотнителя используется резина EPDM (Поз. 4). Для надежного запирания клапанов используется пружина (Поз. 2), которая изготавливаемая из нержавеющей стали. Закрывает всю эту конструкцию крышка (Поз. 1). Внутренняя часть крышки корпуса является седлом. Крышки изготавливаются из латуни или бронзы.

Разновидностью осевого муфтового клапана является донный клапан, который дополнительно комплектуется сеточкой изготовленной из нержавеющей стали. Клапана с сеточкой устанавливаются на всасывающих трубопроводах в скважинах или емкостях и служат для защиты от попадания в насосы посторонних предметов и мелких насекомых. Как известно, для постоянной эксплуатации самовсасывающих поверхностных центробежных насосов,  центробежных насосов с выносным эжектором или нормально всасывающих насосов, при заборе воды из скважины или емкости когда она находятся ниже оси всасывания насоса, на всасывающий трубопровод обязательно необходимо монтировать обратный клапан с сеточкой. Чтобы насос или автоматическая насосная станция начали подавать в систему воду, перед их включением нужно заполнить водой всасывающий трубопровод и сам насос. Если клапан не устанавливать, то заполнить подающий трубопровод водой будет очень проблематично. Чтобы каждый раз после отключения насоса или станции не проводить процедуру заполнения насоса и трубопровода водой и монтируется обратный клапан на всасывающий трубопровод. Теперь после остановки насоса не нужно каждый раз заполнять всю систему водой.

Клапана обратные подъемные муфтовые и фланцевые. Данный вид арматуры подразделяется на два типа подпружиненные и бес пружинные (Рис.3).

Пружинные подъемные обратные клапана изготавливаются из чугуна или стали и выпускаются на типоразмеры от Ду 15 до Ду 300, могут монтироваться как в горизонтальном положении, так и в вертикальном. В без пружинных клапанах посадка затвора на седло происходит под воздействием собственного веса, и монтировать их следует в горизонтальном положении, а в вертикальном только при восходящих потоках. Применяется, подъемные муфтовые и фланцевые обратные клапана, в установках повышения давления воды, в водопроводных и поливочных системах при перекачке очищенной и немного загрязненной воды или не агрессивных жидкостей. Данный тип оборудования характеризуется высокой надежностью, широкой сферой использования, простотой конструкции и безотказностью. Устройство подъемных фланцевых клапанов (Рис. 4).

Корпус клапана (Поз. 1), основной элемент конструкции, изготавливается из чугуна или стали. Рабочий элемент – диск (Поз. 4), изготавливается из чугуна или нержавеющей стали. Седловое уплотнение диска (Поз. 2) служит для уплотнения седла и диска, изготавливается из материалов латунь-резина, нержавеющая сталь-резина. Крышка корпуса (Поз. 3) служит для проведения ревизии или ремонта клапана, изготавливается из чугуна или стали. Уплотнение корпуса (Поз. 5) предназначено для уплотнения крышки и изготавливается из волокна с графитом. Пружина (Поз. 6) предназначена для надежного запирания обратного клапана и изготавливается из нержавеющей стали.

Клапан обратный двустворчатый межфланцевый (Рис. 5) устанавливается на вертикальных участках при восходящих потоках и горизонтальных участках трубопровода.

Применяется данная арматура в насосных системах водоснабжения и газа, а также воздушного кондиционирования. Рабочей средой может быть вода, воздух или слабо агрессивная среда. Типоразмеры от Ду 50 до Ду 800, межфланцевый монтаж. Конструктивно двустворчатый межфланцевый клапан состоит из корпуса (Поз. 1), створок (Поз. 2) изготавливается эти элементы из чугуна, ковкого чугуна, стали или нержавеющей стали. Уплотнение (Поз. 3) изготавливается из нитрила, EPDM, Viton. Пружина (Поз.4) и ось (Поз. 5) изготавливаются из нержавеющей стали.

Створчатый межфланцевый обратный клапан (Рис. 6) монтируются на горизонтальном участке трубопровода или вертикальном участке трубопроводе с восходящим потоком.

Они очень компактны, имеют простую и надежную конструкцию, обладают малыми потерями давления, малым весом и встроенными в корпус уплотнениями. Применяются для систем теплоснабжения, отопления, холодоснабжения, а также в поливочных и оросительных системах и воздушных установках. Рабочая среда вода, воздух, слабо агрессивные среды. Типоразмеры межфланцевых обратных клапанов от Ду 40 до Ду 1000. Имеют компактную и простую конструкцию. Корпус (Поз. 1) и диск (Поз. 3) изготавливается из стали, нержавеющей стали. Уплотнение для фланцев (Поз. 2) и уплотнение седла (Поз. 4) изготавливается из нитрила, EPDM, Viton.

Шаровые муфтовые и фланцевые обратные клапана (Рис. 7) нашли свое широкое применение в системах канализации и водоотведения.

 Основная рабочая среда клапанов для канализации это канализационные стоки, вязкие и загрязненные жидкости Они могут монтироваться как вертикальном, так и в горизонтальном положениях, Имеют полный проход и малые потери благодаря самоочищаемуся шару, который передвигается под воздействием потока жидкости. Внутренняя часть клапана механически обработана для хорошей герметичности и предотвращения возможности заклинивания шара, позволяет легко провести чистку и ревизию обратного клапана. Муфтовые шаровые клапана выпускаются на типоразмеры от 1″ до 2 1/2″, на большие типоразмеры выпускаются клапана с фланцевым соединением.

Устройство шарового клапана (Рис. 8).

Клапан состоит из корпуса (Поз. 1). Корпус изготавливают из ковкого чугуна. Внутри корпуса находится шар (Поз. 2). Шар изготовлен из стали и покрыт нитрилом, специальным само очищающимся материалом. Крышка (Поз.3) также изготавливается из ковкого чугуна. Основное назначение крышки это проведения ревизии и обслуживания арматуры. Для уплотнения крышки применяется прокладка (Поз. 4). Крепится крышка к корпусу клапана при помощи крепежа. Изготовлены крепежные болты, и гайки из нержавеющей стали.

Мы рассмотрели только несколько типов и конструкций обратных клапанов, на самом деле их намного больше, и рассказать обо всех видах в одной статье довольно сложно.

Рекомендации по монтажу

Основные рекомендации при монтаже обратных клапанов следующие:

  • При монтаже самовсасывающих насосов или автоматических насосных станций на всасывающем трубопроводе всегда надо монтировать обратный клапан с сеточкой, для предотвращения опорожнения насоса и всасывающего трубопровода после остановки насоса. Клапан с сеточкой выполняет еще и защитную функцию, он защищает оборудование от попадания в него посторонних частиц – листьев, веток и мелких насекомых. Для исключения подсасывания в систему воздуха, трубопровод с клапаном необходимо погружать в воду, минимум, на 30-50 сантиметров.
  • Обратный клапан следует монтировать также на напорном трубопроводе сразу же за насосом, для защиты оборудования от гидравлических ударов. Диаметр клапана должен быть того же диаметра, что и напорный патрубок насоса.
  • При монтаже скважинных насосов заводы производители рекомендуют через каждые 100 метров трубы в скважине устанавливать обратный клапан, для уменьшения нагрузки на двигатель и рабочие колеса при включениях и выключениях насоса. Если глубина скважины меньше 100 метров, то обратный клапан следует монтировать сразу же на выходе трубопровода из скважины.
  • Для защиты дренажных и фекальных насосов от обратного потока перекачиваемой среды из канализации, на напорном трубопроводе надо монтировать муфтовый или фланцевый шаровой обратный клапан.
  • Если в системе водоснабжения или отопления установлено несколько насосов, то на напорной линии, за каждым насосом необходимо монтировать обратный клапан, такого же диаметра как и выходной патрубок насоса, Это делается для того, чтобы не происходило шунтирование основной магистрали через не работающий насос.

Эксплуатация, обслуживание и ремонт

Конструкция обратных клапанов проста и надежна, поэтому при соблюдении условий эксплуатации не требуется постоянный уход и ремонт. Необходимо проводить периодический осмотр клапанов на предмет протекания рабочей среды. При необходимости следует провести подтяжку болтов. Для контроля работоспособности и проверки их герметичности, необходимо проводить дренирование участка трубопровода. После дренажа надо проконтролировать показание манометра после обратного клапана. Если давление на манометре не изменилось, то арматура работает надежно. Если давление упало на обоих манометрах, значит, есть утечки и клапан потерял герметичность. Изделие нужно демонтировать и провести чистку, так как наиболее вероятной причиной выхода из строя это загрязнение проходного сечения клапана. В случае заклинивания обратного клапана также нужно произвести его ревизию и обслуживание. При проведении ревизии нужно обратить внимание на посадочные места для штока с тарелкой (Рис. 2) в корпусе и крышке клапана. Если в корпусе клапана или крышке посадочные места разбиты, то обратный клапан может заклинить или не закрываться. Выработка также может быть и на самом штоке, особенно если он изготовлен из нитрил-нейлона В таких случаях нужно покупать новый обратный клапан. Если муфтовый клапан не закрывается, то одной из причин может быть поломка пружины. Такое случается крайне редко, но учитывая качество нашей воды возможно. Эту поломку можно устранить, необходимо выкрутить крышку и вытащить шток с пружиной. Крышка клапана обычно посажена на герметик и чтобы ее разобрать, нужно нагреть клапан с помощью строительного фена. Нагревать нужно аккуратно, чтобы не повредить резиновое уплотнение или шток если он из нитрил-нейлона. Подобрать нужную пружину можно подобрать или взять из старого обратного клапана. Затем клапан собрать. Но можно и купить новый обратный клапан  и не тратить время. Вот пожалуй все.

Спасибо.

P.S. Понравился пост? Порекомендуйте его в социальных сетях своим друзьям и знакомым.

nasos-pump.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.