Гидравлический расчет двухтрубной системы отопления


При проектировании систем водяного обогрева в доме принято выполнять гидравлический расчёт системы отопления. Это нужно для того, чтобы гарантировать максимальную эффективность работы при минимуме финансовых затрат и при правильном функционировании всех узлов.

Целью гидравлического расчёта является:

  • Правильный выбор диаметра труб на тех участках трубопроводов, где его величина постоянна;
  • Определение действующего давления в магистрали;
  • Правильный выбор всех узлов системы.

Схема двухтрубной системы отопления

От того, насколько верно выполнен гидравлический расчёт, будет зависеть температурный комфорт в доме, экономический эффект и долговечность системы отопления.

Основные положения гидравлического расчёта

Для выполнения всех необходимых вычислений, нам необходимы исходные данные:


  • Результаты теплового баланса комнат;
  • Температуры теплоносителя – начальная и конечная;
  • Схема заданной системы отопления;
  • Типы обогревающих устройств и метод их соединения с магистралью;
  • Гидравлические характеристики используемого оборудования (клапанов, теплообменников и т.п.);
  • Циркуляционное кольцо – это контур замкнутого типа. Он состоит из отрезков с наибольшим расходом теплонесущей жидкости от точки нагрева до наиболее удалённой точки (в двухтрубной системе) или до стояка (в однотрубной) и в противоположную сторону к источнику тепла.

Участком для расчёта принимают часть трубопроводного диаметра с неизменяющимся значением расхода теплонесущей жидкости – его определяют, исходя из теплового баланса комнаты.

Перед началом вычислений определяем тепловую нагрузку каждого отопительного агрегата. Она будет соответствовать заданной тепловой нагрузке комнаты. Если в помещении используется более одного обогревающего агрегата, распределяем тепловую нагрузку на всё их количество.

Затем назначаем главное кольцо циркуляции – контур закрытого типа из последовательных отрезков. Для вертикальной однотрубной магистрали число циркуляционных колец соответствует числу стояков. Для горизонтальной двухтрубной – числу обогревающих агрегатов. Главным назначают кольцо, идущее через стояк с наибольшей нагрузкой – для вертикальной магистрали, и идущее через нижний отопительный агрегат ветки с наибольшей нагрузкой – для горизонтальной системы.


Необходимо учитывать, что значение диаметра для трубопроводов и величина действующего давления в кольце циркуляции зависят от скорости теплонесущей жидкости. При этом обязательным условием является обеспечение бесшумности движения теплоносителя.

Для того чтобы избежать возникновения пузырьков воздуха, мы должны принять скорость теплоносителя более 0,25 м/с. Следует учитывать силу сопротивления, возникающего в контуре при движении жидкости. Вследствие этого сопротивления удельные потери давления R должны составлять не более 100-200 Па/м.

Существуют величины допустимой скорости воды, обеспечивающей бесшумность работы– она зависит от удельного местного сопротивления.

Таблица 1 показывает пример величины допустимой скорости воды при разных коэффициентах местного сопротивления.

Допустимая скорость воды при разных коэффициентах местного сопротивленияТаблица 1

Слишком маленькая скорость может стать причиной следующих негативных последствий:


  1. Увеличение расхода материала на все работы по монтажу;
  2. Увеличение финансовых расходов на монтаж и обслуживание системы отопления;
  3. Увеличение объёма теплонесущей жидкости в трубах;
  4. Значительный рост тепловой инерции.

Пример определения величины расхода теплонесущей жидкости

Для определения диаметра труб на заданных отрезках трубопроводов нам необходимо знать величину расхода теплоносителя. Её определяем, исходя из величины теплового потока – количества тепла, необходимого для компенсации теплопотерь.

Зная величину теплового потока Q на участке 1-2, вычисляем расход теплоносителя G:

G = Q / с (t г– t х) л/ч, где 

г и t х соответственно температуры горячего и холодного (остывшего) теплоносителя;

с = 4,2 кДж/(кг·°С) — удельная теплоемкость воды.

Пример определения диаметра труб на заданном участке

Правильный выбор диаметра труб необходим для решения следующих задач:

  • оптимизация эксплуатационных затрат на нейтрализацию гидравлического сопротивления при циркуляции жидкости в контуре;
  • достижение необходимого экономического эффекта при монтаже и обслуживании системы отопления.

Для обеспечения экономического эффекта выбираем наименьшую возможную величину диаметра труб, однако такую, которая не приведёт к возникновению гидравлических шумов в магистрали, если скорость теплоносителя составит 0,6-1,5 м/с, в зависимости от местного сопротивления.

Если мы выполняем гидравлический расчет двухтрубной системы отопления, принимаем разницу температур в подающем и отводящем трубопроводах равной:

∆t co = 90 – 70 = 20 °С

где 90°С – температура жидкости в подающей трубе горизонтальной системы;

70°С – температура жидкости в отводящей трубе.

Зная величину теплового потока и вычислив расход теплоносителя по приведённой выше формуле, из таблицы 2 мы можем выбрать подходящий для наших условий внутренний диаметр труб.


Определение внутреннего диаметра трубыТаблица 2

Определение внутреннего диаметра труб для отопления

После определения внутреннего диаметра выбираем сам тип труб – он зависит от эксплуатационных условий, от поставленных задач, от требований к прочности и долговечности. Основываясь на всех этих предпосылках, выбираем тип трубы рассчитанного диаметра, который удовлетворяет заданные условия.

Пример определения действующего давления на заданном участке магистрали

Если мы выполняем гидравлический расчет двухтрубной гравитационной системы водяного отопления, нам необходимо также знать действующее давление на заданном участке магистрали.

Оно вычисляется по формуле: 

p = gh (ρ o – ρ г) + ∆p доп , Па, где

ρ o – плотность остывшей воды, кг/м3 ;

ρ г – плотность нагретой воды, кг/м3 ;

g – ускорение свободного падения, м/с2 ;

h – вертикальное расстояние от точки нагрева до точки охлаждения (от средней точки высоты котла до средней точки нагревательного прибора), м;

∆p доп – дополнительное давление, возникающее за счёт остывания воды в магистрали.

Значения плотности воды для заданных температур, а также величину дополнительного давления узнаём из справочника.


Гидравлический расчёт – задача крайне ответственная. От правильного выполнения всех вычислений зависит не только экономический эффект отопления дома, но также эффективность работы всех узлов и соответствие эксплуатационных характеристик всем нормам и требованиям.

 

Источник: mynovostroika.ru

Гидравлический расчет двухтрубной системы отопления.

В чем смысл этого предложения? Смысл очень простой, но, в тоже время, потребует несколько иного отношения к монтажу.

двухтрубная система отопления

Если у вас установлен отопительный котел с выходным диаметром 32 мм, то трубная разводка выстраивается следующим образом.

До первого тройника вы монтируете трубу диаметром 32 мм.


расчет двухтрубной системы отопления

От первого тройника на радиатор отходит труба 16 мм, т.е. минимального диаметра.

двух трубное отопление дома

От первого тройника до второго монтируется труба диаметром 25 мм.

расчет двухтрубной горизонтальной системы отопления

Со второго тройника на радиатор уходит труба опять же диаметром 16 мм. двухтрубное отопление

Между вторым и третьим радиатором монтируется труба диаметром 20 мм, и на радиатор отходит труба 16 мм.

расчет двухтрубной системы отопления

Такая система автоматически соблюдает регулировку обогрева разных комнат или помещений.


Принципы монтажа двухтрубной системы

Как вы заметили – везде на радиаторы отходит труба диаметром 16 мм. А как поступить, если радиаторов больше?

В таком случае выходную трубу с диаметром 32 мм разделяем на два плеча диаметром по 25 мм, далее на два плеча, а от них на два радиатора. Дальше идет два плеча диаметром 20 мм. Если этого недостаточно, то можно завершить разводку двумя плечами диаметром 16 мм. При этом количество радиаторов увеличится до восьми.

Если при подобном варианте трубной схемы температура в разных комнатах будет все равно несколько различаться, то для подгонки параметров необходимо будет провести регулировку вентилями или кранами на радиаторах

Термостатическая головка
.

Описанная схема походит для котла отопления с выходом 32 мм, но существуют котлы и с другими диаметрами выходного патрубка. Для каждого диаметра придется подбирать диаметры труб.

Двухтрубная отопительная система

Необходимо учитывать, что при увеличении количества радиаторов будет уменьшаться эффективность системы в целом.

При монтаже такой двухтрубной разводки надо обязательно подбирать необходимую мощность отопительного котла, от которой зависит уровень обогрева при любом варианте разводки.

Источник: master-vodoved.ru

Гидравлический расчет отопительной системы с учетом трубопроводов


При проведении всех подсчетов будут использоваться основные гидравлические параметры, в том числе гидравлическое сопротивление трубопроводов и арматуры, расход теплоносителя, скорость теплоносителя, а также таблица и программа. Между подобными параметрами есть полная взаимосвязь. На это и необходимо опираться при проведении расчетов.

Пример: если повысить скорость носителя тепла, одновременно повысится и гидравлическое сопротивление у трубопровода. Если будет повышен расход теплоносителя, одновременно может возрасти и скорость теплоносителя и гидравлическое сопротивление. Чем большим будет диаметр трубопровода, тем меньшей будет скорость теплоносителя и гидравлическое сопротивление. На основе анализа подобных взаимосвязей есть возможность превратить гидравлический расчет в анализ параметров надежности и эффективности полностью всей системы, что может помочь снизить расходы на материалы, которые используются. Стоит помнить, что гидравлические характеристики не отличаются постоянством, с чем могут помочь номограммы.
Гидравлический расчет системы водяного отопления: расход теплоносителя

Расход теплоносителя напрямую будет зависеть от того, какая тепловая нагрузка придется на теплоноситель во время перемещения им тепла к прибору отопления от теплогенератора. Данный критерий содержит таблица и программа.


Гидравлический расчет подразумевает определение расходного уровня теплоносителя по отношению к заданному участку. Расчетный участок будет представлять собой участок, который имеет стабильный расход теплоносителя и постоянный диаметр.

Пример краткого расчета будет содержать ветку, которая включает в себя 10 киловаттных радиаторов, при этом расход теплоносителя рассчитывается на перенос тепловой энергии на уровне 10 кВт. В данном случае расчетный участок представляет собой отрез от радиатора, который является первым в ветке, до теплогенератора. Однако это только лишь при условии, что подобный участок будет характеризоваться постоянным диаметром. Второй участок будет расположен между первым и вторым радиаторами. Если в первом случае высчитывается расход переноса 10-киловаттной энергии тепла, то на втором участке количество энергии, которое рассчитывается, составит 9 кВт с возможным постепенным уменьшением по мере проведения подобных расчетов.

Гидравлическое сопротивление будет рассчитываться одновременно до обратного и подающего трубопроводов.

Гидравлический расчет подобного отопления заключается в вычислении расхода теплоносителя по формуле для расчетного участка:

G уч = (3,6*Q уч)/(c*(t r-t o)), где Q уч – тепловая нагрузка участка, который рассчитывается (в Вт). Данный пример содержит нагрузку тепла на 1 участок в 10000 Вт или 10 кВт, с – (удельная теплоемкость для воды) постоянная, которая равняется 4,2 кДж (кг*°С), t r – температура теплоносителя в горячем виде в системе отопления, t o – температура холодного теплоносителя в системе отопления.
Гидравлический расчет отопительной гравитационной системы: скорость потока теплоносителя

За минимальную скорость теплоносителя следует принять пороговое значение 0,2-0,26 м/с. Если скорость меньше, из теплоносителя может выделяться избыточный воздух, что способно привести к появлению воздушных пробок. Это, в свою очередь, будет служить причиной полного или частичного отказа отопительной системы. Касательно верхнего порога, скорость теплоносителя должна быть 0,6-1,5 м/с. Если скорость не поднимется выше этого показателя, в трубопроводе не смогут образовываться гидравлические шумы. Практика показывает, что для отопительных систем оптимальный скоростной диапазон составляет 0,4-0,7 м/с.

Если есть необходимость в проведении более точного расчета диапазона скорости теплоносителя, понадобится брать в расчет параметры материалов трубопроводов в системе отопления. Говоря более точно, будет необходим коэффициент шероховатости для внутренних трубопроводных поверхностей. Например, если речь пойдет о стальных трубопроводах, оптимальной будет скорость теплоносителя на уровне 0,26-0,5 м/с. Если имеется полимерный или медный трубопровод, скорость есть возможность увеличить до 0,26-0,7 м/с. Если есть желание перестраховаться, необходимо внимательно почитать, какая скорость рекомендуется изготовителями оборудования для отопительных систем.

Более точный диапазон скорости теплоносителя, которая рекомендуется, будет зависеть от материала трубопроводов, которые применяются в отопительной системе, точнее от коэффициента шероховатости внутренней поверхности трубопровода. К примеру, для стальных трубопроводов рекомендуется придерживаться скорости теплоносителя от 0,26 до 0,5 м/с. Для полимерных и медных (полиэтиленовые, полипропиленовые, металлопластиковые трубопроводы) от 0,26 до 0,7 м/с. Есть смысл пользоваться рекомендациями от изготовителя, если они имеются.
Расчет гидравлического сопротивления отопительной гравитационной системы: потеря давления

Потери давления на определенных участках, что может называться термином “гидравлическое сопротивление”, представляют собой сумму полностью всех потерь на гидравлическое трение и локальных сопротивлениях. Такой показатель, который измеряется в Па, можно высчитать по формуле:

Руч = R * l + ((p * v2) / 2) * E3, где v – скорость теплоносителя, который используется (измеряется в м/с), p – плотность теплоносителя (измеряется в кг/м³), R – потери давления в трубопроводе (измеряется в Па/м), l – расчетная длина трубопровода на участке (измеряется в м), E3 – сумма всех коэффициентов локальных сопротивлений на оборудованном участке и запорно-регулирующей арматуры.

Общее гидравлическое сопротивление представляет собой сумму сопротивлений расчетных участков. Данные содержит следующая таблица (ИЗОБРАЖЕНИЕ 6).
Гидравлический расчет двухтрубной гравитационной отопительной системы: выбор основной ветви

Если система гидравлики будет характеризоваться попутным движением теплоносителя, для двухтрубной системы необходимо выбрать кольцо наиболее загруженного стояка через прибор отопления, расположенный снизу.

Если система будет характеризоваться тупиковым движением носителя тепла, для двухтрубной конструкции необходимо выбрать кольцо нижнего отопительного прибора для наиболее загруженного из самых удаленных стояков.

Если речь будет идти о горизонтальной отопительной конструкции, нужно выбрать кольцо через самую загруженную ветвь, которая относится к нижнему этажу.

Пример гидравлического расчета двухтрубной гравитационной системы отопления

Отопительные приборы горизонтальной двухтрубной системы отопления подсоединяются к отопительной системе при помощи распределителя, который разделяет отопление на 2 системы: снабжение тепла распределителям (между распределителями и тепловым пунктом), а также отопление от распределителей (между отопительными приборами и распределителем).

В большинстве случаев схема отопительной системы выполняется в виде раздельных схем:

  • схема систем отопления от распределителей;
  • схема системы теплоснабжения распределителей.

В качестве примера предлагается гидравлический расчет 2-х трубной системы отопления с нижней разводкой в двухэтажном административном здании. Теплоснабжение устраивается от встроенной топочной.

Имеются следующие исходные данные:

  1. Расчетная нагрузка тепла отопительной системы: Q зд = 133 кВт.
  2. Параметры отопительной системы: t г = 75°С, t o = 60°С.
  3. Расчетный расход теплоносителя в отопительной системе: V co = 7,6 м³/ч.
  4. Отопительная система присоединяется к котлам через гидравлический горизонтальный разделитель.
  5. Автоматика каждого котла поддерживает постоянную температуру носителя тепла на выходе из котла: t г = 80°С на протяжении всего года.
  6. На вводе каждого распределителя проектируется автоматический регулятор перепада давления.
  7. Система теплоснабжения распределителей выполнена из стальных водогазопроводных труб, отопительной системы от распределителей – из металлополимерных труб.

Для данной двухтрубной системы отопления нужно установить насос с управлением скоростью вращения. Для того, чтобы подобрать циркуляционный насос, понадобится определить значения подачи V н, м³/ч и напора P н, кПа.

Подача насоса идентична расчетному расходу в отопительной системе:

V н = V co = 7,6 м3/ч.

Требуемый напор P н, который равен расчетным потерям давления отопления A P со, определяется суммой следующих составляющих:

  1. Потери давления распределителей OA P уч.с.т.
  2. Потери давления отопительной системы от распределителей OA P уч.от.
  3. Потерь давления в распределителе A P распр.

P н = A P co = OA P уч.с.т + OA P уч.от + A P распр.

Для подсчета OA P уч.с.т и OA P уч.от циркуляционного расчетного кольца следует выполнить схему системы теплоснабжения  и схему отопления от распределителя “3”

На схеме отопительной системы от распределителя “3” нужно распределить тепловые нагрузки помещений Q4 (расчетные потери помещением теплоты) по приборам отопления, которые суммируются по распределителям. Далее на расчетной схеме указываются тепловые нагрузки распределителей.

В зависимости от теплопроизводительности топочной, которая требуется, могут функционировать оба котла либо только один из них (в весенний и летний периоды времени). Каждый из котлов имеет отдельный циркуляционный контур с насосом Р1, в котором будет постоянный расход теплоносителя и одинаковая температура теплоносителя t г = 80°С на протяжении года.

В бойлере 2 температура воды t г = 55°С водоснабжения может обеспечиваться за счет двухпозиционного регулятора температуры, который управляет включением насоса P2. В отоплении циркуляцию теплоносителя будет обеспечивать насос с электронным управлением Р3. Температура подающей воды отопительной системы изменяется в зависимости от температуры наружного воздуха при помощи следящего электронного регулятора 11, который воздействует на трехходовой регулирующий клапан.

Гидравлический расчет системы снабжения тепла распределителей может быть выполнен с использованием первого направления. В качестве расчетного основного циркуляционного кольца нужно выбрать кольцо через нагруженный прибор отопления самого нагруженного распределителя “3”.

Диаметры участков магистральных теплопроводов d y, мм подбираются при помощи номограммы, задаваясь водной скоростью 0,4-0,5 м/с.

Характер использования номограммы изображает  таблица  (пример участка №1) G уч = 7581 кг/ч. Рекомендуется при этом ограничиваться удельной потерей давления на трение R не больше 100 Па/м. На местные сопротивления Z, Па потери давления определяются согласно номограммам как функция Z = f (Oae). Результаты гидравлического расчета содержит  таблица.

Сумма коэффициентов местных сопротивлений Oae для каждого из участков основного циркуляционного кольца должна определяться следующим образом:

  • участок №1 (начало от напорного патрубка насоса P3, без обратного клапана): внезапное сужение, внезапное расширение, задвижка, Oae = 1,0 + 0,5 + 0,5 = 2,0;
  • участок №2: тройник на ответвление, Оае = 1,5;
  • участок №3: проходной тройник, отвод, Оае = 1,0 + 0,5 = 1,5;
  • участок №4: проходной тройник, отвод, Оае = 1,0 + 1,0 = 2,0;
  • участок №2: тройник на противотоке, Оае = 3,0;
  • участок №1 до перемычки подмеса: внезапное сужение, внезапное расширение, задвижка, отвод, Оае = 1,0 + 0,5 + 0,5 + 0,5 = 2,5;
  • участок №1а от перемычки подмеса до всасывающего патрубка насоса P3, без клапана, без фильтра: гидравлический разделитель в виде внезапного сужения и внезапного расширения, два отвода, две задвижки, Оае = 1,0 + 0,5 + 0,5 + 0,5 = 2,5.

На участке №1 сопротивление клапана должно определяться по монограмме производителя для обратного клапана d y = 65 мм, G уч = 7581 кг/ч, это составляет:

A P О.К = 800 Па.

На участке №1а сопротивление фильтра d = 65 мм должно определяться по значению пропускной способности, которую он имеет k v = 55 м3/ч.

Следовательно,

A Pф = 0,1. (G | k v) 2 = 0,1. (7581 / 55) 2 = 1900 Па.

Типовой размер трехходового клапана выбирается, задаваясь необходимой величиной: k v = (2 G…3 G), то есть k v > 2 . 7,58 = 15 м3/ч.

Принимается клапан d = 40 мм, k v = 25 м3/ч.

Сопротивление его составит:

A P кл = 0,1 . (G | k v) 2 = 0,1 . (7581 / 25) 2 = 9200 Па.

Следовательно, потери давления снабжения тепла распределителей равняются:

OA P уч.с.т = 21514 Па (21,5 кПа).

Подсчет оставшейся части снабжения тепла распределителей с подбором трубопроводных диаметров производится таким же образом.

Для расчета OA P уч.с.т отопительной системы от распределителя “3”, следует выбрать расчетное основное циркуляционное кольцо через самое нагруженное устройство отопления Q пр = 1500 Вт (Ветка “В”).

Гидравлический расчет выполняется с использованием 1-го направления.

Диаметры участков теплопроводов d y, мм подбираются при помощи номограммы для металлополимерных труб, при этом скорость воды – не больше 0,5-0,7 м/с.

Характер пользования номограммой изображается  рисунке (пример участков №1 и №4). Рекомендуется при этом ограничиваться удельной потерей давления на трение R не больше 100 Па/м.

Потери давления на сопротивления Z, Па определяется как функция Z = f (Oae).

Источник: 1poteply.ru

Нюансы, о которых надо знать, для выполнения гидравлического расчета системы радиаторного отопления.

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.

Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах — не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.

В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой — меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль,  от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Источник: www.forumhouse.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.