Доочистка сточных вод


С каждым годом окружающая среда загрязняется большими темпами. Человечество нуждается в эффективных системах быстрой очистки водоемов.  Главный источник загрязнения  окружающей среды – производственные сточные воды. Они изменяют жизнь гидробионтов, а соответственно и качество воды.

Большинство водоемов невозможно использовать для санитарно-бытовых и рыбохозяйственных нужд. Водоочистка стоков предприятий и водоподготовка для их дальнейшего использования стоит на первом месте. Основная проблема очистки – большое разнообразие примесей различного химического и биологического состава. Их разнообразие растет с развитием новых материалов и технологий. Популярным способом очистки является биологическая очистка производственных сточных вод на основе активного ила. Симбиотические иловые культуры выделяют технический кислород, необходимый для биологического окисления. За последнее десятилетие аэрационное оборудование подверглась значительной модернизации, которая повысила его производительность в несколько раз. Однако в биологической очистке сточных вод существует ряд нерешенных проблем. Народное хозяйство остро нуждается в их решении.

Процессы биологической очистки


Методы биологической очистки основаны на работе системы сточная воды — активный ил. Она имеет сложную структуру с несколькими уровнями. В основе биологической очистки сточных вод лежит реакция окисления в результате ряда процессов. Начинается все с низшего уровня – обмена электронов между атомами, а заканчивается сложным биоценозом. Активный ил состоит из множества различных популяций простейших организмов, находящихся в динамическом равновесии. Оно допускает малое отклонение концентрации в активном иле определенных видов.

Сооружения биологической очистки

Биологическая очистка сточных вод может проходить как в природных условиях, так и в искусственно созданных человеком.

Природная очистка включает:

  • Фильтрующие колодцы при низком потреблении воды – до 1 кубического метра за сутки. Загрузкой является природный грунт местного происхождения.
  • Поле для подземной фильтрации используют при потреблении воды более 15 кубометров в сутки. Фильтрующей массой является местный грунт.
  • Поле фильтрации эффективно при потреблении воды до 1,4 тысячи кубических метров. Загрузкой является местный грунт.

  • Траншеи для фильтрации, песчано-гравийные фильтры могут пропускать от 15 кубометров воды. Для организации очистных сооружений используют систему из привезенного грунта. Актуальны в условиях низкой водной проницаемости местных пород.
  • Фильтрующие кассеты способны перерабатывать до 6 кубометров воды за сутки. Используют при низкофильтрующих грунтах с пропускной способностью меньше 0,1 кубометра в сутки.
  • Циркуляционно-окислительные каналы пропускают от 100 до 1,4 тысячи кубометров воды за сутки.
  • Биологические пруды могут иметь естественную или искусственную подачу кислорода и фильтруют около 1,4 тысячи кубометров воды.

Сооружения биологической очистки используют в определенных условиях:

  • средняя температура воздуха более 10 градусов;
  • грунтовые воды должны залегать на глубине большей метра от поверхности;
  • должно быть обеспечение нужной площади для возведения требуемых сооружений.

Если не соблюдается температурное требование в течении всего года, то прибегают к сезонной эксплуатации очистных станций.

Естественная биологическая очистка на основе грунта не всегда возможна. Часто санитарные условия, особенности местного климата и грунта не позволяют обеспечить требуемые условия для качественной очистки. Прибегают к искусственной биологической очистке сточных вод. К подобным сооружениям относят:

  • биофильтраторы;
  • биодисковые фильтры;
  • биофильтры на основе пеностекла и пластмасс;
  • биореакторы;
  • аэрационные установки с полным окислением;
  • аэрационные установки на основе аэробной стабилизации лишнего активного ила.

Биофильтры на основе пеностекла и пластмасс

Данный тип биофильтров особенно эффективен при небольших расходах воды и большом содержании органических веществ. Основные достоинства: простота и удобства в использовании, быстрая очистка в течение 0,5 часа.

Традиционными вариантами биофильтров является загрузка из керамзита и щебня. Пеностекло придает ряд преимуществ сооружениям биологической фильтрации. В первую очередь это строительный материал для обеспечения теплоизоляции. Пеностекло обладает высокой прочностью; хорошо противостоит влаге, пару и газу; не поддается воздействию продуктов разложения и кислот; выдерживает высокие и низкие температуры. Активная площадь для адсорбции может достигать 200 квадратных метров на кубометре. Благодаря большому количеству пор пеностекло может удерживать большую поверхность биопленки. Очистка происходит быстро и эффективно. Вода с помощью оросителя разбрызгивается по всей поверхности биофильтра.

Пластмассовая загрузочная масса моет быть трех видов:

  • жесткая – части труб;
  • жестко-блочная – пластмассовые листы плоской и гофрированной формы;
  • мягкая – пластмассовые пленки.

Благодаря использованию пластмассовой загрузки достигается увеличенная активная поверхность и повышенная пустотность. Биопленка плохо сцепливается с поверхностью, что провоцирует организацию только тонкого слоя.

Пластмассовые биофильтры не заиливаются – достигается максимальный приток кислорода для окислительных реакций.

Однако у них есть свои минусы:


  • вода поступает неравномерно, что негативно сказывается на работе аэротенков;
  • биопленка местами может высыхать;
  • разность температур в биопленки;

Для ликвидации перечисленных недостатков очистки отфильтрованные сточные воды повторно переганяют через биофильтры. Рециркуляция воды требует дополнительную энергию.

Биодисковые фильтры

Биодисковые фильтры используют при загрузке до 1 тыс. кубометров воды. Фильтрующей массой служит синтетический материал с низкой плотностью в форме дисков. Фильтры состоят из множества секций с движущейся загрузкой. Диски закреплены на горизонтальном волу с дистанцией в 20 мм. В штатном режиме работы диски погружают в воду на 40-45%, но бывает и более. Размер дисков определяет производительность сооружения.

Биодисковые фильтры фильтруют воду следующим образом: перфорированная поверхность вращающихся дисков покрыта биопленкой, а в создаваемых гидродинамических условиях отторгнутая биопленка работает с прежней производительностью. Таким образом, наблюдается два режима работы одновременно: закрепленного биоценоза и активного ила. Кислород для микроорганизмов поступает из атмосферы. Время очистки в биодисковых фильтрах равняется 1-1,5 часа, а в обычных аэротенках – 6 часов. К тому же этот вид биохимической очистки сточных вод  не требует больших площадей, легко переносит перемены в нагрузке и потребляет мало электроэнергии.


Биодисковые фильтры имеют от 3 до 6 секций. Максимальная нагрузка идет на первые два диска. Нитрификация и понижение концентрации азота начинает происходить в третьей секции и продолжается в остальных.  Достигнутый результат превосходит классические аэротенки на 40%. Иногда назначают дополнительную доочистку от азотистых солей.  Биопленка удаляется с помощью гравитации.

Биофильтраторы

Биофильтраторы используются при низком потреблении воды – до 600 кубометров. В процессе биологической очистки сточных вод удаляются разнообразные загрязнения в любой концентрации. Сооружения стоят не много и потребляют мало электроэнергии. Плюсами являются простата в использовании и отсутствие особого ухода.

В биофитраторах предусмотрено две зоны: сорбционная и осветление. В сорбционной зоне вращаются диски из пористого материала (пенопласта) с помощью мотора-редуктора. Разделительная перегородка имеет специальные отверстия для перелива жидкости и взвешенной биопленки. В зоне осветления активный ил оседает и отсасывается назад в сорбционную зону, что обеспечивает обмен биомассой. Отфильтрованную воду выводят из биофильтратора.

Для усиления биопроцессов используют струйную аэрацию. В этом случае мотор-редуктор уже не нужен. Метод эффективен при очистки воды больших объемов и высокой степенью загрязнения БПК.


Биореакторы

Биореакторы представляют собой многоступенчатую установку с движущимися барабанами. Производительность этого типа сооружения от 50 до 700 кубометров в сутки.

Они состоят из каскада цилиндрических емкостей, объединенные в систему сообщающихся сосудов. Вода самотеком проходит по патрубкам.  Что бы обеспечить равномерную подачу воды, в первом поддоне предусматривают специальный карман с щелевым переливом.  Очищенная жидкость собирается в сборном канале после последней емкости.

Каждая емкость загружена волокнистым барабаном для закрепления биопленки. Он достаточно легкий и может легко вращаться для естественной аэрации. Для обеспечения движения всех барабанов достаточно одного привода. На дне емкостей предусмотрены сборно-отводящие каналы для сбора осадка. Он собирается со всех бункеров и подвергается обезвоживанию. В низу биореактора установлены перфорированные трубы для восстановления ершей методом барботирования.

Использовать биореакторы могут даже неквалифицированные работники. На их работу не влияет степень загрязнения сточной воды органическими веществами.

Аэротенки

Аэроционные установки эффективны в небольших населенных пунктах. Существует два вида аэрационных установок:

  • с полным окислением;
  • со стабилизацией лишнего активного ила.

Оба вида хорошо зарекомендовали в любых климатических условиях, на любом грунте и гидрогеологических показателях. Они не нуждаются в большой площади для сооружений.

Аэрационные установки с полным окислением

Позволяют полностью очистить стоки. Окончательное кисление достигается в 3 этапа:

  1. большая концентрация органических примесей сточной воды обеспечивает активный рост микроорганизмов;
  2. количество органики снижается, что ограничивает рост микроорганизмов; можно наблюдать зависимость между увеличением активного ила и оставшейся органикой;
  3. размножение микроорганизмов сокращается из-за дефицита органики; микроорганизмы начинают перерабатывать отмершие организмы – происходит минерализация активного ила.

Общий прирост ила незначительный в процессе всего окисления. Его забирают в среднем через 2-3 месяца.

Существуют компактные установки  (КУ) в виде одного металлического блока. Это небольшой аэротенко-отстойник с принудительной циркуляцией активного ила. Пропускная способность установок 12 и 25 кубометров в сутки. Они оснащены щитами для защиты от низких температур зимой.

Аэрационные установки со стабилизацией излишков активного ила

Под аэробной стабилизацией понимают окисление органики при принудительной подаче кислорода. Кинетически процесс схож с окислением в аэротенках. Производительность не превышает 1,4 тыс. кубометров воды за сутки. При незначительно концентрации загрязнений процесс очистки не занимает много времени и труда. Используют механическую и пневматическую аэрацию. Затрудняют очистку токсичные и агрессивные вещества, которые плохо окисляются. Основные достоинства этого метода:


  • простая конструкция сооружений;
  • нет вероятности взрыва;
  • отличные санитарно-гигиенические показатели4
  • возможно автоматизация процесса;
  • простое обслуживание.

Переработка осадка

Осадок перерабатывается в аэробных условиях без подачи кислорода. Органические вещества разлагаются благодаря работе аэробных микроорганизмов. Примерами могут быть:

  • биотуалеты для домов;
  • септики;
  • отстойники и осветлители с двумя ярусами – перегниватели.

В септиках и перегнивателях сточные воды отстаиваются и обрабатывается осадок.

Если обеспечена подача кислорода, то органика в осадке окисляется:

  • аэротенки;
  • аэробные стабилизаторы.

Доочистка сточных вод

Фильтрующие колодцы

Естественная биологическая очистка не нуждается в дополнительной доочистки. Если фильтрующие колодцы правильно построены и работают, то санитарная обстановка вокруг сооружения удовлетворительна.

Фильтрующие колодцы и биологические пруды используются для доочистки в некоторых технологиях. Они расположены за сооружениями биологической очистки.

Биологические пруды

Биологические пруды могут иметь искусственную или естественную подачу воздуха. Концентрация органики снижается до 5 мг/л. Они просты, надежны и экономичны.

Если отсутствует возможность постройки биологических прудов, то прибегают к искусственным способам доочистки стоков.

Фильтры с зернистой загрузкой

Бывают двух видов:

  • гравийные;
  • каркасно-засыпные.

Загрузочный материал расположен по убывающей зернистости. Используемый материал не является дефицитным и расположен на многих районах. Каркас и фракцию засыпки подбирают так, что бы зерна свободно поступали в каналы.  В верхних слоях сточные воды очищаются от взвесей, а в нижних происходит тонкая очистка. Для песчаных фильтров нужно сооружение большого объема.

Намывные фильтры и микрофильтры

Микрофильтры состоят из сеточного металлического барабана. Очистка БПК до 30%, а взвешенных примесей – до 70%.

Намывные фильтры – емкость с монтированными сетчатыми элементами. Фильтрующий материал намывается на сетки и очищает воду. Сточная вода после намывных фильтров схожа по составу с речной.

Заключение

Метод очистки выбирается по следующим показателям:

  • ежедневное потребление воды;
  • неравномерность подачи сточной воды;
  • период работы очистных станций: сезонно, целый год;
  • система канализации;
  • средняя концентрация органики, фосфатов и азота;
  • требования к очищенной воде;
  • местные условия расположения очистных сооружений.

В начале, следует выбирать естественные методы очистки – они самые экономичные. Очистные станции должны полностью очищать и обезвреживать воду для ее дальнейшего беспроблемного использования.

Доочистка сточных вод

Источник: vse-o-vode.ru

Биофильтры доочистки сточных вод

Этот блок доочистки сточных вод нашей компанией изготавливается из стеклопластика методом машинной намотки. Он представляет собой прочную, долговечную водонепроницаемую цилиндрическую емкость, а в его конструкцию, помимо корпуса, входят:

  • Входной патрубок;
  • Выходное отверстие с заглушкой;
  • Насос;
  • Инертная загрузка (керамзит).

В эти фильтры доочистки сточных вод стоки поступают через входные патрубки, после чего равномерно распределяются по поверхности керамзита, играющего роль инертной загрузки. В результате этого образуется многослойная биопленка, состоящая из колоний бактерий различных видов. Именно они в процессе своей жизнедеятельности разлагают примеси биологического происхождения. Кроме того, по мере того, как стоки просачиваются через слой керамзитной подсыпки, происходит анаэробное окисление водорода и углерода, в результате которого образуется вода и аммонийный азот. Последний в дальнейшем доокисляется сначала до нитритов, а потом и до нитратов.

Биофильтр

Ультрафиолетовое обеззараживание сточных вод

Доочистка сточных вод на биофильтрах весьма эффективна, однако она не решает проблемы их обеззараживания. Для решения этой задачи сооружения доочистки сточных вод от компании «Флотенк» оснащаются установками FloTenk-UF. Стоки, попадающие в них, подвергаются обработке ультрафиолетовым излучением, в результате чего уничтожаются содержащиеся в них бактерии и другие микроорганизмы. Следует особо отметить, что при этом в сточные воды не используются химические реактивы, и поэтому, в отличие от обеззараживания хлорирование, не образуется дополнительных примесей.

УФ

Источник: www.FloTenk.ru

Помимо обыкновенной очистки стока в канализационных системах довольно часто необходима и дополнительная очистка, которая получила название «доочистка». Название это вполне оправданное, поскольку такая очистка сточных вод является более глубокой и тщательной, нежели обыкновенная. На первом этапе сточные воды очищаются только биологически, а на втором производится сама доочистка. Благодаря ей в стоке уменьшается содержание фосфора, азота, взвешенных вещества, снижаются такие величины, как ХПК и ВПК, производится насыщение воды кислородом.

Таким образом, доочистка нам дает совершенно безопасную воду, которую можно повторно использовать в производственных процессах. Именно поэтому доочистка весьма популярна на средних и крупных предприятиях.

Естественно, дочищенная вода не может быть полностью лишена вредных веществ: Сброс очищенной сточной водыони лишь сводятся к минимуму посредством тщательной фильтрации. Поэтому не стоит думать, что вода, пройдя дополнительную очистку, может стать пригодной для питья. Очищенный сток снова пускают в производство, чтобы сэкономить природные водные ресурсы, а также исключить дополнительные денежные затраты.

В процессе доочистки сточных вод принято использовать фильтры различной конструкции. В результате такой фильтрации на выходе мы получаем воду с содержанием минимального количества нефтепродуктов, фосфора, азотных соединений, взвешенных веществ и прочих загрязнений, с которыми вода попадает в канализационную систему. Фильтры могут быть самыми разными, однако обязательным является наличие в них барабанной сетки. Фильтруемая вода поступает в барабан через входной патрубок. На каждой из сеток остается часть загрязнений, которые были отделены от обрабатываемой воды в ходе фильтрации. Такие сетки задерживают особо крупные загрязнения. Очищенная вода скапливается в специальной камере, после чего направляется на последующие сооружения для завершающей фильтрации. На последнем этапе доочистки вода насыщается кислородом. Для этого используется быстроток-аэратор.

В зависимости от того, какая вода будет отправляться на доочистку, предприятие должно остановиться на определенном типе фильтра. Так, исходя из установленных требований к качеству сточных вод, которые направляются на доочистку, выделяют фильтры с различными конструкциями. Среди них:

1. Согласно потоку воды: конструкции с восходящим или нисходящим потоком.

2. Однослойные и двухслойные.

3. Согласно способу загрузки: конструкции с подвижной загрузкой, аэрируемые, каркасно-засыпные, с плавающей загрузкой.

Фильтрующий материал также используют самый разный. Это может быть гравий, кварцевый песок, гранулированный доменный шлак, гранитный щебень, горелые породы, антрацит, полистирол, керамзит и шунгизит. От выбора фильтрующего материала будет зависеть качество доочистки воды.

Так, каркасно-засыпной фильтр относится к многослойным. В нем фильтрация воды производится в том направлении, в котором уменьшаются зерна загрузки. Конструкция данного фильтра очень схожа по своему строению с конструкцией простого скорого фильтра, который характеризуется нижним отводом промывных вод и их нисходящим движением. Подача воды в таком фильтре осуществляется по желобам, которые образуют целую систему. При этом дренажная система представляет собой дырчатые трубы. В качестве фильтрующего материала используется гравий или же гранитный щебень. Для заполнения межпорового пространства можно применить песок, шлак, мраморную крошку, керамзит или же антрацит. Из плюсов каркасно-засыпного фильтра стоит отметить высокое качество фильтрации, возможность работы в режиме беспленочной доочистки, а также высокую грязеемкость загрузки.

Однако в доочистке стока канализационной системы нередко применяются и микрофильтры, установки пенной флотации и фильтры с плавающей загрузкой. Установки пенной флотации, к примеру, используются для доочистки воды от поверхностно-активных веществ. А вот сорбционные и коагуляционные установки применяются для доочистки сточных вод от особых трудноокисляемых примесей.

Озонаторные установки можно также применять в сочетании с обыкновенными фильтрами. Известно, что обработанная озоном вода полностью стерильна (озон обеззараживает воду), лишена какого-либо запаха, мутности и цвета. Доочистка стока от фосфора и азота необязательна, однако необходима, когда вода на выходе будет перенаправлена в систему оборотного водоснабжения предприятий, где может начаться биологическое обрастание аппаратов и трубопроводов. Подобная доочистка нужна и в том случае, если при сбросе сточных вод возникает риск появления эвтрофикации водоемов. Чтобы удалить из сточных вод соединения фосфора чаще всего применяется реагентный метод. Реагентами могут выступить сернокислый алюминий, сернокислое железо и известь.

Биологически очищенные сточные воды, как правило, вмещают в себя азот в форме нитратов, нитритов, а также солей аммония. Чтобы избавиться от подобных соединений азота в наше время применяются не только биологические, но и физико-химические методы. Известными биологическими методами удаления соединений азота считаются нитрификация и денитрификация воды. Физико-химическими методами являются ионный обмен, отдувка аммиака, хлорирование с дальнейшей адсорбцией активным углем, электролиз, озонирование, обратный осмос, химическое восстановление, электродиализ и дистилляция.

Сама интенсивность доочистки, как правило, характеризуется скоростью фильтрации в м/ч. Эта скорость является соотношением расхода фильтруемой воды к общей площади фильтрующего слоя. Через этот слой доочистка происходит под влиянием разности давлений: на входе в фильтр давление одно, а на выходе – другое.

Источник: www.promstok.com

 

Изобретение относится к способу доочистки городских и близких к ним по составу производственных сточных вод, а также наиболее загрязненной части поверхностного стока, которая образуется в периоды выпадения дождей и таяния снега, от загрязняющих веществ и может быть использовано в составе комплекса очистных сооружений в местах выпуска очищенных сточных вод с территорий промышленных зон, а также в городских коммунальных хозяйствах.

Идея создания биопрудов основана на способности высших водных растений очищать воду от различных загрязняющих веществ. В зарослях водных растений задерживаются и оседают взвеси. Растения в процессе жизнедеятельности поглощают биогенные и органические вещества, различные макро- и микроэлементы. Часть этих химических элементов и веществ используются растениями, часть накапливается, изолируется или преобразуется, выводится в грунты или в атмосферу. Выделяя в воду кислород и метаболиты, они участвуют в окислительных и детоксикационных процессах, стимулируют развитие различных гидробионтов, которые не менее активно участвуют в очистке водной среды.

Способность разных видов растений очищать воду имеет существенные различия и специфику. В число наиболее эффективных в этом плане растений входит не более 10 видов. Особенно часто в биоплато используется тростник обыкновенный, или южный Phragmites australis (Cav.) Trin. ex Steud., существенным недостатком которого является его быстрое разрастание, заполнение ложа пруда густыми зарослями сильно измельчавших растений, поглощающая способность которых резко снижается. В таких зарослях нет подходящих условий для нормального развития других гидробионтов, что тоже отрицательно сказывается на эффективности такого биоплато.

Другим видом воздушно-водных растений, наиболее часто используемым для доочистки сточных вод, является рогоз узколистный Typha angustifolia L. Для этого рогоза отмечена способность аккумулировать в больших количествах прежде всего К, Na, Сa, Mg, Sr, а также О и Zn. Видовой особенностью рогоза узколистного является накопление Na и Сl в количествах больших, чем аккумуляция этих элементов тростником (Kovács, 1982). Во время полевых экспериментов, в которых очищаемые воды контактировали с зарослями рогоза узколистного в течение 10 суток, получен следующий порядок снижения загрязняющих компонентов в речной воде: Fe — в 222.5 раза, Cu — 8.6, Zn — 4.7, Cd — 6, Al — 11, Pb и As в воде после экспозиции не обнаружены. Значительная часть компонентов сорбировалось оседающей на дно гидроокисью Fe. Осевшие инградиенты были надежно закреплены в нерастворимой форме, которая исключает процесс вторичного загрязнения в реальных условиях. Процентное содержание элементов в нерастворимом осадке: Cu — 0.15, Zn — 14, Pb — 0.04, Cd — 0.035, Al — 2.9; остальное — Fe. Основная масса тяжелых металлов была удалена из воды за первые трое суток (Акулов, Попов, 1985). В зарослях этого растения наблюдается активное разложение нефти и нефтепродуктов нефтеокисляющими бактериями, развитие которых стимулируются выделениями рогоза (Морозов, Телитченко, 1977). В опытах почти 90% поверхности воды в сосудах при концентрации нефти 1 г/л очищалась от пленки в присутствии рогоза узколистного на пятый-девятый день, тогда как в контрольных сосудах без растений аналогичные явления наблюдались на 28-32-й день (Морозов, Петрова, Петров, 1969). Известна повышенная устойчивость рогоза узколистного к высоким концентрациям животноводческих стоков и активное участие в очистке загрязненных ими природных вод (Морозов, Телитченко, 1984). Чаще всего плотность зарослей рогоза узколистного колеблется в пределах 20-60 шт./м2 (Горбик, 1988). То есть, этот вид не образует настолько плотных зарослей, чтобы мешать развитию других важных для биоплато организмов, но она достаточно высока, чтобы способствовать осаждению взвешенных веществ. Во время вегетационного сезона в этих зарослях наблюдается высокий и интенсивный рост первичной продукции, что в первую очередь и определяет эффективность растения в биоочистке. Средняя сырая надземная биомасса сообществ равна 6,0 кг/м2 (от 1,8 до 17,4 кг/м2), абсолютно сухая — 780 (от 236 до 2250) г/м2, запас органического вещества — 680 (220-2100) г/м2; биомасса подземных органов на 15% больше надземных; чистая первичная годовая продукция надземных органов в 1,2 раза больше их максимальной биомассы (Папченков, 2001).

Самым же активным в очистке вод среди воздушно-водных является камыш озерный Scirpus lacustris L. Средние величины сырой надземной биомассы чистых сообществ камыша озерного равны 4,4 кг/м2, абсолютно-сухой — 2,4 кг/м2, органического вещества — 2,2 кг/м2 (Папченков, 2001). Но камыш хорошо реагирует на повышение питательных элементов в грунте (Лисицына, Жукова, 1971) и в воде, поэтому его максимальная надземная биомасса может быть очень большой. Так, на Средней Волге при глубине 0,8 м, илисто-каменистом грунте, максимальной длине побегов 254 см, их количестве 445 шт./м2 сырой вес биомассы составил 12,75 кг/м2, абсолютно сухой — 5,95 кг/м2, запас органического вещества — 5,47 кг/м2 (Папченков, 2001). Наиболее интенсивным прирост надземных побегов камыша бывает весной и в первой половине лета (Лисицына, Жукова, 1971). За сутки в присутствии камыша перманганатная окисляемость растворенного органического вещества снижается на 70-95%, концентрация кислорода поднимается с 0,2 до 2 мг/л, а рН с 3,3 до 9,5 и стабилизируется на 7,0 (Морозов, Телитченко, 1977). Высока роль камыша озерного и в разложении нефти и нефтепродуктов. В экспериментах показано, что скорость разложения нефти в присутствии камыша озерного заметно выше, чем в присутствии рогоза узколистного. Это можно объяснить: во-первых, доступностью его выделений для нефтеокисляющих бактерий, во-вторых, тем, что стебель камыша на 80% состоит из воздухоносных полостей, которые проводят воздух из атмосферы в толщу воды. Это увеличивает ее фотосинтетическую аэрацию, а отсюда и окисление нефти кислородом непосредственно (Морозов, Телитченко, 1977). Выделение камышом биологически активных веществ и кислорода активизирует не только процессы бактериального разложения нефти, но и переработку появляющейся бактериальной биомассы и продуктов их жизнедеятельности различными организмами от инфузорий до хищного зоопланктона, который может быть кормом для более крупных водных животных (Изъюрова, 1952).

Среди погруженных в воду растений очень высокие способности к биоочистке демонстрирует элодея канадская Elodea canadensis Michx. Элодея чаще всего образует плотные чистые заросли. Средняя сырая биомасса ее ценозов 3,6 кг/м2, абсолютно сухая — 0,37 кг/м2, запас органического вещества — 0,305 кг/м2. Максимальная биомасса в сыром виде — 6,25 кг/м2 (Папченков, 2001). Широко известны свойства элодеи извлекать из воды различные вещества и химические элементы (Ковальский и др., 1970; Тимофеева, Белых и др., 1977; Душкаускене-Дуж, Поликарпов, 1978; Титова, 1979; Кашина, 1984; Морозов, Телитченко, 1984; Тимофеева, Русецкая, 1989; Rice et al., 1997; и многие др.). В присутствии элодеи канадской наблюдается активное разложение нефти. В эксперименте в сосудах с элодеей при концентрации нефти 1 г/л воды уже на 26-й день от нефти было свободно 50% площади (Морозов, Петрова, Петров, 1969).

Известен способ очистки сточных вод (а.с. СССР N 953800, C02F 3/32, опубл. 09.01.1995), включающий пропускание последних через камыш озерный, отличающийся тем, что, с целью возможности очистки сточных вод сульфатцеллюлозного производства и сокращения времени обработки, сточные воды дополнительно пропускают через рогоз узколистный и тростник обыкновенный. Способ предусматривает прохождение сточных вод через все три ступени в 9 дней.

Недостатками известного способа являются: использование тростника, который быстро разрастаясь, заполняет собой весь объем секции пруда с его посадками, что значительно снижает их способность очищать воду от загрязнений; слишком продолжительный период полной очистки сточных вод.

Известен также способ биологической очистки воды от солей (патент РФ №2094392, C02F 9/00, опубл. 27.10.1997), который включает контактирование исходной воды с высшим водными растениями: тростником обыкновенным, камышом озерным, рогозом узколистным, выращенными на субстрате, фильтрацию и отвод очищенной воды через трубчатые дрены, отличающийся тем, что в качестве субстрата используют многократно промытый гранулированный речной кварцевый песок с размером гранул 1-3 мм, высшую водную растительность используют в смеси с ирисом при плотности посадки 20-25 ед./м2 площади, процесс осуществляют под слоем полимерной гранулированной загрузки с плотностью меньше плотности воды при подаче воздуха под слой субстрата при скорости 0,15 0,2 л·с/м2 в течение 1,5 2 ч/сут, а отвод очищенной воды ведут через трубчатые пористые дрены, заполненные активированным углем и расположенные над субстратом.

К его недостаткам можно отнести затратный и сложный способ устройства системы доочистки и высокую плотность посадки растений — 20-25 ед./м2, препятствующую интенсивному росту растений, во время которого идет активное поглощение растениями загрязняющих веществ.

Наиболее близким решением к предлагаемому способу, выбранным за прототип, является способ биологической очистки сточных вод (патент РФ №2107041, C02F 3/32, опубл. 20.03.1998), включающий их пропускание через систему водных секций с высшими водными растениями, отличающийся тем, что сточную воду предварительно очищают в отстойниках, пропускание ведут через каскадно расположенные секции, выполненные в виде емкостей, причем вначале вода поступает в емкость с манником, а затем последовательно в емкости с камышом, аиром, ирисом и рогозом с последующим падением ее в водобойный колодец. Способ предусматривает, что по завершении вегетации с растений срезают цветоносы с семенами и укладывают их равномерно по поверхности емкостей, остальную массу срезают выше поверхности сточной воды на 5-10 см и удаляют, а очистительную систему промывают чистой водой и изолируют от отрицательной зимней температуры.

К его недостаткам можно отнести сложный и трудоемкий процесс эксплуатации в течение срока в 10 лет, особенно в зимний период, а также использование для очистки манника, аира и ириса, известных своими слабо выраженными способностями в очистке вод от загрязнений.

Задача изобретения — повышение эффективности доочистки сточных вод за счет создания оптимальных условий существования водной растительности и сопутствующих биоценозов. Техническим результатом является доочистка сточных вод от загрязнений, содержащих твердые мелкие взвешенные частицы, примеси, органический и аммонийный азот, фосфор, их соли, нефтепродукты, тяжелые металлы, поверхностно-активные вещества как естественного, так и техногенного происхождения с ресурсом непрерывной работы до 10 лет без значительных дополнительных работ.

Технический результат достигается за счет того, что способ доочистки сточных вод с использованием посадок камыша озерного Scirpus lacustris L., рогоза узколистного Typha angustifolia L. и элодеи канадской Elodea canadensis Michx, высаженных на участке оборудованной местности, дополнительно предусматривает прохождение потока сточных вод через, по меньшей мере, три структурированные зоны «открытый плес — заросли растений», в каждой из которых посадки камыша озерного первого ряда и рогоза узколистного второго ряда двурядной нелинейной дуги, выгнутой по течению потока в нижней части плеса, в сочетании с посадками элодеи канадской с боковых сторон потока формируют центральную замкнутую зону со свободным от посадок пространством.

Дугообразная форма порядных посадок камыша озерного и рогоза узколистного обеспечивает оптимальное распределение водного потока, предназначенного для доочистки, равномерное осаждение осадка по всей ширине биоинженерного сооружения.

Технический результат достигается при полном прохождении объема воды, предназначенного для доочистки, в течение трех дней.

Предлагаемый процесс доочистки сточных вод характеризуется чередованием структурированных зон «открытый плес — заросли растений» с открытыми от посадок пространствами, ограниченных указанным сочетанием зарослей крупных высокотравных воздушно-водных растений, выделения которых стимулируют развитие нефтеокисляющих бактерий (рогоз узколистный), воздушно-водных растений с зелеными стеблями (камыш озерный), способными к фотосинтезу подо льдом, и погруженных растений, способных активно поглощать различные загрязняющие вещества и интенсивно обогащать воду кислородом. В открытых пространствах системы в качестве естественных очистителей воды работают планктон, бентос и перифитон. В процессе эксплуатации указанные зоны дублируют друг друга.

Оптимальное соотношение посадок для достижения заявленного результата составляет:

— посадки водных растений занимают около 50-60 процентов поверхности участка местности, оставшаяся площадь участка свободны от высших водных растений;

— 45-60, наиболее предпочтительно около 50 процентов площади посадок — элодея канадская;

— 30-35, наиболее предпочтительно около 35 процентов площади посадок — камыш озерный;

— 12-15, наиболее предпочтительно около 15 процентов площади посадок — рогоз узколистный.

Данная система, как и другие технические решения аналогичного назначения, не является статичной. В течение некоторого срока, например 10 лет, растения будут развиваться и заполнять открытые пространства системы. Поэтому для описания заявленного изобретения вводятся такие понятия, как «начальная плотность посадки» растений. Эффективной начальной плотностью посадки можно считать пять растений на 1 м2 для камыша озерного и четыре растения на 1 м2 для рогоза узколистного, плотность посадки четыре растения на 1 м2 и шесть растений на 1 м2 для камыша озерного и, соответственно, пять и шесть растений на 1 м2 для узколистного рогоза, также относятся к эффективной начальной плотности посадки, которая позволяет осуществить необходимую доочистку сточных вод при проходе через биоплато.

Сущность изобретения поясняет Фиг.1, на которой схематично представлен процесс прохождения потока сточных вод в процессе доочистки, вид сверху участка местности, характер и последовательность размещения на нем посадок разных видов растений: 1 — посадки камыша озерного, 2 — посадки рогоза узколистного, 3 — посадки элодеи канадской. Стрелками обозначены вход и выход доочищаемых сточных вод.

Способ очистки осуществляют следующим образом. Предварительно очищенные стоки, прошедшие через песколовки, фильтры и пруды отстойники, поступают для доочистки на оборудованный участок местности. Первоначально поток воды попадает в зону посадки элодеи канадской, проходя через стебли которой поток рассеивается и движется вниз по течению. Затем поток доходит до зарослей камыша озерного в первом ряду и рогоза узколистного во втором ряду посадки в виде двурядной нелинейной дуги, выгнутой по течению потока в нижней части плеса, равномерно распределяется по ширине, рассеивает движущиеся в потоке воды загрязнения из взвешенных частиц естественного либо техногенного происхождения, заставляя их под действием силы тяжести осаждаться на дно первого плеса. В результате осаждения загрязнений в свободной от растений центральной зоне, где самостоятельно развивается бактерио-, фито- и зоопланктон, фито- и зообентос и перифитон, происходит более тонкая и полная доочистка воды. При выделении большого количества кислорода растениями элодеи канадской создается среда для гетеротрофных бактерий, которые участвуют в очистке воды от вредных веществ. Выделения в воду продуктов жизнедеятельности рогоза узколистного стимулируют развитие нефтеокисляющих бактерий, активно разлагающих нефть и нефтепродукты. Далее, проходя через заросли высаженных растений, очищаемые сточные воды освобождаются от загрязняющих веществ и взвесей до безопасного для окружающей среды уровня. В процессе доочистки участвуют не только посаженные высшие растения, но и развивающиеся в их зарослях планктонные и бентосные сообщества низших растений, а также покрывающие подводные части стеблей и листьев перифитонные организмы. Свободные от растений пространства выполняют ту же функцию очистки воды за счет интенсивно развивающегося здесь фито- и зоопланктона. Эти свободные от растений пространства нужны также для свободного разрастания воздушно-водных растений, поэтому со временем они будут сужаться, с их исчезновением нужна будет замена высаженных растений и очистка дна биопруда от накопившегося ила. Время доочистки сточных вод в пределах заявленного участка местности составляет около трех суток. Подбор видов растений, характер их посадки и наличие свободных от растений пространств с естественно развивающимся фито- и зоопланктоном обеспечивает доочистку стоков до необходимого уровня. В холодный период отсутствия активной вегетации уровень доочистки снижается до 30% от летнего. Процесс доочистки в это время идет за счет жизнедеятельности камыша озерного, планктонных, бентосных и перифитонных организмов. Система доочистки заканчивается одним сливом. Предлагаемая для доочистки система состоит из трех и более плесов. Размеры участка местности определяются объемом поступающей загрязненной воды.

В прилагаемой Таблице 1 приведены данные о площади посадок и объеме посадочного материала. Для пояснения приведенных данных необходимо отметить, что в качестве посадочного материала использовались участки корневищ камыша и рогоза с развитыми, готовыми к быстрому росту 3-5 почками и отдельные молодые побеги элодеи, которые высаживали группами.

Поглощение, накопление, осаждение и разрушение загрязняющих веществ происходило в процессе роста и развития растений и связанных с ними сообществ перифитона, бактерио-, фито- и зоопланктона. Поскольку очищаемые в прудах стоки были не слишком богаты биогенными элементами, то в пик развития зарослей растений их масса составила: у камыша озерного — 4.4 кг/м2, рогоза узколистного — 6.0 г/м2, элодеи канадской — 3.6. Суммарно к середине лета они дали 8,8 т сырой растительной массы: соответственно, 2.9 т — камыш, 1.6 т — рогоз и 4.3 т — элодея.

В ходе экспериментов было установлено, что проточность в системе доочистки оптимальна при скорости потока 0,5-1,0 см/с, повышение скорости потока через биологическую загрузку снижает эффективность относительного поглощения ингредиентов. Оптимальное время пребывания воды в системе доочистки около 3 суток, в течение которых из воды выводилась основная часть загрязнений. В последующие сутки очистка продолжалась, но она была уже слабо выраженной. После же 10 суток вода вновь начинала обогащаться продуктами распада органики в донных осадках, т.е. происходило вторичное загрязнение.

Выявлено, что консервативные ингредиенты стока в определенных пределах не оказывали отрицательного влияния на процессы доочистки водных масс и на процессы трансформации лабильных составляющих систем, но для получения определенных нормативных показателей содержания их на выходе из системы доочистки были установлены ограничительные параметры их на входе в биопруд. Например, содержание нефтепродуктов на входе не должно быть больше 1,0 мг/л.

В результате исследований установлены коэффициенты поглощения биогенных элементов и тяжелых металлов из водных масс и донных отложений, приведенные в Таблице 2.

Выявлено, что эффективность использования предлагаемого способа во вневегетационный период (поздней осенью и зимой) обеспечивается снижением проточности до 0,13-0,08 см/с и увеличением времени пребывания воды в пруду до 8-13 суток.

В Таблице 3 приведены показатели очистки воды от загрязняющих веществ в теплый вегетационный период (с конца весны по начало осени) и в холодный период (поздняя осень, зима, ранняя весна) при объеме, поступавшем на очистное сооружение, 0.52 м3/с. Эффект очистки в зимний период составил примерно 30% от летнего.

Из представленных в Таблице 3 результатов видно, что в зимнее время возможно незначительное превышение концентраций отдельных загрязняющих веществ по отношению к ПДК водоемов рыбохозяйственного пользования. В летнее же время все показатели не превышали ПДК.

При площади гидробиоплато в 0.55 га и среднем количестве высаживаемых растений 53 единицы/м2 общее количество воздушно-водных растений 11950 шт. составило около 48 тыс. ед. мелких погруженных в воду растений. Общий объем биомассы посадочного материала составил 880 кг.

Осуществление способа при следующих соотношениях посадок растений: 45-60 процентов площади посадок для элодеи канадской, 30-35 процентов площади посадок для камыша озерного, 12-15 процентов площади посадок для рогоза узколистного, а также плотности посадки четыре растения на 1 м2 и шесть растений на 1 м2 для камыша озерного и, соответственно, пять и шесть растений на 1 м2 для узколистного рогоза, также является эффективным и позволяет осуществить необходимую доочистку сточных вод при проходе через биоплато в течение трех дней.

Таким образом, предложенный способ создает оптимальные условия для эффективной доочистки сточных вод от загрязнений, содержащих твердые мелкие взвешенные частицы, примеси, органический и аммонийный азот, фосфор, их соли, нефтепродукты, тяжелые металлы, поверхностно-активные вещества, биогенные элементы (азотосодержащие вещества, фосфор и др.) как естественного, так и техногенного происхождения с ресурсом непрерывной работы до 10 лет без значительных дополнительных затрат.

Доочистка сточных вод

Доочистка сточных водu

Доочистка сточных вод

1. Способ доочистки сточных вод с использованием посадок камыша озерного Scirpus lacustris L., рогоза узколистного Typha angustifolia L. и элодеи канадской Elodea canadensis Michx, высаженных на участке оборудованной местности, отличающийся тем, что в процессе доочистки поток сточных вод дополнительно проходит через по меньшей мере три структурированные зоны «открытый плес — заросли растений», в каждой из которых посадки камыша озерного первого ряда и рогоза узколистного второго ряда двурядной нелинейной дуги, выгнутой по течению потока в нижней части плеса, в сочетании с посадками элодеи канадской с боковых сторон потока формируют центральную замкнутую зону со свободным от посадок пространством.

2. Способ доочистки сточных вод по п.1, отличающийся тем, что около 50 % площади поверхности занимают посадки водных растений, оставшаяся площадь поверхности свободна от высших водных растений.

3. Способ доочистки сточных вод по пп.1 и 2, отличающийся тем, что он засажен высшими водными и воздушно-водными растениями в следующем соотношении:
— около 50 % площади посадок — элодея канадская;
— до 35 % площади посадок — камыш озерный;
— до 15 % площади посадок — рогоз узколистный.

4. Способ доочистки сточных вод по пп.1-4, отличающийся тем, что начальная плотность посадки составляет пять растений на 1 м2 для камыша озерного и четыре растения на 1 м2 для рогоза узколистного.

Источник: findpatent.ru

Экологические нормативы, действующие на территории Российской Федерации, диктуют очень жесткие требования к качеству сбрасываемых в водоемы сточных вод [1]. Допустимые концентрации загрязняющих веществ, во многих случаях, устанавливаются на уровне ПДК для водоемов рыбохозяйственной категории водопользования. Обеспечение соответствующей глубины очистки сточных вод требует применения новых высокоэффективных технологий и оборудования. Для очистки сточных вод до нормативных требований фирмой «Креал» разработаны и реализованы в промышленном масштабе технические решения по реконструкции существующих очистных сооружений.

Нормативная очистка сточных вод от взвешенных веществ требует их доочистки на фильтрах с зернистой загрузкой. Для стоков, прошедших биологическую очистку, хорошие результаты дает применение фильтров с плавающей загрузкой (ФПЗ). В сравнении с песчаными фильтрами, ФПЗ устойчиво работают в условиях значительных колебаний концентрации взвешенных веществ в поступающей на фильтрование сточной воде.

Строительство отдельной фильтровальной станции для доочистки сточных вод сопряжено с большими капитальными вложениями и влечет за собой существенные эксплуатационные затраты. Значительное сокращение затрат может дать совмещение процессов осветления и фильтрование сточной воды в одном сооружении типа отстойник-фильтр. Такое техническое решение разработано, запатентовано и успешно реализовано в промышленном масштабе нашей фирмой.

Разработка комбинированного сооружения типа отстойник-фильтр выполнялась в несколько этапов. В сентябре 2002 г. на Центральной станции аэрации города Санкт- Петербурга произведены испытания фильтра с плавающей загрузкой, разработанного нами, в задачи испытаний входил выбор материала загрузки, размера гранул, высоты слоя загрузки, скорости фильтрования, отработка режима промывки, определение грязеемкости и длительности фильтроцикла.

В процессе испытаний на фильтр подавалась биоочищенная сточная вода из лотка осветленной воды вторичного отстойника второй очереди очистных сооружений. Для повышения концентрации взвешенных веществ к поступающим на фильтрование стокам периодически добавляли активный ил из канала активного ила вторичных отстойников второй очереди.

Измерение расхода сточной воды на входе и выходе фильтра производили объемным методом — по времени заполнения емкости объемом 10 л. Потери напора воды в загрузке фильтра определяли прямым измерением уровней воды после выравнивания входного и выходного потоков сточной воды.

Источник: www.c-o-k.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.