Расчет гидравлики


 

Смежные нормативные документы:

  • СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения»
  • СП 30.13330.2016 «Внутренний водопровод и канализация зданий»
  • СП 60.13330.2016 «Отопление, вентиляция и кондиционирование воздуха»
  • ГОСТ 10705-80 «Трубы стальные электросварные»
  • ГОСТ 9583-75 «Трубы чугунные, напорные, изготовленные методами центробежного и полунепрерывного литья»
  • ГОСТ 539-80 «Трубы и муфты асбестоцементные напорные»
  • ГОСТ 12586.0-83 «Трубы железобетонные напорные виброгидропрессованные»
  • ГОСТ 16953-78 «Трубы железобетонные напорные центрифугированные»
  • ГОСТ 18599-2001 «Трубы напорные из полиэтилена»
  • ГОСТ 8894-86 «Трубы стеклянные и фасонные части к ним»

 

Теоретическое обоснование гидравлического расчета

Гидропотери в трубопроводах систем водоснабжения вызваны гидравлическим сопротивлениям труб, смежных стыковых соединений, арматуры и прочих соединительных элементов. Калькулятор выполняет расчет только для простого (прямого) трубопровода, поэтому для сложных систем рекомендуется совершать вычисления для каждого отдельного участка.

Согласно методике СП 31.13330.2012 «Водоснабжение. Наружные сети и сооружения», гидравлический уклон (потери напора на единицу длины) определяется по формуле:

  • λ – коэффициент гидравлического сопротивления;
  • d – внутренний диаметр труб, м;
  • V – скорость воды, м/с;
  • g – ускорение свободного падения, 9,81 м/с2.

Таким образом, из неизвестных остается только коэффициент гидравлического сопротивления, который рассчитывается по формуле:

Коэффициенты А0, А1, С и значения показателя степени m соответствуют современным технологиям изготовления трубопроводов и принимаются согласно нижеуказанной таблицы. В случае, если эти параметры отличаются от перечисленных, производитель должен указывать их самостоятельно.


Виды труб m A0 A1 С
Новые стальные без внутреннего защитного покрытия или с битумным защитным покрытием 0,226 1 0.0159 0.684
Новые чугунные без внутреннего защитного покрытия или с битумным защитным покрытием 0,284 1 0.0144 2.360
Неновые стальные и неновые чугунные без внутреннего защитного покрытия или с битумным защитным покрытием v < 1,2 м/с 0,30 1 0.0179 0.867
v ⩾ 1,2 м/с 0,30 1 0.021 0.000
Асбестоцементные 0,19 1 0.011 3.510
Железобетонные виброгидропрессованные 0,19 1 0.01574 3.510
Железобетонные центрифугированные 0,19 1 0.01385 3.510
Стальные и чугунные с внутренним пластмассовым или полимерцементным покрытием, нанесенным методом центрифугирования 0,19 1 0.011 3.510
Стальные и чугунные с внутренним цементно-песчаным покрытием, нанесенным методом набрызга с последующим заглаживанием 0,19 1 0.01574 3.510
Стальные и чугунные с внутренним цементно-песчаным покрытием, нанесенным методом центрифугирования 0,19 1 0.01385 3.510
Пластмассовые 0,226 0 0.01344 1.000
Стеклянные 0,226 0 0.01461 1.000

 

Расход воды в трубопроводе рассчитывается на основании известной усредненной скорости движения воды по трубе заданного сечения.

  • d – внутренний диаметр трубопровода, мм;
  • V – скорость потока жидкости, м/с.

Согласно СП 30.13330.2012 «Внутренний водопровод и канализация зданий» скорость движения воды в трубопроводах внутренних сетей не должна превышать 1.5 м/с, в трубопроводах хозяйственно-противопожарных и производственно-противопожарных систем – 3 м/с, в спринклерных и дренчерных системах – 10 м/с. Для большинства современных многоквартирных квартир и частных домов оптимальная скорость воды в трубе должна составлять от 0.6 м/с до 1.5 м/с.

Источник: kalk.pro

56 комментариев на «Гидравлический расчет трубопроводов»

  1. Алексей 28 Авг 2014 00:28
  2. Александр Воробьев 28 Авг 2014 20:46

  3. Николай 07 Ноя 2014 02:10
  4. Анатолий 14 Июл 2015 19:34
  5. Елена 25 Авг 2015 16:41
  6. Александр Воробьев 25 Авг 2015 20:53
  7. Игорь 21 Сен 2015 02:09
  8. Александр Воробьев 21 Сен 2015 13:50
  9. Игорь 21 Сен 2015 21:47
  10. Александр Воробьев 21 Сен 2015 22:07
  11. Олександр 28 Окт 2015 04:08
  12. Александр Воробьев 31 Окт 2015 20:32
  13. Игорь 21 Дек 2015 03:47
  14. Александр Воробьев 21 Дек 2015 09:00
  15. Владимир 02 Дек 2016 18:38
  16. Александр Воробьев 03 Дек 2016 10:49
  17. Дмитрий 11 Дек 2016 10:10
  18. Александр Воробьев 11 Дек 2016 12:29
  19. Дмитрий 18 Дек 2016 11:42
  20. Александр Воробьев 18 Дек 2016 12:32

  21. Мария 17 Янв 2017 16:49
  22. Александр Воробьев 17 Янв 2017 19:42
  23. хосе 17 Фев 2017 20:06
  24. Андрей 27 Мар 2017 17:59
  25. Игорь 16 мая 2017 08:02
  26. Александр Воробьев 16 мая 2017 17:35
  27. Сергей 17 Июн 2017 22:46
  28. Александр Воробьев 18 Июн 2017 10:05
  29. Лариса 09 Сен 2017 18:13
  30. Александр Воробьев 10 Сен 2017 11:21
  31. Вадим 19 Сен 2017 23:14
  32. Александр Воробьев 20 Сен 2017 19:48
  33. Дмитрий 17 Фев 2018 00:39
  34. Никита 22 Мар 2018 23:46
  35. Александр Воробьев 24 Мар 2018 11:26
  36. Denis 28 Мар 2018 18:11
  37. Александр Воробьев 28 Мар 2018 19:09

  38. Евгений 25 Апр 2018 17:08
  39. Александр Воробьев 25 Апр 2018 18:41
  40. Елена 04 Июн 2018 20:02
  41. Александр Воробьев 04 Июн 2018 21:30
  42. Ленар 12 Июл 2018 16:03
  43. Александр Воробьев 12 Июл 2018 16:18
  44. Михаил Субботин 09 Ноя 2018 15:22
  45. Михаил Субботин 09 Ноя 2018 15:24
  46. Александр Воробьев 09 Ноя 2018 15:40
  47. Глеб 06 мая 2019 20:26
  48. Владимир 04 Авг 2019 02:48
  49. Александр Воробьев 04 Авг 2019 13:22
  50. Борис 19 Авг 2019 11:05
  51. Вячеслав 28 Ноя 2019 19:03
  52. Александр Воробьев 28 Ноя 2019 19:38
  53. Вячеслав 29 Ноя 2019 16:07
  54. Александр Воробьев 29 Ноя 2019 16:29
  55. Вячеслав 29 Ноя 2019 17:26
  56. Александр Воробьев 29 Ноя 2019 22:47

Ваш отзыв



Источник: al-vo.ru

 




Этап 1

Расчет минимальных размеров гидроцилиндра по необходимому усилию.

Вы знаете, с каким усилием должен давить цилиндр.
На этом этапе вы можете узнать минимальный диаметр поршня гидроцилиндра,
с которым гидроцилиндр может развить нужное усилие.

Исходные данные
Необходимое усилие выдвижения ГЦ H кг
Рабочее давление МПа
Результаты расчета
Минимально необходимый диаметр поршня ГЦ мм
Этап 2

Расчет параметров гидроцилиндра по его размерам

У вас имеется гидроцилиндр. На этом этапе вы можете рассчитать необходимый объём
подачи маслянного насоса, время втягивания штока, толкающее и тянущее усилие.

Так же, зная размеры гидроцилиндра, вы можете рассчитать объем поршневой и штоковой полостей гидроцилиндра.

 

Исходные данные
Диаметр гильзы цилиндра мм
Диаметр штока цилиндра мм
Ход гидроцилиндра мм
Время полного выдвижения сек
Рабочее давление МПа
Результаты расчета
Объем поршневой полости ГЦ л
Объем штоковой полости ГЦ л
Необходимая подача насоса для обеспечения заданного времени выдвижения ГЦ л/мин
Расчетное время втягивания ГЦ сек
Толкающее усилие на ГЦ H кг
Тянущее усилие на ГЦ H кг

Калькулятор подбора гидростанций

Этап 1 Расчет параметров гидравлической станции
Исходные данные
Предполагаемая частота вращения приводного двигателя об/мин
Требуемая подача насоса л/мин
Объемный КПД насоса (шестеренные-0,9, поршневые-0,92)
Рабочее давление МПа
Результаты расчета
Минимально необходимый рабочий объем насоса см³/об
Минимально необходимый объем гидравлического бака л
Минимально необходимая мощность приводного двигателя Вт
Этап 2 Проверочный расчет параметров выбранной гидравлической станции
Исходные данные
Частота вращения приводного двигателя об/мин
Рабочий объем насоса см³/об
Объемный КПД насоса (шестеренные-0,9, поршневые-0,92)
Давление регулировки предохранительного клапана МПа
Результаты расчета
Подача насоса л/мин
Минимально необходимый объем гидравлического бака л
Необходимая мощность приводного двигателя Вт

Источник: monolitgrupp.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.