Буровые станки для бурения скважин

Оборудование для бурения нефтяных и газовых скважин – это целый комплекс технологических устройств, инструментов и приспособлений, обеспечивающий сам процесс бурения  и промывку скважины с извлечением из неё остатков разбуренных пород. Центральное звено любого бурового комплекса – это буровая установка (буровая вышка).

Буровая вышка

Буровая установка для бурения нефтяных скважин представляет собой комплекс буровых механизмов, машин и оборудования, который монтируется непосредственно на точке бурения и обеспечивает весь процесс обустройства скважин.

Основными элементами современной буровой установки являются:

  • вышечный блок;
  • блок насосного оборудования;
  • силовые  приводы;
  • блок для приготовления бурового раствора;
  • блок очистки бурового раствора (часто совмещен с предыдущим блоком);
  • оборудование для бурения:

  1. ротор;
  2. вертлюг;
  3. талевый механизм;
  4. буровая лебедка;
  5. насосы;
  6. силовой привод и так далее.
  • буровые сооружения:
  1. буровая вышка;
  2. комплект оснований;
  3. укрытия сборно-разборного или каркасно-панельного типа;
  4. комплект стеллажей;
  5. приемные мостки.
Полезная информация
1 Оборудование, механизирующее наиболее трудоемкие виды работ
  1. устройство для регулировки подачи долота;
  2. механизмы, позволяющие автоматизировать спусковые и подъемные операции;
  3. клиновой пневматический захват для труб;
  4. буровой автоматический ключ;
  5. вспомогательная лебедка;
  6. пневматический раскрепитель;
  7. краны для проведения ремонта;
  8. пульт для контроля за процессами бурения;
  9. управляющие посты.
  • оборудование, обеспечивающее приготовление, регенерацию и  очистку буровых растворов:
  1. устройство для приготовления раствора;
  2. комплект вибросит;
  3. отделители ила и песка;
  4. подпорные насосы;
  5. комплект емкостей для буровых растворов, воды и  химреагентов.

  • манифольд:

  1. блочная нагнетательная линия;
  2. запорные устройства дроссельного типа;
  3. буровой рукав.
  • оборудования, обеспечивающее обогрев элементов буровой установки:
  1. теплогенераторы;
  2. радиаторы отопления;
  3. коммуникации, обеспечивающие циркуляцию теплоносителя.

Основное назначение вышечного блока:

  • подвешивание талевой системы и крепящихся к ней бурильных труб;
  • размещение  оборудования, обеспечивающего спуск и подъем насосно-компрессорных,  обсадных и  бурильных элементов трубных колонн;
  • размещение  устройств, обеспечивающих подачу и вращение бурового  инструмента.

В блоке силового привода размещаются дизельные или электрические силовые установки, компрессоры,  редуктора и коробки передач.

В насосном блоке  расположены  насосные установки вместе со своими силовыми агрегатами.

В состав блока для приготовления и последующей регенерации буровых растворов входят:

  • емкости для приема и хранения бурового раствора, как для находящегося в процессе рабочей циркуляции, так и для создания необходимого запаса этой жидкости;
  • устройства, обеспечивающие приготовление раствора:
  • глиномесительное оборудование;
  • БПР (блок приготовления раствора) и так далее.

  • очистительное оборудования для регенерации бурового раствора:
  • комплект вибросит;
  • отделители ила и песка;
  • дегазационные устройства;
  • отстойники.

Комплекс, обеспечивающий спуск и подъем оборудования на скважине, является механизмом полиспастного типа, и включает в себя следующие основные элементы:

  • кронблок;
  • подвижный  талевый блок;
  • буровая лебедка;
  • механизм крепления конца каната (неподвижного);
  • сам стальной канат, который обеспечивает гибкую связь между двумя предыдущими устройствами.

Кронблок  монтируется в верхней части буровой вышки. Подвижный конец каната  закрепляется на барабане буровой лебедки, а его  неподвижный конец посредством механизма крепления закрепляется у основания вышки. На талевый блок вешается крюк, за который при помощи строп подвешивают или вертлюг, или элеватор для спуска/подъема трубных колонн.  На  современных спуско-подъемных комплексах крюк и талевый блок, как правило, объединяют в единый механизм, называемый  крюкоблоком.

Технологический инструмент, применяемый при бурении скважин

Понятие «буровой инструмент» объединяет в себе все  приспособления и механизмы, которые используются для бурения скважин и шпуров, а также при работах по  ликвидации возникающих аварийных ситуаций. По своему назначению буровой инструмент делится на:

  • технологический;
  • специальный;
  • аварийный;
  • вспомогательный.

Конструктивные особенности и номенклатура бурового инструмента меняются в зависимости от:

  • области применения (какие скважины бурят – геологоразведочные, взрывные, эксплуатационные, нагнетательные и так далее);
  • способа бурения;
  • диаметра скважины;
  • характеристик разбуриваемых пород.

При помощи технологического инструмента непосредственно осуществляется бурение, которое заключается в разрушении горных пород и транспортировке на поверхность их разрушенных остатков. Такой инструмент еще называют породоразрушающим или забойным.

В его состав входят:

  • долота и коронки;
  • кернорватели;
  • различные виды труб (колонковые, шламовые, бурильные трубы (обычные и утяжеленные);
  • комплект переходников;
  • набор сальников и так далее.

Строение углеводородных месторождений нефти и газа представлено в основном горными породами осадочного вида.

Основные физико-механические свойства таких пород, которые непосредственно влияют на буровой процесс:

  • упругость;
  • пластичность;
  • твердость;
  • сплошность;
  • абразивность.

Основным породоразрушающим инструментом, обеспечивающим бурение скважин, является долото.

Буровая установка для бурения нефтяных скважин

По принципу действия, с помощью которого происходит разрушение породы, долота подразделяются на следующие виды:

  • режуще-скалывающие –  разрушение породы происходит при помощи  лопастей, наклоненных в сторону вращения инструмента (используются при бурении мягких горных пород);
  • дробяще-скалывающие – порода разрушается либо зубьями, либо  штырями, размещенными на шарошках; шарошки вращаются вокруг как вокруг оси долота, так и вокруг собственной оси; в процессе вращения долота, помимо дробящего воздействия штырей или зубьев, в процессе их проскальзывания по забою порода также  скалывается (срезается) породу, что значительно повышает эффективность бурового процесса;
  • истирающе-режущие – разрушение породы производится при помощи  алмазных зерен или твердосплавных штырей, которые расположены на торцах долота или на лопастных кромках этого инструмента; такие долота применяют при бурении среднетвердых пород  неабразивного типа и твердых горных пород;  лопастные долота, армированные штырями из твердых сплавов или  алмазными зернами, используются для разбуривания пород, которые перемежаются по твердости и абразивности.

Лопастные виды долот

В зависимости от типа своей  конструкции, а также от оснащенности твердосплавными элементами, долота лопастного типа используют при бурении:

  • мягких пород;
  • пород  средней твердости;
  • мягких пород, в которых есть малоабразивные средние пропластки;
  • при необходимости разбурить  цементные пробки  или металлические детали нижней части  обсадных трубных колонн;
  • при необходимости расширения скважинного ствола.

В настоящее время на практике применяются следующие виды лопастных долот:

  • двухлопастные с проточной промывкой (диаметр варьируется от 76-ти до 165,1 миллиметра);
  • трехлопастные с проточным или гидромониторным видом промывки (диаметры – от 120,6 до 469,9 миллиметров);
  • трехлопастные долот с  истирающе-режущим принципом действия с проточной промывкой или промывкой с помощью гидромонитора (диаметр – от 190,5 до 269,9 миллиметров);
  • шестилопастные истирающе-режущие долота с двумя типами промывки (диаметр – от 76-ти до 269,9 миллиметров);
  • пикообразные с проточной промывкой (диаметр – от 98,4 до 444,5 миллиметров).

В настоящее время промышленность производит такие типы долот лопастного вида (к пикообразным – не относится):

  • долота для бурения мягких пород (литера М);
  • для мягких пород со среднетвердыми  пропластками (МС);
  • для абразивных мягких абразивных пород со среднетвердыми  пропластками (МСЗ);
  • для среднетвердых пород (С);

Пикообразные лопастные долота бывают двух видов:

  • применяемые для расширения скважинного ствола (литера Р);
  • для разбуривания металлических элементов и  цементных пробок в нижней части обсадной колонны (Ц).

Долота с шарошками

Как в нашей стране, так и во многих зарубежных нефтегазодобывающих странах бурение газовых и нефтяных, как правило, производится при помощи шарошечных долот  с шарошками конической формы. Долота шарошечного типа используются для производства  сплошного бурения скважин самого разного назначения (добывающих, разведочных, нагнетательных и так далее). Очистка забоя при использовании таких долот производится либо при помощи сжатого воздуха, либо промывочными растворами.

Если сравнивать такой инструмент с описанным выше лопастным, то он имеет ряд несомненных преимуществ, а именно:

  • площадь непосредственного контакта с забоем у долот с шарошками гораздо меньше, чем у долот  лопастного типа, однако общая длина их рабочих кромок гораздо больше, что дает возможность существенно повысить эффективность бурового процесса;
  • шарошки по забою перекатываются, а лопасти – скользят, поэтому износостойкость шарошечных долот гораздо выше, чем лопастного инструмента;
  • из-за того, что шарошки по забою  перекатываются, потребляемый инструментом крутящий момент относительно мал, что сводит к минимуму возможность заклинивания шарошечных долот.

Изготовление долот шарошечного типа регламентировано  ГОСТ-ом номер 20692-75.

Согласно этому нормативному документы, такой инструмент выпускают в трех исполнениях – одно-, двух- и трехшарошечные долота. Самыми распространенными являются трехшарошечные инструменты.

По критерию конструкции и расположения на инструменте продувных и промывочных каналов, такие  долота делятся на:

  • долота с центральной промывкой (литера  Ц)
  • с центральной продувкой (П);
  • с боковой промывкой гидромонитором (Г);
  • с боковой продувкой (ПГ).

Алмазные бурильные долота

Алмазный буровой инструмент представляет собой твердосплавную алмазонесущую  рабочую матрицу в стальном корпусе, который оборудован  внутренней  присоединительной замковой резьбой конусного вида.

Такой буровой инструмент различается по форме рабочей матрицы, по качественным характеристикам используемых  алмазов, а также по применяемых промывочным системам.

Твердосплавную алмазонесущую матрицу алмазного долота  изготавливают методами порошковой металлургии из металлических порошков.


Такие металлосодержащие порошки хорошо удерживают алмазы и дают возможность изготавливать рабочие матрицы с разной твердостью и  износостойкостью. Наилучшими показателями по таким качественным характеристикам, как прочность, износостойкость и теплопроводность, обладают алмазные матрицы  на основе вольфрама.

При изготовлении бурильных головок алмазного бурового инструмента применяются так называемые технические алмазы  массой от 0,05 до 0,34 карата.  При производстве такого  долота, к примеру,  диаметром 188 миллиметров, расходуется от 400 до 650 карат (от двух до двух с половиной тысяч алмазных зёрен).

Бурильные головки алмазных долот изготавливаются в двух модификациях:

  • однослойные (типы КР. КТ, ДР, ДТ т ДК), на которых алмазные зерна размещены в поверхностном слое рабочих кромок  металлических  матриц по определённым схемам;
  • импрегнированные (тип ДИ)Ю на которых мелкие алмазные зерна распределены равномерно по всей матрице.

Алмазные долота бывают следующих типов:

  • с поверхностным расположением алмазов;
  • импрегированные (алмазы размещены на поверхности до 8 миллиметров);
  • инструменты особых конструкций;
  • с радиальным расположением каналов и с наружной поверхностью  биконического вида (ДР);
  • с напорным каналом и  с тораидальными выступами (ДК);
  • с синтетическим типом размещения  алмазных зерен (С);
  • с импрегированными алмазными зернами (И);
  • лопастные (ДЛ);
  • с внутренним конусом (ДВ);
  • импрегированные с заостренными торцами лопастей (ДИ);
  • универсальные (ДУ).

Такой породоразрушающий инструмент применяется при бурении глубоких (более трех километров) скважин. Стойкость алмазного инструмента по сравнению с шарошечным выше в 20- 30 раз.

Виды забойных двигателей

В качестве таких силовых установок в процессе бурения используются турбобуры, электробуры и винтовые двигатели, которые ставятся  сразу над долотом.

Турбобур представляет собой многоступенчатую турбину с количеством ступеней до 350. В состав каждой ступени входит жестко соединенный с корпусом статор и закрепленный на валу устройства ротор. Стекая по лопаткам статора, поток жидкости воздействует на роторные   лопатки, тратя часть  энергии на получение вращательного момента.

Затем этот поток вновь натекает на статорные лопатки, и процесс повторяется. Несмотря на то, что каждая отдельная ступень турбобура способна развивать небольшой крутящий момент, из-за их большого количества суммарной мощности, подаваемой на   вал устройства, вполне достаточно для бурения горных пород с высокой твердостью.

При таком способе бурения рабочей жидкостью выступают промывочные растворы, поступающие  с поверхности к турбобуру через  бурильную колонну. Долото жестко прикреплено к валу турбобура и вращается независимо от колонны буровых труб.

Бурение с использованием электробура подразумевает подачу электрической энергии на электродвигатель посредством укрепленного внутри буровой колонны  кабеля. При таком методе производства работ вращается только вал двигателя с закрепленным на нем долотом, а корпус устройства и бурильная колонна – неподвижны.

Основные элементы конструкции двигателя винтового типа – это ротор и статор.

Внутренняя поверхность стального корпуса статора покрыта слоем специальной резины и имеет форму винтовой многозаходной поверхности. Ротор, изготовленный также из стали, в свою очередь, имеет форму многозаходного винта, количество винтовых линий которого меньше на одну, чем у поверхности статора.

Буровая установка для бурения нефтяных скважин

Ротор размещается в статоре с эксцентриком. Эксцентрик, а также разница количества статорных и роторных винтовых линий позволяют  контактирующим поверхностям образовывать ряд шлюзов (замкнутых полостей) – шлюзов между камерами высокого давления у верхнего конца, с  пониженным значением давления у нижнего шлюза. Этими шлюзами перекрывается свободное движение через двигатель подаваемой жидкости, что позволяет создавать в шлюзах с помощью жидкостного  давления передаваемый долоту  вращательный момент.

Источник: neftok.ru

Бурение скважин осуществляется с помощью буровых установок, оборудования и инструмента.

Буровые станки для бурения скважин

Буровая установка — это комплекс наземного оборудования, необходимый для выполнения операций по проводке скважины.

В состав буровой установки входят (рис. 4.1):

— буровая вышка;

— оборудование для механизации спускоподъемных операций;

— наземное оборудование, непосредственно используемое прибурении;

— силовой привод;

— циркуляционная система бурового раствора;

— привышечные сооружения.

Буровая вышка — это сооружение над скважиной для спуска и подъема бурового инструмента, забойных двигателей, бурильных и обсадных труб, размещения бурильных свечей (соединение двух-трех бурильных труб между собой длиной 25-36 м) после подъема их из скважины и защиты буровой бригады от ветра и атмосферных осадков.

Различают два типа вышек: башенные (рис. 4.2) и мачтовые (рис. 4.3).

Их изготавливают из труб или прокатной стали.

Башенная вышка представляет собой правильную усеченную четырехгранную пирамиду решетчатой конструкции. Ее основными элементами являются ноги 1, ворота 2, балкон 3 верхнего рабочего, подкронблочная площадка 4, козлы 5, поперечные пояса 6, стяжки 7, маршевая лестница 8.

Вышки мачтового типа бывают одноопорные и двухопорные (А-образные). Последние наиболее распространены.

В конструкцию мачтовой вышки А-образного типа входят подъемная стойка 1, секции мачты 2, 3, 4, 6, пожарная лестница 5, монтажные козлы 7 для ремонта кронблока, подкронблочная рама 8, растяжки 9, 10, 14, оттяжки 11, тоннельные лестницы 12, балкон 13 верхнего рабочего, 15 — предохранительный пояс, маршевые лестницы 16, шарнир 17.

А-образные вышки более трудоемки в изготовлении и поэтому более дороги. Они менее устойчивы, но их проще перевозить с места на место и затем монтировать.

Буровые станки для бурения скважин

Основные параметры вышки — грузоподъемность, высота, емкость «магазинов» (хранилищ для свечей бурильных труб), размеры верхнего и нижнего оснований, длина свечи, масса. Грузоподъемность вышки — это предельно допустимая вертикальная статическая нагрузка, которая не должна быть превышена в процессе всего цикла проводки скважины. Высота вышки определяет длину свечи, которую можно извлечь из скважины и от величины которой зависит продолжительность спускоподъемных операций.

Чем больше длина свечи, тем на меньшее число частей необходимо разбирать колонну бурильных труб при смене бурового инструмента. Сокращается и время последующей сборки колонны. Поэтому с ростом глубины бурения высота и грузоподъемность вышек увеличиваются. Так, для бурения скважин на глубину 300-500 м используется вышка высотой 16-18 м, глубину 2000-3000 м — высотой — 42 м и на глубину 4000-6500 м — 53 м. Емкость «магазинов» показывает, какая суммарная длина бурильных труб диаметром 114-168 мм может быть размещена в них. Практически вместимость «магазинов» показывает, на какую глубину может быть осуществлено бурение с помощью конкретной вышки.

Размеры верхнего и нижнего оснований характеризуют условия работы буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размер верхнего основания вышек составляет 2 x 2 м или 2,6 x 2,6 м, нижнего 8 x 8 м или 10 x 10 м.

Общая масса буровых вышек составляет несколько десятков тонн.

Оборудование для механизации спускоподъемных операций включает талевую систему и лебедку. Талевая система состоит из неподвижного кронблока (рис. 4.4), установленного в верхней части буровой вышки, талевого блока (рис. 4.5), соединенного с кронблоком талевым канатом, один конец которого крепится к барабану лебедки, а другой закреплен неподвижно, и бурового крюка.

Буровые станки для бурения скважин

 

Буровые станки для бурения скважин Буровые станки для бурения скважин Буровые станки для бурения скважин

Талевая система является полиспастом (системой блоков), который в буровой установке предназначен в основном, для уменьшения натяжения талевого каната, а также для снижения скорости движения бурильного инструмента, обсадных и бурильных труб.

Иногда применяют крюкоблоки — совмещенную конструкцию талевого блока и бурового крюка. На крюке подвешивается бурильный инструмент: при бурении — с помощью вертлюга, а при спускоподъемных операциях — с помощью штропов и элеватора (рис. 4.6).

Буровая лебедка предназначена для выполнения следующих операций:

1) спуска и подъема бурильных и обсадных труб; удержания на весу бурильного инструмента; подтаскивания различных грузов, подъема оборудования и вышек в процессе монтажа установок и т.п. Буровая установка комплектуется буровой лебедкой соответствующей грузоподъемности.

Для механизации операций по свинчиванию и развинчиванию замковых соединений бурильной колонны внедрены автоматические буровые ключи АКБ-ЗМ и подвесные ключи ПБК-1, пневматический клиновой захват ПКР-560 для механизированного захвата и освобождения бурильных труб.

Ключ АКБ-ЗМ (рис. 4.7) устанавливается между лебедкой и ротором 4 на специальном фундаменте. Его основными частями являются блок ключа 1, каретка с пневматическими цилиндрами 2, стойка 3 и пульт управления 5. Блок ключа — основной механизм, непосредственно свинчивающий и развинчивающий бурильные трубы.

Буровые станки для бурения скважин Буровые станки для бурения скважин

Он смонтирован на каретке, которая перемещается при помощи двух пневматических цилиндров по направляющим: либо к бурильной трубе, установленной в роторе, либо от нее.

Зажимные устройства, как и механизм передвижения блока ключа, работают от пневматических цилиндров, включаемых с пульта управления 4. Для этого в систему подается сжатый воздух от ресивера. Ключ ПБК-1 подвешивается в буровой на канате. Высота его подвески регулируется пневматическим цилиндром с пульта управления.

Пневматический клиновой захват ПКР-560 служит для механизированного захвата и освобождения бурильных и обсадных труб. Он монтируется в роторе и имеет четыре клина, управляемых с пульта посредством пневмоцилиндра.

Наземное оборудование, непосредственно используемое при бурении, включает вертлюг, буровые насосы, напорный рукав и ротор. Вертлюг (рис. 4.8) — это механизм, соединяющий не вращающиеся талевую систему и буровой крюк с вращающимися бурильными трубами, а также обеспечивающий ввод в них промывочной жидкости под давлением. Корпус 2 вертлюга подвешивается на буровом крюке (или крюкоблоке) с помощью штропа 4.

В центре корпуса проходит напорная труба 5, переходящая в ствол 7, соединенный с бурильными трубами. Именно к напорной трубе присоединяется напорный рукав (рис. 4.8) для подачи промывочной жидкости в скважину. Напорная труба и ствол жестко не связаны, а последний установлен в корпусе 2 на подшипниках 1, чем обеспечивается неподвижное положение штропа, корпуса и напорной трубы при вращении бурильных труб вместе со стволом. Для герметизации имеющихся зазоров между неподвижной и подвижной частями вертлюга служат сальники 3.

Буровые насосы служат для нагнетания бурового раствора в скважину. При глубоком бурении их роль, как правило, выполняют поршневые двухцилиндровые насосы двойного действия. Напорный рукав (буровой шланг) предназначен для подачи промывочной жидкости под давлением от неподвижного стояка к перемещающемуся вертлюгу.

Буровые станки для бурения скважин

Ротор (рис. 4.9) передает вращательное движение бурильному инструменту, поддерживает на весу колонну бурильных или обсадных труб и воспринимает реактивный крутящий момент колонны, создаваемый забойным двигателем. Ротор состоит из станины 1, во внутренней полости которой установлен на подшипнике стол 2 с укрепленным зубчатым венцом, вала 6 с цепным колесом с одной стороны и конической шестерней — с другой, кожуха 5 с наружной рифельной поверхностью, вкладышей 4 и зажимов 3 для ведущей трубы. Во время работы вращательное движение от лебедки с помощью цепной передачи сообщается валу и преобразуется в поступательное вертикальное движение ведущей трубы, зажатой в роторном столе зажимами.

Силовой привод обеспечивает функционирование всей буровой установки (рис. 4.10) — он снабжает энергией лебедку, буровые насосы и ротор.

Буровые станки для бурения скважин

Привод буровой установки может быть дизельным, электрическим, дизель- электрическим и дизель-гидравлическим.

Дизельный привод применяют в районах, не обеспеченных электроэнергией необходимой мощности. Электрический привод от электродвигателей переменного и постоянного тока отличается простотой в монтаже и эксплуатации, высокой надежностью и экономичностью, но применим только в электрифицированных районах. Дизель-электрический привод из дизеля, который вращает генератор, питающий, в свою очередь, электродвигатель. Дизель-гидравлический привод состоит из двигателя внутреннего сгорания и турбопередачи. Последние два типа привода автономны, но в отличие от дизельного не содержат громоздких коробок перемены передач и сложных соединительных частей, имеют удобное управление, позволяют плавно изменять режим работы лебедки или ротора в широком диапазоне.

Буровые станки для бурения скважин

Суммарная мощность силового привода буровых установок составляет от 1000 до 4500 кВт. В процессе бурения она распределяется на привод буровых насосов и ротора. При проведении спускоподъемных операций основная энергия потребляется лебедкой, а остальная часть — компрессорами, вырабатывающими сжатый воздух, используемый в качестве источника энергии для автоматического бурового ключа, подвесного бурового ключа, пневматического клинового захвата и др.

Циркуляционная система буровой установки служит для сбора и очистки отработанного бурового раствора, приготовления новых его порций и закачки очищенного раствора в скважину. Она включает (рис. 4.11) систему отвода использованного раствора (желоба 2) от устья скважины 1, механические средства отделения частичек породы (вибросито 3, гидроциклоны 4), емкости для химической обработки, накопления и отстоя очищенного раствора 6,8, шламовый насос 7, блок приготовления свежего раствора 5 и буровые насосы 9 для закачки бурового раствора по нагнетательному трубопроводу 10 в скважину.

К привышечным сооружениям относятся:

1) помещение для размещения двигателей и передаточных механизмов лебедки;

2) насосное помещение для размещения буровых насосов и их двигателей;

3) приемные мостки, предназначенные для транспортировки бурового технологического оборудования, инструмента, материалов и запасных частей;

4) запасные резервуары для хранения бурового раствора;

5) трансформаторная площадка для установки трансформатора;

6) площадка для размещения механизмов по приготовлению бурового раствора и хранения сухих материалов для него;

7) стеллажи для размещения труб.

Буровое оборудование и инструмент

В качестве забойных двигателей при бурении используют турбобур, электробур и винтовой двигатель, устанавливаемые непосредственно над долотом.

Буровые станки для бурения скважин

Турбобур (рис. 4.12) — это многоступенчатая турбина (число ступеней до 350), каждая ступень которой состоит из статора, жестко соединенного с корпусом турбобура, и ротора, укрепленного на валу турбобура. Поток жидкости, стекая с лопаток статора, натекает на лопатки ротора, отдавая часть своей энергии на создание вращательного момента, снова натекает на лопатки статора и т.д. Хотя каждая ступень турбобура развивает относительно небольшой момент, благодаря их большому количеству, суммарная мощность на валу турбобура оказывается достаточной, чтобы бурить самую твердую породу.

При турбинном бурении в качестве рабочей используется промывочная жидкость, двигающаяся с поверхности земли по бурильной колонне к турбобуру. С валом турбобура жестко соединено долото. Оно вращается независимо от бурильной колонны.

Буровые станки для бурения скважин

При бурении с помощью электробура питание электродвигателя осуществляется через кабель, укрепленный внутри бурильных труб. В этом случае вместе с долотом вращается лишь вал электродвигателя, а его корпус и бурильная колонна остаются неподвижными.

Основными элементами винтового двигателя (рис. 4.13) являются статор и ротор. Статор изготовлен нанесением специальной резины на внутреннюю поверхность стального корпуса. Внутренняя поверхность статора имеет вид многозаходной винтовой поверхности. А ротор изготовляют из стали в виде многозаходного винта. Количество винтовых линий на одну меньше, чем у статора.

Ротор расположен в статоре с эксцентриситетом. Благодаря этому, а также вследствие разницы чисел заходов в винтовых линиях статора и ротора их контактирующие поверхности образуют ряд замкнутых полостей — шлюзов между камерами высокого давления у верхнего конца ротора и пониженного давления у нижнего. Шлюзы перекрывают свободный ток жидкости через двигатель, а самое главное — именно в них давление жидкости создает вращающий момент, передаваемый долоту.

Инструмент, используемый при бурении, подразделяется на основной (долота) и вспомогательный (бурильные трубы, бурильные замки, центраторы).

Как уже отмечалось, долота бывают лопастные, шарошечные, алмазные и твердосплавные.

Лопастные долота (рис. 4.14) выпускаются трех типов: двухлопастные, трехлопастные и многолопастные. Под действием нагрузки на забой их лопасти врезаются в породу, а под влиянием вращающего момента — скалывают ее. В корпусе долота имеются отверстия, через которые жидкость из бурильной колонны направляется к забою сква­жины со скоростью не менее 80 м/с. Лопастные долота применяются при бурении в мягких высокопластичных горных породах с ограниченными окружными скоростями (обычно при роторном бурении).

Шарошечные долота (рис. 4.15) выпускаются с одной, двумя, тремя, четырьмя и даже с шестью шарошками. Однако наибольшее распространение получили трехшарошечные долота. При вращении долота шарошки, перекатываясь по забою, совершают сложное вращательное движение со скольжением. При этом зубцы шарошек наносят удары по породе, дробят и скалывают ее. Шарошечные долота успешно применяются при вращательном бурении пород самых разнообразных физико-механических свойств. Изготавливают их из высококачественных сталей с последующей химико-термической обработкой наиболее ответственных и быстроизнашивающихся деталей, а сами зубки изготавливаются из твердого сплава.

Алмазные долота (рис. 4.16) состоят из стального корпуса и алмазонесущей головки, выполненной из порошкообразной твердо сплавной шихты. Центральная часть долота представляет собой вогнутую поверхность в форме конуса с каналами для промывочной жидкости, а периферийная зона — шаровую поверхность, переходящую на боковых сторонах в цилиндрическую.

Алмазные долота бывают трех типов: спиральные, радиальные и ступенчатые. В спиральных алмазных долотах рабочая часть имеет спирали, оснащенные алмазами и промывочные отверстия. Долота этого типа предназначены для турбинного бурения малоабразивных и среднеабразивных пород. Радиальные алмазные долота имеют рабочую поверхность в виде радиальных выступов в форме сектора, оснащенных алмазами; между ними размещены промывочные каналы. Долота данного типа предназначены для бурения малоабразивных пород средней твердости и твердых пород, как при роторном, так и при турбинном способах бурения. Ступенчатые алмазные долота имеют рабочую поверхность ступенчатой формы.

Они применяются как при роторном, так и турбинном способах бурения при проходке малоабразивных мягких и средней твердости пород. Применение алмазных долот обеспечивает высокие скорости бурения, снижение кривизны скважин. Отсутствие опор качения и высокая износостойкость алмазов повышают их срок службы до 200-250 ч непрерывной работы. Благодаря этому сокращается число спускоподъемных операций. Одним алмазным долотом можно пробурить столько же, сколько 15-20 шарошечными долотами. Твердосплавные долота отличаются от алмазных тем, что вместо алмазов они армированы сверхтвердыми сплавами.

 

Буровые станки для бурения скважин Буровые станки для бурения скважин

Буровые станки для бурения скважин

 

Бурильные трубы предназначены для передачи вращения долоту (при роторном бурении) и восприятия реактивного момента двигателя при бурении с забойными двигателями, создания нагрузки на долото, подачи бурового раствора на забой скважины для очистки его от разбуренной породы и охлаждения долота, подъема из скважины изношенного долота и спуска нового и т.п.

Бурильные трубы отличаются повышенной толщиной стенки и, как правило, имеют коническую резьбу с обеих сторон. Трубы соединяются между собой с помощью бурильных замков (рис. 4.17). Для обеспечения прочности резьбовых соединений концы труб делают утолщенными. По способу изготовления трубы могут быть цельными (рис. 4.18) и с приварными соединительными концами (рис. 4.19). У цельных труб утолщение концов может быть обеспечено высадкой внутрь или наружу.

При глубоком бурении используют стальные и легкосплавные бурильные трубы с номинальными диаметрами 60, 73, 89,102, 114, 127 и 140 мм. Толщина стенки труб составляет от 7 до 11 мм, а их длина 6, 8 и 11,5м.

 
  Буровые станки для бурения скважин

 

Рис. 4.17 Бурильный замок: а — замковый ниппель; б — замковая муфта.

Буровые станки для бурения скважин

Рис. 4.18 Бурильные трубы с приварными соединительными концами

Буровые станки для бурения скважин

Рис. 4.19 Бурильные трубы с высаженными концами:

а — высадка внутрь; б — высадка наружу

Наряду с обычными используют утяжеленные бурильные трубы (УБТ). Их назначением является создание нагрузки на долото и повышение устойчивости нижней части бурильной колонны.

Ведущая труба предназначена для передачи вращения от ротора к бурильной колонне (роторное бурение) и передачи реактивного момента от бурильной колонны ротору (при бурении с забойным двигателем). Эта труба, как правило, имеет квадратное сечение и проходит через квадратное отверстие в роторе. Одним концом ведущая труба присоединяется к вертлюгу, а другим — к обычной бурильной трубе круглого сечения.

Длина граней ведущей трубы определяет возможный интервал проходки скважины без наращивания инструмента. При малой длине ведущей трубы увеличивается число наращиваний и затраты времени на проводку скважины, а при большой — затрудняется их транспортировка.

Бурильные замки предназначены для соединения труб. Замок состоит из замкового ниппеля (рис. 4.17 а) и замковой муфты (рис. 4.17 б).

Непрерывная многозвенная система инструментов и оборудования, расположенная ниже вертлюга (ведущая труба, бурильные трубы с замками, забойный двигатель и долото) называется бурильной колонной. Ее вспомогательными элементами являются переводники различного назначения, протекторы, центраторы, стабилизаторы, калибраторы, наддолотные амортизаторы.

Переводники служат для соединения в бурильной колонне элементов с резьбой различного профиля, с одноименными резьбовыми концами (резьба ниппельная-ниппельная, резьба муфтовая-муфтовая), для присоединения забойного двигателя и т.п. По назначению переводники подразделяются на переходные, муфтовые и ниппельные.

Протекторы предназначены для предохранения бурильных труб и соединительных замков от поверхностного износа, а обсадной колонны — от протирания при перемещении в ней бурильных труб. Обычно применяют протекторы с плотной посадкой, представляющие собой резиновое кольцо, надетое на бурильную колонну над замком. Наружный диаметр протектора превышает диаметр замка.

Центраторы применяют для предупреждения искривления ствола при бурении скважины. Боковые элементы центратора касаются стенок скважины, обеспечивая соосность бурильной колонны с ней. Располагаются центраторы в колонне бурильных труб в местах предполагаемого изгиба. Наличие центраторов позволяет применять более высокие осевые нагрузки на долото.

Стабилизаторы — это опорно-центрирующие элементы для сохранения жесткой соосности бурильной колонны в стволе скважины на протяжении некоторых, наиболее ответственных участков. От центраторов они отличаются большей длиной.

Калибратор — разновидность породоразрушающего инструмента для обработки стенок скважины и сохранения номинального диаметра ее ствола в случае износа долота. В бурильной колонне калибратор размещают непосредственно над долотом. Он одновременно выполняет роль центратора и улучшает условия работы долота.

Наддолотный амортизатор (забойный демпфер) устанавливают в бурильной колонне между долотом и утяжеленными бурильными трубами для гашения высокочастотных колебаний, возникающих при работе долота на забое скважины. Снижение вибрационных нагрузок приводит к увеличению ресурса бурильной колонны и долота. Различают демпфирующие устройства двух типов: амортизаторы-демпферы механического действия, включающие упругие элементы (стальные пружины, резиновые кольца и шары) и виброгасители-демпферы гидравлического или гидромеханического действия.

Источник: studopedia.ru

Виды скважинных установок для бурения

Производительная мини буровая установка успешно предусмотрена для обустройства неглубоких водоносных скважин.

Исходя из доступных способов бурения, агрегаты разделены на следующие виды:

  1. Ударные установки. Они представлены рамочной треугольной конструкцией с прочным основанием, к которому прикреплен гибкий трос с желонкой и долотом. Отличаются простотой монтажа и надежностью эксплуатации.
  2. Шнековые установки. Оборудование оснащено буровым шнеком для выемки грунта в необходимом объеме без дополнительного промывания гидросооружения водой.
  3. Роторные установки. Производительное оборудование, которое предусматривает гидравлическое бурение скважин. Ручная роторная установка – самый доступный вариант, в котором не используется электрический двигатель, а все работы по бурению выполняются вручную.

Буровые станки для бурения скважин

Бурильная установка предусмотрена для эксплуатации на земельных участках, где нет возможности устанавливать полноценные буровые агрегаты. Она компактная и мобильная, поэтому легко транспортируется и применяется на рельефных участках со сложными подъездными путями.

Буровые станки для бурения скважин

Достоинства самодельных бурильных установок

Самодельные конструкции МГБУ успешно применяются при разработке скважин на воду для частных домовладений. Достоинств у подобного оборудования имеется немало:

  • компактные размеры и малый вес;
  • простая конструкция;
  • высокая эффективность и многофункциональность;
  • доступная транспортировка, быстрый монтаж и демонтаж;
  • отсутствие негативного воздействия на ландшафт участка, где проводится разработка скважины;
  • возможность использования на небольших участках и в ограниченном пространстве (домовые пристройки, гаражные и подвальные помещения);
  • подключение к стандартной электросети или автономному источнику питания;
  • доступная стоимость самодельных устройств;
  • высокая ремонтопригодность.

Буровые станки для бурения скважин

Бурение ударным способом

Самый надежный способ разработки гидросооружения, для которого применяется малая БУ, – металлическая труба, оснащенная желонкой. Оборудование эксплуатируется на участках с подвижными и мягкими грунтами – желонка захватывает часть породы из скважинного канала, извлекая на поверхность.

Ударное бурение – трудоемкий вариант разработки скважинного канала, к которому предъявляются особые требования:

  • повышенная прочность гибкого троса для извлечения больших объемов грунта;
  • безопасность монтажа и эксплуатации;
  • высокая производительность.

Буровые станки для бурения скважин

К основным достоинствам подобного бурения относят:

  • длительный срок эксплуатации готовой скважины;
  • возможность обустройства гидросооружения с большим диаметром;
  • исключение засорения воды сторонними примесями при разработке скважины;
  • возможность контроля уровня водоносного горизонта;
  • высокую эффективность проведения работ в зимний период.

Среди недостатков можно выделить:

  • сниженную скорость преодоления пород, если глубина сооружения значительная;
  • обязательное обустройство обсадной колонны;
  • возможность обвала отдельных слоев грунта при прохождении плывунов.

Буровые станки для бурения скважин

Бурение шнековым способом

Эффективный и безопасный способ обустройства неглубокой водоносной скважины в подвижных и легких грунтах с высоким содержанием песка. Разработка рабочего канала для гидросооружения выполняется шнековым стержнем, оснащенным концевым резцом и лопастными элементами, которые предназначаются для подъема грунта на поверхность.

Буровая машина для бурения шнековым способом может быть компактной или крупногабаритной, требующей предварительного монтажа на спецтехнику.

Буровые станки для бурения скважин

Преимуществами подобного способа являются:

  • скорость выполнения комплекса работ по бурению;
  • простота сборки и установки оборудования на участке;
  • отсутствие необходимости привлечения квалифицированных специалистов и дорогостоящего оборудования для поднятия грунта на поверхность;
  • возможность эксплуатации на маленьких участках.

Буровые станки для бурения скважин

Бурение роторным способом

Эффективный способ закладки частной водоносной скважины в твердых и неподвижных грунтах с высоким содержанием известняка, гальки и гравия.

Для разработки скважины применяется гидравлическая роторная установка – буровой снаряд, оснащенный вращающимся долотом и роторным механизмом.

Роторное бурение обеспечивает эффективную разработку скважинного канала, быстрое достижение глубоких водоносных слоев и стабильный дебит скважины.

Буровые станки для бурения скважинБуровые станки для бурения скважин

На участках с сыпучими и подвижными грунтами, содержащими песок и глину, скважина обустраивается с применением ложкового бура – цилиндрической установки с отверстиями спиралевидной формы. Для плотных суглинистых грунтов используется бур змеевиковый, работающий по принципу штопора. Для каменистых и плотных грунтов подойдет долото заостренной конструкции.

У подобного способа только два недостатка: существенный расход раствора для промывки скважинного канала и возможное проникновение глинистых частиц в водоносный горизонт.

Буровые станки для бурения скважин

Бурение с промывкой скважины

Самый высокопроизводительный и эффективный способ разработки скважинного канала глубиной свыше 35 метров. Мини-установка для бурения скважин на воду способна обеспечивать скорость проходки до 12 м/час, что гораздо выше, чем у других способов.

Процесс бурения предусматривает обязательную промывку канала скважины прямым и обратным способом.

  • Промывка прямым способом – подача раствора для вымывания и выброса грунта на поверхность.
  • Промывка обратным способом – подача раствора в скважинный канал и последующая откачка с грунтовой массой при помощи насосного оборудования.

В качестве канала для подачи промывочного раствора используются трубы или шланги для бурения.

Буровые станки для бурения скважин

Бурильный раствор предназначен для выполнения следующих функций:

  • охлаждение и смазка рабочих элементов установки для бурения;
  • вымывание грунта из скважинного канала;
  • укрепление обсадной колонны.

Для подачи промывочного раствора в канал используется буровое насосное оборудование или мотопомпы.

Буровые станки для бурения скважин

Сборка малогабаритной буровой установки с ручным приводом

Для изготовления установки в домашних условиях необходимо подготовить основные комплектующие и рабочие инструменты:

  • соединительный крест сантехнический;
  • ножовку по металлической поверхности;
  • металлическую трубу диаметром 0,5 дюйма;
  • стальные пластины;
  • ключ разводной;
  • сгон диаметром 0,5 дюйма.

Важно! Некоторые элементы конструкции для бурового агрегата невозможно изготовить собственноручно, поэтому их необходимо заранее приобрести.

Буровые станки для бурения скважин

Самостоятельная сборка ручной конструкции предусматривает подготовку отреза трубы, который будет использован в качестве основания для бурильной установки.

Все работы проводятся в следующем порядке:

  1. Для создания крестовой конструкции на концах трубы проделываются насечки длиной 2 см.
  2. Стальные пластины в форме наконечника привариваются с торца трубы.
  3. Шланг для подачи воды соединяется с крестовым отверстием, а для более надежной фиксации используется переходник. Осуществляется подача воды для проверки работоспособности конструкции.
  4. В крестовое отверстие устанавливается резьба сантехническая, лучше, если она будет изготовлена из пластика или пенькового волокна.
  5. К основанию трубы подсоединяется отрезок, оснащенный наконечником при помощи сгона.

Буровые станки для бурения скважин

Важно! После завершения бурения скважины и при достижении метровой глубины выполняется замена наконечника с удлиненным отрезом трубы.

Источник: GidPoVode.ru

1 Разновидности оборудования для бурения скважин

Основной характеристикой, в соответствии с которой классифицируется оборудование для разработки скважин, является принцип работы. Выделяют 5 основных способов бурения:

  • вращательное;
  • шнековое;
  • ударное;
  • шарошечное;
  • ударно-вращательное.

Рассмотрим каждый из способов, а также применяемое для его реализации оборудование, более подробно.
к меню ↑

1.1 Станки вращательного (шнекового) бурения

Вращательное бурение осуществляется посредством разработки грунтовых масс вращающейся коронкой, которая с усилием подается вдоль оси скважины. Коронка состоит из нескольких режущих кромок — «перьев», которые контактируя с грунтом скалывают его, тем самым углубляясь вниз. Преимуществом данного способа является высокая скорость, недостатком — возможность применения лишь в почве средней и малой твердости.  При работе в твердых грунтах коронка не срезает, а стирает почву, что приводит к ускоренному износу резцов. Существуют специальные алмазные колонки, однако ввиду высокой стоимости такого оборудования их применение распространено крайне слабой.

Рассмотрим устройство станка вращательного бурения на примере распространенной модели СБР-160, который способен разрабатывать скважины диаметром 160-200 мм на глубину до 25 м. Схема данной машины представлена на изображении.

Все самоходные машины вращательного бурения базируются на  транспортной базе — гусеничной либо колесной. Модель СБР-160 обустроена на основе экскаватора Э-652А, в ней каждая из гусениц оснащена индивидуальным приводом, что значительно увеличивает проходимость машины.

Рабочий узел агрегата состоит из мачты, шнека и вращателя. Мачта представляет собой направляющую конструкцию, в которой смонтирован механизм подачи буровой колонны (шнека). Сам шнек может быть непрерывным либо секционным- пригодным к наращиванию.

Вращатель бурового станка — устройство, приводящее буровую колонну в действие. В СБР-160 вращатель состоит из асинхронного двигателя, патрона, муфты, редуктора и гидроцилиндра, посредством которого производится переключение скоростей. Технические характеристики данной модели предусматривают 4 скорости бурения — 250, 160, 125 и 80 об/мин.

Также в отечественной промышленности распространены следующие станки вращательного бурения:

  • УРБ-2А — монтируется на шасси Урал-4320, ЗИЛ-131 либо АМАЗ-43114. Буровые станки серии УРБ-2А приводятся в действие непосредственно от двигателя базового транспорта, они комплектуются насосом типа НБ-50, компрессором для подачи бурового раствора КВ-10 либо 4ВУ1-5 (зависит от модели) и генератором БГ-16. Грузоподъемность штатной лебедки составляет 700 кг. Технические характеристики: диаметр бурения — до 190 мм, глубина — до 100 м;
  • Атлас Копко DM-45 и DM-50 — агрегаты на гусеничном ходу, разрабатывают скважины диаметром 150-230 мм на глубину до 53 метров, способны развивать гидравлическое усилие на забой до 200 кН.
  • СБР-160А и СБР-160Б — гусеничные станки, предназначенные для бурения горных пород с коэффициентом крепости 1-6. Диаметры бурения — 160, 180 и 200 мм. Модели отличаются между собой технической производительностью, у СБР-160А она составляет 60 м/ч, у СБР-160Б — 30 м/ч.

Среди оборудования от зарубежных производителей выделим станки вращательного бурения Sandvik, произведенные одноименным шведским концерном. В ассортименте компании представлены агрегаты для разработки скважин глубиной 27-45 м и диаметром до 311 мм.
к меню ↑

1.2 Шнековое бурение скважин станками типа ЛБУ 50 (видео)


к меню ↑

2 Станки ударного бурения

Установки для ударного бурения разрабатывают скважину посредством кратковременного воздействия на дно скважины специального инструмента, совершающего возвратно-поступательные движения. В зависимости от принципа работы все буровые станки данного типа делятся на 3 разновидности:

  1. Станки ударно-канатного бурения.

Их устройство не предполагает наличия осевого усилия при подаче рабочего инструмента — боек падает на дно скважины под своем весом. Такое оборудование имеет достаточно низкую производительность, но при этом она крайне эффективна при разработке хрупких горных пород.

Рабочий инструмент таких станков имеет вес 1-3 тонны, он подвешивается на лебедке и поднимается посредством кривошипно-шатунного механизма на высоту 1-2 метров над забоем. В процессе разработки на дно скважины заливается вода, размягчающая породу.  Разрушенный грунт периодически удаляется с помощью желонки.

Установки для ударно-канатного бурения бывают как крупногабаритные на гусеничном (БС-3) либо колесном ходу (БЖ-6), так и компактные (сборного типа) для разработки скважин на воду. Общим недостатком всех агрегатов является низкая производительность, так как скорость свободного падения рабочего инструмента непосредственно зависит от силы земного притяжения и количество ударов невозможно увеличить выше отметки 50-60 шт/мин.

  1. Станки шарошечного бурения.

В таких агрегатах рабочим инструментом выступает шарошечное долото, осуществляющее дробяще-скалывающую разработку породы. Буровой колонне, на которой закреплено долото, сообщается не только возвратно-поступательное движение с большим усилием по отношению к дну забоя, но и вращательное движение.

Такие установки используются для бурения всех типов грунтов — от мягких до особо твердых (включая горные породы), они способы разрабатывать скважины диаметром 72-400 мм. Среди отечественного оборудования выделим станок СБШ-200 (глубина — 30 м, диаметр 190-243 мм) и станок СБШ-250 (глубина — 40 м, диаметр — 214-270 мм). При разработке карьеров чаще всего используется буровой станок БТС 150 на базе гусеничного трактора Т-10М.

  1. Станки ударно-вращательного бурения

Установки ударно-вращательного бурения отличаются от ударно-канатных и шарошечных агрегатов тем, что при разработке скважины их рабочий инструмент вращается не только в перерывах между ударами, а непрерывно. При этом забой углубляется за вхождения коронки в грунт в момент удара, а вращение обеспечивает очистку дна скважины от выработанной породы.

Основными признаками оборудования данного типа являются низкий крутящий момент и осевое усилие, при большой ударной нагрузке. Ударно-вращательное бурение демонстрирует максимальную производительность при работе на особо твердых и абразивных породах.

Среди техники отечественного производства наиболее распространенными установки серии СБУ-125, способные разрабатывать вертикальные и наклонные скважины диаметром до 125 мм на глубину до 22 метров.  Все модели СБУ-125  обустроены на базе гусеничной углепогрузочной машины УП-3.
к меню ↑

2.1 Станки колонкового бурения

Установки колонкового бурения чаще всего применяются при исследовательских и строительных работах. Основным их отличием от шнекового и ударного оборудования является то, что выработка грунта осуществляется не по всему периметру скважины, и лишь по радиусу колонкового снаряда, который представляет собой круглую трубу с наваренными на торец твердосплавными режущими зубьями.

При работе внутренняя полость колонкового снаряда заполняется вырезанным грунтом, после чего снаряд поднимается на поверхность и его содержимое извлекается. Такое принцип работы позволяет получать цельную породу, необходимую для проведения геодезических испытаний.

Также по колонковому принципу действуют все агрегаты для бурения отверстий в монолитных конструкциях из железобетона. Их рабочий инструмент оснащен специальными алмазными резцами, эффективно вскрывающими материал повышенной твердости.

Среди распространенного оборудования для разработки геологоразведочных скважин выделим станок СКБ-4100 (диаметр до 46 мм, глубина до 700 м) и Атлас Копко С5 (50 мм, до 1000 м).

Источник: byreniepro.ru


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector