Гидравлический расчет теплого пола


Радиационное лучистое напольное отопление

Укладка трубы теплого пола в системную доску

Чувство благополучия — одна из самых важных вещей, которые нужно учитывать при установке отопления.

Важное значение имеет разработка технологии, которая наблюдалась в последние годы в области комфорта в окружающей среде, и особенно в секторе систем отопления и управления: новое поколение радиационного подогрева пола развивалось благодаря низкой температуре воды в системе, что привело к значительной экономии энергии.

Радиационное отопление пола известно очень долгое время, но окончательную популярность оно получило только после улучшения некоторых факторов, таких как изоляция, системы пространственного регулирования и трубы из синтетического материала, которые полностью заменили железные и медные трубы.


С разработкой систем управления и электронного управления удалось изменить техническую концепцию и устранить источники неисправностей. Благодаря этому усовершенствованию радиационная система подогрева пола была перестроена, и ей была предоставлена ​​возможность занять достойное место в современной установке.

Эта современная технология позволила нам устранить в полу слишком высокие температуры, причиной которых было к плохому кровообращению и отекания ног.

Температурный комфорт

С бесчисленными исследованиями систем отопления было доказано, что система лучистого подогрева пола, которая использует современные технологии, обеспечивает комфорт и уют для человеческого организма выше, чем обычные системы отопления. Комфортное чувство достигается за счет постоянной температуры, которая распределяется по всей площади отапливаемого помещения.

Традиционная схема отопления Известно, что скорость горячего воздуха и, прежде всего, холодного воздуха и избыток неравномерного распределения температуры, усиливают ощущение плохого теплового комфорта отдельных людей и, следовательно, бремя их здоровья. Таким образом полностью устраняются воздушные потоки, которые вызывают сильные и вредные колебания температуры в нашем теле.

Если лучистая поверхность выполнена из пола, эта система может поддерживать понижение температуры воздуха при сохранении того же чувства комфорта. При более низкой температуре воздуха, помимо улучшения его качества, устраняется ощущение трудности, которое иногда возникает, когда мы входим в перегретую среду. Несбалансированность нагрева


Для больших поверхностей с низкой температурой воздушная тяга практически удаляется, а воздух в окружающей среде менее сухой. Этой системой можно создать естественный уют и таким образом избежать утечки тепла и высоких перепадов температуры, как это происходит у традиционных систем отопления. Исследования показали, что люди любят тепло возле их ног и беспокоят их вокруг головы.

Преимущества системы напольного отопления

Низкая температура поверхности значительно ограничивает поток пыли и предотвращает классическим темным полосам на стенах, тем самым устраняя необходимость в новой окраске стены: удаляет так называемый эффект дымохода, что связано с воздухом, который при контакте с очень теплой поверхностью, как, например, поверхность радиатора, быстро поднимается и снова падает и оседает на холодную поверхность.

Преимущества лучистой системы напольного отопления приносит большое облегчение людям, которые страдают аллергией и имеют проблемы со здоровьем, с дыхательными путями — астмой, аллергией и др.

Это комфорт для всей семьи, включая домашних животных, таких как собаки и кошки.

Компоненты системы напольного отопления

Развод системы напольного отопления состоит из теплоизоляционных панелей, известных как системные доски, которые служат для быстрой и точной укладки труб и имеют теплоизоляционную и звукоизолирующую функцию.


Для установки системы напольного отопления рекомендуем использовать трубы (PEXb, PEX/Al/PEX), чьи особенностью является долговечность и предотвращают феномену, как декор и коррозии.

Регулирование полв с подогревом осуществляется с помощью термостатического регулятора, который управляет производительностью распределения в соответствии с реальными потребностями и реагирует на климатические изменения, что обеспечивает высокий уровень комфорта при низких эксплуатационных затратах.

Кроме того, имеются центральные распределители и трехходовые смесительные клапаны, термоэлектрические головки, которые приводятся в действие термостатом и которые контролируют температуру в помещениях и расположены на распределительных гребенках. Все эти многообразия размещены в распределительном шкафу, чтобы не нарушать эстетический характер помещения.

Регулирование тепла, которое реализуется отдельно для каждой схемы, позволяет нам контролировать температуру в каждой комнате в любое время, что определенно превышает пределы старых отопительных контуров.

Эксплуатация напольного отопления

Зимой вода, поступающая на линию отопления, находится между 30 ° C и 40 ° C. Температура от системы трубопровода в полу принимает слой подложки, а затем пол, поверхность которого достигает температуры от 25 до 29 ° С. Нагретый пол излучает тепло в сияющем виде, что очень удобно и экономично.

Экономия за счет отопления теплым полом


Подогрев пола позволит нам наслаждаться высоким уровнем комфорта при низкой температуре воды в системе. Поскольку вся поверхность пола становится излучающей поверхностью, можно дать потребителю такое же чувство благополучия, даже если температура воздуха будет примерно на 2 ° C ниже. Потребитель чувствует, что он живет в среде, которая нагревается до 20 ° C — 21 ° C, на самом деле термометр показывает только 18 ° C. От окружающей среды меньше рассеивается тепло, что дает нам очень интересное энергосбережение, которое соответствует новым стандартам, которые касаются экономии энергии.

Такая низкая температура воды на входе также позволит использовать альтернативные источники энергии (солнечная энергия с использованием емкостей для хранения, энергия, вырабатываемая тепловыми насосами или извлечение из промышленных процессов). Изолирующая панель или системная плата ударной пластины выполняют важную функцию в звукоизоляции, поскольку она поглощает шум между различными этажами. Таким образом, если мы сравним эту систему с традиционной системой радиатора с точки зрения начальных затрат, мы должны принять к сведению этот важный компонент.

webcala.net

Начало расчета: подготовка исходных данных

укладка труб водяного теплого полаЧтобы грамотно произвести расчет теплого пола собственникам недвижимости необходимо будет уточнить некоторые показатели, которые характеризуют особенности планировки дома и его тепловые потребности.
данном этапе важно корректно оценить имеющиеся тепловые потери здания. Если вследствие плохого утепления здание имеет большие теплопотери, то перед началом работ по реализации проекта отопления специалисты рекомендуют закупить изоляционные материалы и утеплить стыки и швы на стенах.

водяной тёплый пол в деревянном домеПри игнорировании этих рекомендаций реализация проекта теплого водяного пола является нецелесообразной, поскольку даже при работе на полную мощность система не сможет обеспечить комфортные температурные условия в здании. Когда вопрос с утеплением решен, собственник может приступать к расчетам.

Перед тем как рассчитать теплый водяной пол, необходимо подготовить исходные данные, а именно, уточнить значения следующих показателей:

  1. монтаж водяного поларазмеры помещения, необходимые для вычисления площади обогрева;
  2. параметры отопительных приборов (сечение труб, мощность отопителя, производительность оборудования насосной группы);
  3. вид покрытия (данный показатель необходим для расчета теплоемкости пола);
  4. особенности утепления дома – толщина стен, наличие окон, их расположение и пр.

Основные этапы самостоятельного расчета

стяжка теплого полаЕсли расчет теплого водяного пола онлайн в текущий момент времени недоступен пользователю, он может приступить к вычислениям самостоятельно. Для этого ему потребуется несколько часов свободного времени и базовые знания в сфере теплотехники. Перед тем как рассчитать длину трубы для теплого пола, владельцу недвижимости предстоит набросать схематический план помещения, выдержав при этом его масштаб и отметив на схеме особенности планировки дома.

расчет трубыДалее производится расчет шага труб. Он состоит в том, чтобы определить расстояние, на котором трубы будут расположены в стяжке. При вычислениях должен быть найден оптимальный показатель, при котором трубы будут равномерно прогревать пол и не подвергаться проблемам, связанным с плохой циркуляцией теплоносителя.

Оптимальным значением является такой показатель, при котором пол в комнате не имеет холодных участков и достигает температуры, не превышающей 30 градусов по Цельсию.


коллектор для водяного теплого полаТретий этап расчетов заключается в определении гидравлического сопротивления. Данный показатель очень важен, ведь при большой длине контура, гидравлическое сопротивление будет расти, и сказываться на продуктивности системы отопления. Рекомендованным значением является использование одного контура для обогрева 20 квадратов площади, при этом общая длина труб в данной системе не должна превышать 80 метров. Чтобы уравновесить гидравлическое сопротивление, возникающее при отоплении больших площадей, общую длину труб рекомендуют разделять на несколько небольших контуров.

Также имеет смысл использовать регулировочные коллекторы. Каждый автономный контур, подсоединенный к коллектору должен иметь примерно одинаковое гидравлическое сопротивление. В противном случае система будет подвергаться гидроударам и рискам нарушения целостности труб.

Производя расчет трубы для теплого пола, необходимо также учитывать и другие особенности, а именно обращать внимание на основные места теплопотерь здания:теплопотери дома

  • окна;
  • двери;
  • балконы;
  • наружные стены и пр.

Вдоль этих участков размещение труб отопления особо важно, поэтому при составлении схемы необходимо учитывать их расположение.

Использование специального софта

расчет трубЕсли собственные знания собственника недвижимости не позволяют корректно произвести теплотехнические расчеты, то ему на помощь придет программа для расчета теплого пола, размещенная в сети. По сути, программа для расчета теплого водяного пола представляет собой инженерный калькулятор, помогающий решить вопросы в области проектирования отопления.

Рассмотрим преимущества, которыми обладает калькулятор для расчета трубы теплого водяного пола для того, чтобы убедиться в целесообразности его использования:

  1. структура теплого водяного поламоментальный расчет;
  2. возможность изменения переменных в процессе расчета;
  3. довольно точный результат;
  4. простой пользовательский интерфейс;
  5. доступность.

Чтобы использовать калькулятор для расчета трубы теплого пола необходимо знать следующие показатели:

  • создание теплого водяного доматемпературу теплоносителя в трубопроводе подачи и обратки;
  • тип трубы;
  • способ монтажа и шаг укладки труб;
  • тип напольного покрытия;
  • особенности стяжки.

Поскольку пирог теплого водяного пола может состоять из нескольких различных слоев, то в процессе расчета могут потребоваться и другие значения:

  1. пирог теплого водяного полатип теплоизоляционных плит;
  2. особенности черновой и чистовой стяжки;
  3. наличие или отсутствие отражающего слоя;
  4. особенности использования подсыпки и пр.

Имея в распоряжении исходные данные, перечисленные выше, собственник недвижимости может использовать калькулятор для расчета длины трубы для теплого пола, а также для вычисления других результатов.

В частности, с помощью программы можно вычислить:

  • теплый водяной пол в домеудельную тепловую мощность здания;
  • среднюю температуру пола при включенном контуре;
  • расход теплоносителя;
  • прочие эксплуатационные значения.

Используя софт, собственник здания узнает, как рассчитать трубу на теплый пол без привлечения специалистов-теплотехников.

Как избежать погрешностей во время использования софта?

водяной домЕсли собственнику необходимо рассчитать теплый пол – калькулятор поможет ему произвести вычисления быстро и точно. Однако большинство новичков, впервые использующих инженерный софт для проведения расчетов, допускают распространенные ошибки, которые в дальнейшем оборачиваются существенными погрешностями в вычислениях. Чтобы избежать ошибок, следует придерживаться рекомендаций приведенных далее.

В частности, нужно не забывать про правила расчета:

  1. монтажные работыдлина труб для одного контура должна составлять около 80 м;
  2. расстояние от стен до контура не должно выходить за рамки 15-25 см;
  3. шаг расположения труб должен соответствовать тепловым потребностям здания;
  4. средняя длина контуров, используемых для обогрева различных комнат должна быть одинаковой.

Самостоятельные вычисления или онлайн калькулятор для расчета теплого водяного пола помогут собственникам создать оптимальную схему обогрева здания, адаптированную под индивидуальные особенности его планировки. При условии корректно выполненных теплотехнических расчетов, гидравлическая система отопления пола станет надежным и долговечным источником тепла, который создает уютный микроклимат без пересушивания воздуха, пыли и излишней влажности.

spetsotoplenie.ru

Нюансы, о которых надо знать, для выполнения гидравлического расчета системы радиаторного отопления.

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.

Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах — не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.

В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой — меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль,  от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

www.forumhouse.ru

Общие данные для расчета

Первым параметром, который нужно учесть перед расчетами, является выбор варианта отопительной системы: будет ли она основной или вспомогательной. В первом случае она должна обладать большей мощностью, чтобы самостоятельно обогреть весь дом. Второй вариант применим для комнат с малой теплоотдачей радиаторов.

Температурный режим пола выбирается согласно строительным нормам:

  • Поверхность пола жилого помещения должна нагреваться до 29 градусов.
  • По краям комнаты пол может нагреваться до 35 градусов, чтобы компенсировать потери тепла сквозь холодные стены и от сквозняка, исходившего сквозь открывающиеся двери.
  • В ванных комнатах и зонах с высокой влажностью оптимальная температура – 33 градуса.

В качестве вспомогательных параметров используется:

  • Общая длина труб и их шаг (монтажное расстояние между трубами). Рассчитывается благодаря вспомогательному параметру в виде конфигурации и площади комнаты.
  • Тепловые потери. Такой параметр учитывает теплопроводность материала, из которого построен дом, а также его степень изношенности.
  • Напольное покрытие. Выбор напольного покрытия влияет на теплопроводящую способность пола. Оптимальным является использование кафеля и керамогранита, поскольку они имеют высокую теплопроводность и быстро прогреваются. При выборе линолеума или ламината стоит приобрести материал, не имеющий теплоизоляционной прослойки. От деревянного покрытия стоит отказаться, поскольку такой пол практически не будет нагреваться.
  • Климат местности, в котором стоит постройка с системой теплого пола. Нужно учесть сезонную смену температур в этом крае и самую низкую температуру в зимний период.

Расчет трубы для теплого пола

Водяной теплый пол – соединение труб, которые подключаются к коллектору. Он может быть выполнен из металлопластиковых, медных или гофрированных труб. В любом случае, необходимо правильно определить его протяжность. Для этого предлагается использовать графический метод.

На миллиметровой бумаге в масштабе или в натуральную величину прочерчивают будущий контур «нагревательного элемента», предварительно выбрав тип укладки труб. Как правило, выбор делается в пользу одного из двух вариантов:

  • Змейка. Выбирается для небольших жилых помещений, имеющих низкие тепловые потери. Труба располагается как вытянутая синусоида и вытягивается вдоль стены к коллектору. Минус такой укладки в том, что теплоноситель в трубе постепенно остывает, поэтому температура в начале и конце комнаты может сильно отличаться. Например, если длина трубы составляет 70 м, то разница может составить 10 градусов.
  • Улитка. Такая схема предполагает, что труба изначально укладывается вдоль стенок, а затем изгибается на 90 градусов и закручивается. Благодаря такой укладке удается чередовать холодные и горячие трубы, получая равномерно прогревающуюся поверхность.

Выбрав тип укладки, при реализации схемы на бумаге учитываются следующие показатели:

  • Шаг труб, допустимый в спирали, варьируется от 10 до 15 см.
  • Длина труб в контуре не превышает 120 м. Чтобы определить точную длину (L), можно использовать формулу:

    S – площадь, покрываемая контуром (м?);
    N – шаг (м);
    1,1 – коэффициент запаса на изгибы.

    Стоит понимать, что труба должна располагаться цельным отрезком от выхода напорного коллектора и до «обратки».

  • Диаметр прокладываемых труб – 16 мм, а толщина стяжки не превышает 6 см. Встречаются также диаметры 20 и 25. В идеале, чем больше этот параметр, тем выше теплоотдача системы.

Температура теплоносителя и его скорость определяется исходя из усредненных значений:

  • Расход воды в час при пропускном диаметре труб в 16 см может достигать от 27 до 30 л в час.
  • Чтобы прогреть помещение до температуры от 25 до 37 градусов, нужно чтобы система сама нагревалась до 40-55 °С.
  • Снизить температуру в контуре до 15 градусов поможет потеря давления в корпусе 13-15 кПа.

В результате применения графического метода будет известен вход и выход отопительной системы.

Расчет мощности водяного теплого пола

Его начинают так же, как и в предыдущей методике – с подготовки миллиметровой бумаги, только в этом случае на нее необходимо нанести не только контуры, но и расположение окон и дверей. Масштабирование прорисовки: 0,5 метра = 1 см.

Для этого стоит учесть несколько условий:

  • Трубы должны обязательно располагаться вдоль окон, чтобы предупредить существенные теплопотери сквозь них.
  • Максимальная площадь для обустройства теплого пола не должна превышать 20 м2. Если помещение больше, тогда его разбивают на 2 и более частей, и для каждой из них рассчитывают отдельный контур.
  • Необходимо выдержать обязательную величину от стен к первой ветке контура в 25 см.

На выбор диметра труб будет влиять их расположение друг относительно друга, причем оно не должно превышать 50 см. Величина теплоотдачи на 1 м2 равная 50 Вт достигается при шаге труб в 30 см, если при расчете она получается больше, то необходимо уменьшать шаг труб.

Определить количество труб достаточно просто: предварительно измерить их протяженность, а затем умножить ее на масштабный коэффициент, к полученной длине добавить 2 м для подвода контура к стояку. Учитывая, что допустимая длина труб находится в пределах от 100 до 120 м, нужно общую длину разделить на выбранную протяженность одной трубы.

Примеры расчета водяного теплого пола

Далее вы сможете ознакомиться с двумя примерами расчета водяного теплого пола:

Пример 1

В комнате с длиной стен 4?6 м, мебель в которой занимает практически четвертую ее часть, теплый пол должен занимать не менее 17 м2. Для его выполнения применяются трубы диаметром 20 мм, которые укладываются как змейка. Между ними выдерживается шаг в 30 см. Укладка выполняется вдоль короткой стены.

Перед прокладкой труб необходимо прочертить схему их расположения на полу в наиболее подходящем масштабе. Всего в такой комнате поместиться 11 рядов труб, каждая из которых будет длиной в 5 м, всего получиться 55 м трубопровода. К полученной длине труб добавляется еще 2 м. Именно такое расстояние нужно выдержать до подсоединения к стояку. Общая длина труб будет составлять 57 м.

Если помещение очень холодное, то может потребоваться проложить двухконтурное отопление. Тогда следует запастись не менее 140 м труб, такая протяженность трубопровода поможет компенсировать сильное падение давления на выходе и на входе системы. Можно делать каждый контур разной длины, но отличие между ними не должно быть больше 15 метров. К примеру, один контур выполняется протяженностью 76 м, а второй – 64 м.

Расчет теплого пола можно проводить двумя методами:

  • Для первого способа применяется формула:

    L – длина трубопровода;
    B – шаг укладки, измеряемый в метрах;
    S – площадь отопления, в м2.

  • Во втором варианте применяются табличные данные, приведенные ниже. Их умножают на площадь контура.

Шаг укладки, в метрах Расход трубы на 1м2 отапливаемой площади, в погонных метрах
0,1 10
0,15 6,7
0,20 5
0,25 4
0,30 3,4

Пример 2

Требуется провести теплый пол в комнате с длиной стен 5х6 м, общая площадь которой составляет 30 м2. Чтобы система эффективно работала, она должна отапливать не менее 70% пространства, что составляет 21 м2. Будем считать, что средние теплопотери – около 80 Вт/м2. Так, удельными будут теплопотери 1680 Вт/м2 (21х80). Желательная температура в комнате – 20 градусов, при этом будут использоваться трубы с диаметром 20 мм. На них ложится 7 см стяжка и плитка. Зависимость между шагом, теплотой теплоносителя, плотностью теплового потока и диаметром труб представлена на схеме:

Так, если имеется 20 мм труба, для компенсации теплопотери 80 Вт/м2 потребуется 31,5 градусов при шаге 10 см и 33,5 градусов при шаге в 15 см.

Видео: Расчет теплого водяного пола

Из видео можно будет узнать теорию гидравлики, связанную с обустройством теплых полов, ее применение к вычислениям, пример расчета водяного теплого пола в специальной программе онлайн. Вначале будут рассмотрены простые цепи подключения труб для такого пола, а затем более сложные их варианты, при которых будет производиться расчет всех узлов системы отопления теплого пола:

При самостоятельном вычислении могут возникнуть погрешности. Чтобы избежать их и проверить правильность расчетов, следует воспользоваться компьютерными программами, в которых заложены поправочные коэффициенты. Для вычисления теплого пола нужно выбрать интервал прокладки труб, их диаметр, а также материал. Погрешность вычислений онлайн-программой не превышает 15%.

ksportal.ru

Информация по назначению калькулятора

Онлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.

Тепловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла.

Правильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.

Система теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.

Полученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.

Общие сведения по результатам расчетов

  • Общий тепловой поток
  • — Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.

  • Тепловой поток по направлению вверх
  • — Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.

  • Тепловой поток по направлению вниз
  • — Кол-во «теряемого» тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).

  • Суммарный удельный тепловой поток
  • — Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра.

  • Суммарный тепловой поток на погонный метр
  • — Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы.

  • Средняя температура теплоносителя
  • — Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.

  • Максимальная температура пола
  • — Максимальная температура поверхности пола по оси нагревательного элемента.

  • Минимальная температура пола
  • — Минимальная температура поверхности пола по оси между трубами ТП.

  • Средняя температура пола
  • — Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.

  • Длина трубы
  • — Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.

  • Тепловая нагрузка на трубу
  • — Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.

  • Расход теплоносителя
  • — Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.

  • Скорость движения теплоносителя
  • — Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.

  • Линейные потери давления
  • — Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.

  • Общий объем теплоносителя
  • — Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.

Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018

stroy-calc.ru

Общие рекомендации

Вид теплого водяного полаПервым этапом следует составить тепловую карту дома. Для этого можно пригласить специалиста или воспользоваться калькулятором в интернете.

Если по итогам составления карты получается, что теплопотери на один квадрат площади больше 100 ватт, то сначала нужно утеплить дом (потолок, стены), и уже потом рассчитывать систему отопления.

Можно осуществить расчет водяного теплого пола своими руками. При проектировании учитывают следующее: под громоздкую мебель и стационарное оборудование теплые полы не кладут.

При этом система должна покрывать не меньше 70 процентов всей обогреваемой площади, иначе обогрев будет неэффективным (варианты устройства теплого водяного пола).

Расчет мощности теплого пола водяного зависит от вида помещения:

  • жилые комнаты, кухни – 110-150 ватт на квадрат;
  • ванная – 140-150;
  • остекленная лоджия или веранда – 140-180.

Рассчитываем трубы

Вид укладки труб теплого водяного полаДля теплых полов используются следующие виды труб (более подробно о трубах для теплого водяного пола):

  • металлопластик – экономичный, экологически безопасный вариант. В конструкции теплых полов используется чаще всего;
  • полипропилен. Трубы дешевые, хорошие эксплуатационные качества. Минус: большой радиус изгиба. При укладке змейкой трубы сечением 2 см расстояние между соседними витками превысит требуемый максимум 30 см;
  • сшитый полиэтилен. Эксплуатационные свойства хорошие. Минусы: цена выше чем у двух предыдущих материалов; трубы слишком мягкие и гибкие, укладывать сложнее и дольше;
  • медь. Прочный, стойкий к коррозии вариант. Труба хорошо гнется, можно уложить весь контур цельным куском, нет необходимости в сваривании участков. Минусы – дорого; медный пол сложно уложить дилетанту.

Сечение трубы обычно выбирают 16 миллиметров. При этом труба прогревает около 10 сантиметров с обеих сторон.

На эффективность контура влияет и гидравлическое сопротивление. Этим определяется максимально допустимая длина контура (100 метров).

Таблица расхода труб для теплого водяного пола

Предпочтительная схема укладки – спираль. При укладке змейкой учитывайте, что дальняя от коллектора часть контура будет греться хуже, чем ближняя. Компромиссный вариант – змейка угловая: труба поворачивает в обратном направлении после прохождения не одной стены, а двух, включая угол. При этой схеме первый виток следует располагать в самом холодном углу.

Независимо от размера комнат в каждой выполняют собственный контур. В первую очередь это касается помещений с различным температурным режимом (например, жилая комната и веранда будут отапливаться по-разному).

Требования к водяному контуру

Укладка контура теплого водяного пола

  • трубу кладут на расстоянии от стены до 25 сантиметров (не меньше 8).
  • разница между длинами соседних витков – не больше 15 метров;
  • длина контура – до 100 метров, обогреваемая площадь – до 20 квадратов. Если комната больше, укладывают 2, 3 и т.д. контуров;
  • минимальное давление в коллекторе – 20 килопаскалей;
  • расход воды в контуре – от 0,03 до 0,07 литров в секунду.

Расчет шага укладки водяного теплого пола осуществляется в зависимости от климата в районе и особенностей помещения. В любом случае шаг между витками должен быть не больше 30 сантиметров. Около 15 см, если температура зимой до -22, 10 сантиметров – если ниже. В местах наибольших теплопотерь шаг меньше.

Шаг укладки и расчет контуров водяного теплого пола – взаимозависимые характеристики. При шаге в 15 см максимальная площадь, которую обогревает контур – 12 метров, при 20 – 16, при 25 – 20, при 30 – 24.

Расчет длины теплого водяного пола выполняется по формуле:

L= S/а х 1,1,

где S – обогреваемая площадь в кв. м, a – шаг укладки, 1,1 – десятипроцентный запас на повороты. К полученной цифре следует добавить 4 метра (по два на подключение прямой трубы и обратки к коллектору).

Для каждого контура эта цифра считается отдельно. Контур желательно выполнить единой трубой. Суммарная длина труб – это сумма длин контуров.

Характеристики насоса

Вид насоса для теплого водяного полаРасчет насоса для теплого водяного пола выполняется по формуле:

Q = 0,86P/(t1 — t2),
где Р – необходимая мощность контура в киловаттах, а (t1 — t2) – дельта температур подающей и обратной труб.

Для каждого контура выводится своя цифра. Их сумма – необходимая производительность насоса. Для дома в переделах 120 метров получается 1,5, если площадь вдвое больше – 3 и т.д.

Примечание: данная формула подходит для воды. Если теплоноситель – антифриз, поправочный коэффициент будет другой.

Напор рассчитывают по формуле:

Н = (R х L + K)/1000,
где Н – напор, R – гидравлическое сопротивление, L – длина самого большого контура, К – коэффициент запаса мощности.

Остальные материалы

Схема устройства теплого водяного полаКроме труб и силовых агрегатов для монтажа пола потребуются гидроизолирующая пленка и утеплитель (выбор комплектующих для теплого водяного пола). Рекомендуется фольгированный ЭППС, можно купить готовые маты. Нежелательно использование минваты из-за ее гигроскопичности.

Толщина теплоизоляции варьируется от 2 сантиметров (на перекрытии второго этажа) до 25 (монтаж пола по грунту или над холодным подвалом).

Расчет материалов для теплого водяного пола производится с учетом толщины слоя пирога (на эту величину сократится высота помещения).

Вот примерные цифры, в зависимости от слоя утеплителя:

  • утеплитель 3 сантиметра: общая толщина пирога – 9,5;
  • 8 – 14,5;
  • 9 – 15,5 и т.д.

При монтаже (водяные теплые полы — технология монтажа) под стяжку потребуется демпферная лента. Если хотя бы одна стена длиннее 8 метров, перпендикулярно ей посередине комнаты выполняют дополнительный демпферный шов.

В этом случае водяные контуры располагают по обе стороны от шва. Для стяжки (от чего зависит толщина стяжки для водяного теплого пола) также потребуются цемент и песок один к трем (можно приобрести готовую сухую смесь), желательно добавить в раствор пластификатор.

Арматурная сетка: одна нужна для крепления трубы, одна – для армирования стяжки. Если вы используете в качестве утеплителя профильные маты (маты с бобышками), для крепления сетка не нужна, только для стяжки.

Схема теплого водяного пола

Коллектор. Для каждого контура на гребенке должно быть два штуцера. Плюс два патрубка для прямой и обратной трубы от котла, они имеют большее сечение и располагаются отдельно. Рекомендуется приобретать гребенку сразу со всем необходимым: регуляторы расхода, манометр, воздушный клапан. Если площадь дома очень большая, есть второй/третий этаж, коллекторов устанавливают больше одного.

Смеситель необходим во всех случаях: если котел обслуживает и радиаторы тоже, и если в системе один источник обогрева – теплый пол. Вода в контуре пола не должна быть горячее 50 градусов, котел подает более горячую.

Также для монтажа потребуются рулетка и сварочный аппарат (либо утюг для полипропилена).

ks5.ru

Определение расхода теплоносителя в петле.
Расход теплоносителя в петле ( G ) рассчитывается для подбора окончательного диаметра труб и вычисления гидравлических потерь. G = Q1 / ( C* ∆t )= 844/ (4187 х 5) =0,04 кг/с.

C — удельная теплоемкость теплоносителя. В данном случае воды. С(воды)=4187 Дж/(кг*K)

Определение скорости движения теплоносителя.
Максимальная скорость движения теплоносителя в трубах теплого пола должна лежать в пределах от 0,15 до 1 м/с. Определим скорости воды в трубах диаметрами 16мм и 20мм (внутренние диаметры Dвн -12мм и 16мм):

V=m/(r*F)

V- скорость движения теплоносителя в трубе м/с

r- плотность теплоносителя кг/м3

F- площадь поперечного сечения кв.м

F= π * r2, где r — внутренний диаметр, деленный на 2 (радиус)
V16 = 0,04/(1000*3.14*0,006*0,006) = 0,354 м/с;
V20 = 0,04/(1000*3,14*0,008*0,008)= 0,199 м/с.
Обе трубы удовлетворяют допустимым интервалам скоростей. Принимаем трубу с наружным диаметром 16, как менее дорогую. На практике, порой выгоднее принимать большее значение диаметра, чтобы снизить гидравлические потери в системе.

Определение длин петель.
Длину петель определяем на основании чертежа раскладки труб. Сравнение вариантов раскладки и значения суммы коэффициентов местных сопротивлений для рассматриваемого примера приведены выше.

Определение потерь давления в петлях.

Потери давления в петлях теплого пола определяются для подбора насосного оборудования и расчета предварительной настройки регулировочных вентилей коллектора. Общие потери в петле складываются из линейных (от трения) потерь и потерь давления на преодоление местных сопротивлений (изменение направления, диаметра, характеристик потока). Линейные потери в петлях находим на основании полученного значения скорости теплоносителя (0,354 м/с) и выбранного диаметра трубы (16мм) по гидравлическим таблицам. Перемножив полученные удельные потери (167 Па/м) на длину трубы получим линейные потери давления 167х96 =16032 Па.

Сумму коэффициентов местных сопротивлений Z определяем как произведение количества отводов («калач» считается за два отвода) на 0,5 (КМС коэффициент местного сопротивления отвода). Для нашего примера («улитка») Z =52х0,5 = 26. (Потери в присоединительных фитингах условно не учитываются).

Потери на местные сопротивления определяются по формуле:

∆P = ρ * Z * V*V /2 = 1000*26*0,354*0,354 /2=1629 Па.

Суммируя линейные и местные потери получаем полное гидравлическое сопротивление петли: 16032+1629=17661 Па.

ПОТЕРИ ДАВЛЕНИЯ В ОДНОЙ ПЕТЛЕ НЕ ДОЛЖНЫ ПРЕВЫШАТЬ 20 000Па!

При соблюдении данного ограничения не возникнет опасность появления « запертой» петли, когда увеличение мощности насоса пропорционально увеличивает гидравлические потери, что вновь вызывает необходимость повышения мощности насоса и так далее…

После определения потерь давления по каждой из петель, можно приступать к выбору насоса и составлению таблицы предварительной настройки коллекторных вентилей.
Для прочих вариантов конструкций пола можно использовать нижеприведенные графики. Графики теплового потока для различных вариантов покрытий:

alternative-heating.ru

Элементы водяного теплого пола

Прежде всего, стоит определиться, что именно вам понадобится для работоспособности системы:

  • Трубы;
  • Насосно-смесительный узел и коллекторы, фитинги;
  • Котел;
  • Коллекторный шкаф;
  • Гидро- и теплоизоляция;
  • Армирование стяжки;
  • Щебеночно-песчаная засыпка (при укладке на грунт);
  • Бетонная стяжка пола.

Основные правила проектирования

  • Длина каждого контура 16 мм не должна превышать 100 м (или 120 для труб диаметром 20 мм). Чем короче будет длина труб, тем экономичнее окажется система, так как потребуется более слабый циркулярный насос.
  • Оптимальным вариантом для 16 мм труб считается длина 65 м, или примерно 10 м2. Расход насоса для работы на такое помещение (10 м2) должен быть не менее 2 литров в минуту.
  • Нужно проектировать контуры таким образом, чтобы они имели равномерную длину, и не отличались друг от друга более чем на 10-20% с учетом подвода к коллектору.
  • Оптимальное расстояние между труб 150 мм.
  • Температура поверхности не должна превышать 30 градусов. В большинстве случаев этого достаточно. Имейте в виду, что температура теплоносителя может быть на 10-20 градусов выше.
  • Самым оптимальным способом укладки труб является «улитка». Такой вариант равномерно распределяет тепло по поверхности и не создает больших гидравлических потерь за счет плавных поворотов.
  • Так как на полу рядом с наружными стенами холоднее, там шаг укладки делается в 1,5 раза меньше, но не менее 10 сантиметров.
  • Крепление труб лучше всего делать по разметке. Особенно без неё не обойтись, если имеются препятствия, которые нужно обходить, либо косые углы.

Пример идеального теплого пола

  • Основание имеет перепады высот менее 3 см;
  • Используется утеплитель толщиной от 3 сантиметров, тем самым повышается эффективность системы, она не греет пол по направлению вниз. Лучше всего использовать пенопласт или пенополистирол плотностью выше 35 кг/м3.
  • Бетонная стяжка имеет толщину 4-10 см.
  • Используется арматурная сетка для армирования стяжки и равномерного распределения тепла.
  • Применяются сшитые из полиэтилена или металлопластиковые трубы. Разницы между ними особой нет, кроме как в удобстве укладки: металлопластик будет легко укладывать, так как он просто гнется.
  • Чем больше будет диаметр труб – тем меньше будет сопротивление потоку и теплопередача, а значит и КПД выше. Поэтому обычно используют трубы диаметром 16 и 20 мм.
  • В качестве защитного и теплораспределяющего слоя поверх труб используется бетонная стяжка с мелким щебнем.

Совет! Не нужно экономить на утеплителе, и покупать тонкие теплоотражающие виды, даже в многоквартирных домах вместе с водяным отоплением их лучше не использовать. Фольгированный Пенофол можно использовать только в качестве дополнительного слоя, он также обеспечит хорошую гидроизоляцию.

Потери давления

В графике показаны расчеты потери напора для трубы длиной 1 метр. Чтобы получить общие значения потерь в системе, нужно умножить результаты из таблицы на длину контура в метрах.

В таблице вы можете посмотреть расчет мощности водяного теплого пола в зависимости от длины контуров:

Схема подключения

Стоимость системы будет зависеть от способа подключения контуров. Самый дешевый вариант – использование двухходового клапана с ручной регулировкой. Дороже обойдутся схемы с трёхходовыми клапанами и автоматической регулировкой, где используется тепловой выносной датчик, погодная автоматика и другие контроллеры.

Еще одной важной особенностью является тип смешивания смесительного узла: параллельный или последовательный. Последовательная схема будет более производительнее, потому что вся работа насоса будет направлена на подачу в контуры. В параллельной схеме подключения мощность насоса будет снижаться за счет входящей циркуляции.

Циркулярный насос

В магазинах продается много стандартных насосов с расходом 2,5 м3 в час, это приблизительно 40 литров в минуту, и с напором до 6 м. Однако даже если указан расход в 40 литров за минуту, то это не значит, что насос будет работать в таком режиме.

Этот параметр будет зависеть от пропускной способности системы или узла. Чем больше будет контуров, тем выше будет расход в системе, соответственно напор будет меньше.

Поэтому если для работы системы нужен напор 3 метра, значит необходимо подобрать соответствующий расход по графику.

  • Чтобы посчитать расход в смесительном узле в последовательной системе подключения, нужно просто сложить расход каждого контура.
  • Если смесительный узел подключен параллельно, то дополнительно нужно умножить сумму расхода вдвое.

Сравниваем полученные общие цифры расхода по графику и получаем нужный напор. Учтите, что насос нужно покупать примерно на 15% мощней расчетов.

Обратите внимание! Напор насоса не должен быть ниже, чем потери напора в контуре (рассчитываются по таблице выше).

При использовании в системе незамерзающей жидкости, расчеты будут совсем другими, так как она имеет более густую консистенцию, чем вода. В таких случаях мощность насоса нужно увеличивать примерно на 20%, либо настолько же укорачивать длину контуров.

Количество контуров

В таблице показаны оптимальные значения длины и количества контуров на каждый насосно-смесительный узел.

Название Максимум контуров, шт. Максимальная длина каждого контура, м Труба, мм
Насос с расходом 40 л/мин. и напором 6 м (параллельная схема подключения) 8 65 16
5 80 16
Насос с расходом 40 л/мин. и напором 6 м (последовательная схема подключения) 12 65 16
8 80 16

Шаг укладки

  • Оптимальным шагом укладки труб при морозе до -30 в России (без дополнительного отопления) является 10-12 см. В таком случае расход насоса нужно делать 2-3 литра в минуту.
  • Если дополнительно будут работать радиаторы, то шаг можно увеличить до 15-20 см. Расход должен быть 1-2 литра в минуту.

Если говорить точнее, то насос должен работать с расходом 0,4 литра на каждые 10 метров трубы. То есть на 80 метров трубы он должен качать со скоростью 3,2 литра за минуту.

Расчет стоимости

Ориентировочный расчет стоимости водяного теплого пола для дома с активной площадью подогрева 100 м2:

  • Упаковка экструдированного пенополистирола Пеноплэкс толщиной 5 см стоит примерно 1150 рублей. Площадь материала в ней 5,04 м2, значит нам понадобится 20 упаковок утеплителя, итого 23000 рублей.
  • Армированная сетка 15*15 см, из прутков 5 мм стоит 53 рубля за квадратный метр, значит всего на армирование у нас уйдет 5300 руб.
  • Рулон полиэтиленовой гидроизоляции 200 мкм имеет площадь 300 кв. м., и стоит 3800 рублей.
  • Цена на метр металлопластиковой трубы – 40 рублей. При укладке с шагом 15 см, расход составит 6,7 погонных метра на квадрат, итого нам потребуется 670 метров трубы стоимостью 26800р. Плюс дополнительный запас на подвод контуров к коллектору.
  • Демпферную ленту для экономии сделаем своими руками из вспененного полиэтилена, потребуется около 30 квадратных метров. Цена полиэтиленовой подложки толщиной 8 мм составляет примерно 22 рубля за квадрат, итого 660 р.
  • 2 коллектора от Valtec на 7 контуров обойдутся в 3200 р.
  • 14 фитингов для подключения труб к коллектору будут стоить 1610 р.
  • Готовый смесительный узел с насосом на 7 контуров стоит 14500 р.
  • Плюс прибавим сюда дополнительные расходы на крепеж (саморезы, нейлоновые стяжки) +1000 р.
  • Итого материалы обойдутся вам в 79870 рублей, без учета покупки котла.

Стоимость стяжки для пола вместе с работой из пескобетона толщиной 6 см составляет примерно 480 рублей за метр, итого +48000 руб.

Если вы будете нанимать мастеров, дополнительно нужно учесть стоимость укладки труб, изоляции, сетки и испытания системы. Итоговая стоимость монтажа системы под ключ составит примерно 1500 рублей за квадратный метр.

shkolapola.club


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.