Емкостной датчик уровня


Подобные датчики существуют столько же, сколько RC-генераторы. Но оказывается, «научить» измерять меняющуюся ёмкость датчика можно и Arduino — программно, внешний генератор для этого не потребуется. А сам датчик вы можете изготовить своими руками — о такой самоделке рассказывает автор Instructables под ником luismorales-navarro.

Мастер разрабатывает четыре детали датчика и выкладывает получившиеся файлы на сайт Tinkercad: внутреннюю трубку, её крышку, внешнюю трубку и её крышку. Печатает эти детали на 3D-принтере.

Обматывает трубки алюминиевой фольгой, присоединяет к ним проводники. Здесь медь к алюминию — можно, ну, повлияет на точность, только и всего. В силовых цепях — нельзя, даже если там «всего-то десятки миллиампер».

Мастер собирает датчик, герметизирует его термоклеем, убеждается, что он не протекает, а жидкость нигде не контактирует с фольгой. Ведь требуется, чтобы датчик был емкостным, а не резистивным.


Подключает к Arduino как показано далее. Из дополнительных компонентов требуется всего один резистор. Конечно, инструкцию можно было бы озаглавить так: «Сенсация! Уровнемер из одного резистора!», но сразу понятно, что это — «каша из топора».

Работоспособность датчика мастер проверяет простейшей программой, требующей библиотеки CapacitiveSensing:

/* * CapitiveSense Library Demo Sketch   * Paul Badger 2008 * Uses a high value resistor e.g. 10M between send pin and receive pin   * Resistor effects sensitivity, experiment with values, 50K - 50M. Larger resistor values yield larger sensor values.   * Receive pin is the sensor pin - try different amounts of foil/metal on this pin   */   CapacitiveSensor cs_4_2 = CapacitiveSensor(4,2);   // 10M resistor between pins 4 & 2, pin 2 is sensor pin, add a wire and or foil if desired void setup() { cs_4_2.set_CS_AutocaL_Millis(0xFFFFFFFF);   // turn off autocalibrate on channel 1 - just as an example Serial.begin(9600); } void loop() { long start = millis(); long total1 = cs_4_2.capacitiveSensor(30); Serial.print(millis() - start);   // check on performance in milliseconds Serial.print("t");   // tab character for debug windown spacing Serial.print(total1);   // print sensor output 1 Serial.print("t"); delay(10);   // arbitrary delay to limit data to serial port }  
  

Не удивляйтесь отсутствию переводов строк — так сделано в оригинале. Данные о результатах измерения поступают в монитор последовательного порта. В дальнейшем предлагаемый фрагмент можно интегрировать в более сложные скетчи, в которых реализованы сигнализация о слишком большом или малом уровне жидкости, управление исполнительными механизмами.

Источник: USamodelkina.ru

Емкостные датчики – преобразователи параметров. Их работа заключается в изменении емкостного сопротивления путем изменения измеряемого параметра. Емкостный датчик преобразовывает такие величины, как влажность, давление, сила механического воздействия, уровень жидкости в изменение электрической емкости.

Классификация
По исполнению датчики делятся на:
  • Одноемкостные.
  • Двухъемкостные.

Одноемкостнй датчик имеет простое устройство и выполнена в виде конденсатора с изменяемой емкостью. Его недостатком является большое влияние внешних воздействий. К ним относятся температура и влажность. Чтобы компенсировать такие неточности, применяют дифференциальные двухъемкостные модели.

В отличие от одноемкостных датчиков, минусом дифференциальных моделей является то, что требуется минимум три соединительных экранированных проводника между измерительным устройством и датчиком, для погашения паразитных емкостей. Однако это компенсируется стабильностью, значительным увеличением точности и расширением сферы использования таких датчиков.


Иногда трудно спроектировать дифференциальный датчик емкостного типа из соображений его устройства. Особенно, если это датчик с изменяемым зазором. Но при расположении образцового конденсатора вместе с рабочим, и выполнении их конструкции одинаковыми, включая все материалы, то будет создана намного меньшая чувствительность устройства к наружному воздействию различных факторов. В этих случаях идет речь о полудифференциальной модели, относящейся к 2-х емкостным приборам.

Специфическая особенность параметра выхода двухъемкостных датчиков, представленная в виде безразмерного соотношения 2-х емкостей, позволяет назвать такие устройства датчиками отношения.

Линейные датчики

Неэлектрические параметры, которые требуется измерять на практике, очень разнообразны и многочисленны. На базе конденсатора, у которого равномерно распределено электрическое поле в рабочем промежутке, создаются устройства емкостных датчиков перемещения следующих видов:

  • С изменяемой площадью электродов.
  • С изменяемым промежутком между обкладками.

Датчики с переменной площадью удобнее для контроля значительных перемещений, а датчики с изменяемым промежутком удобнее для контроля незначительных перемещений.


Датчики угловых перемещений имеют принцип работы, аналогичный линейным датчикам. При этом эти датчики также рекомендуются для малых интервалов перемещений угла. Для таких целей часто используют в эксплуатации многосекционные модели с изменяемой площадью пластин.

Подобные датчики имеют крепление одного электрода на валу контролируемого объекта. При угловом смещении вала изменяется площадь пластин конденсатора, что приводит к изменению емкости. Это изменение обрабатывается электронной схемой.

Инклинометры

Другими словами такое устройство называют датчиком крена. Они получили название инклинометров, выполнены в виде дифференциального емкостного датчика наклона. Эта конструкция имеет чувствительный компонент в виде капсулы.

Емкостной датчик уровня

Чувствительная капсула включает в себя подложку с планарными электродами (1), которые покрыты диэлектрическим слоем, а также корпус (2), герметично зафиксированный на подложке. Частично внутренняя часть корпуса заполнена токопроводящей жидкостью (3). Она является общим выводом чувствительного компонента.

Общий электрод создает с электродами своеобразный дифференциальный конденсатор. Сигнал выхода датчика прямо зависит от размера емкости, которая зависит от расположения корпуса.

Инклинометр сконструирован с линейной зависимостью сигнала выхода от угла наклона в рабочей плоскости и не меняет значения в нерабочей плоскости. В этом случае сигнал имеет незначительную зависимость от изменения температуры. Чтобы определить расположение плоскости применяется два инклинометра, находящихся между собой под прямым углом.


Емкостной датчик уровня

Инклинометры небольшого размера с сигналом, зависящим от угла наклона датчика, нашли применение совсем недавно. Они имеют высокую точность, малые габариты, у них нет движущихся деталей. Стоимость их также невысока. Все эти достоинства позволяют рекомендовать их для применения датчиками наклона, а также для замены угловых датчиков, в том числе и на движущихся объектах.

Датчики уровня токонепроводящих веществ, находящихся в жидком состоянии, представляют собой схему из двух соединенных параллельно емкостей. Они стали популярными в различных отраслях, системах проверки, при работе с сыпучими и вязкими материалами, в условиях конденсата.

Датчики давления

Конструкция таких датчиков отличается устройством преобразователя. Он выполнен в виде воздушного конденсатора. Одна его пластина является неподвижной, а вторая передвигается под воздействием упругого преобразователя.

Устройство и работа

Емкостной датчик уровня

1 — Корпус датчика обеспечивает возможность установки выключателя, защиту от внешних воздействий различных факторов.
териалом корпуса обычно является полиамид или латунь. В комплект входят крепежные изделия.
2 — Компаунд, состоящей из специальной смолы, создает защиту элементов датчика от попадания влаги и других посторонних веществ.
3 — Триггер создает необходимую крутизну сигнала коммутации и величину гистерезиса.
4 — Подстроечный элемент.
5 — Светодиод обеспечивает оперативность настройки, показывает положение выключателя.
6 — Усилитель повышает сигнал выхода до требуемой величины.
7 — Демодулятор модифицирует изменение колебаний высокой частоты в изменение напряжения.
8 — Генератор создает электрическое поле для воздействия на объект.
9 — Электроды.

Рабочая поверхность датчика выполнена в виде двух металлических электродов. Они играют роль обкладок конденсатора, которые подключены в цепь обратной связи автогенератора высокой частоты. Генератор настроен на приближение объекта к активной поверхности.

При приближении контрольного объекта он меняет емкость, вследствие чего генератор вступает в работу и образует колебания с увеличивающейся амплитудой по приближению к объекту. Повышение амплитуды обрабатывается электронной схемой, которая создает сигнал выхода.

Емкостные датчики приводятся в действие от электропроводных объектов и диэлектриков. При приближении токопроводящих объектов расстояние срабатывания Sr значительно больше, чем при воздействии диэлектриков. Расстояние срабатывания снижается, и зависит от диэлектрической проницаемости диэлектрика Er.


Емкостной датчик уровня

Особенности конструкции

Чаще всего емкостные датчики выполняются в виде цилиндрического или плоского конденсатора. Подвергаемое контролю перемещение испытывает одна обкладка. При этом она создает изменение емкости, которая выражается:

Емкостной датчик уровня

где ε является диэлектрической проницаемостью материала, d – зазор, S – площадь пластин.

Емкостные датчики способны работать при замере разных параметров по трем направлениям, зависящим от связи контролируемой величины с параметрами:

  • Переменным расстоянием между пластинами.
  • Площадью перекрытия пластин.
  • Изменяемой диэлектрической проницаемости материала.

В случае с диэлектрической проницаемостью входным параметром будет состав, который заполняет объем между обкладками. Такие емкостные датчики стали популярными при контроле размеров малых объектов, влажности тел.

Достоинства
Емкостные датчики имеют множество преимуществ в отличие от других видов. К ним можно отнести:
  • Форма датчика легко совмещается с разными конструкциями и поставленными задачами.
  • Не требуется больших усилий для передвижения чувствительного компонента.
  • Длительная эксплуатация.
  • Отсутствие подвижных контактов.
  • Повышенная чувствительность.
  • Малый расход электроэнергии.
  • Небольшие габаритные размеры и масса.
  • Технологичность при изготовлении, применение дешевых материалов и веществ.

Емкостные датчики славятся своей простой конструкцией, что дает возможность создания надежных и прочных устройств. Свойства конденсатора зависят всего лишь от геометрических параметров, и не имеют зависимости от свойств применяемых материалов, при условии их правильного подбора. Поэтому при проектировании пренебрегают влиянием температуры на площадь поверхности и размера между пластинами, при правильном выборе изоляции и металла.

Недостатки
  • Работа на высокой частоте.
  • Повышенные требования к экранированию элементов.
  • Малый коэффициент преобразования.

При использовании емкостных датчиков необходимо обеспечивать защиту от ложных сработок. Они возникают из-за случайного касания работника, атмосферными осадками, различными жидкостями.

Применение

Емкостные датчики используются в разных сферах производства и деятельности человека. Они применяются в управлении технологическими процессами и системах регулировки во всех промышленных производствах. Сегодня наиболее популярными датчиками стали датчики присутствия, которые являются надежными конструкциями. Они имеют невысокую цену, и широкий спектр направлений по использованию.

Основными областями применения датчиков стали:
  • Подсчет штучного товара.
  • Регулировка натяжения конвейера.
  • Сигнализация обрыва проводника при намотке.
  • Контроль наполнения упаковки.
  • Сигнализация при заполнении стеклянных и пластиковых сосудов.

Похожие темы:
  • Индуктивные датчики. Виды. Устройство. Параметры и погрешности
  • Датчики Холла. Виды и применения. Принцип действия и подключения
  • Тензометрические датчики (Тензодатчик). Виды, принцип действия
  • Датчики давления. Виды и принцип работы. Как выбрать?
  • Датчики температуры. Виды и принцип действия, Как выбрать
  • Ультразвуковые датчики часть 1. Устройство и работа
  • Источник: electrosam.ru

    Измерение без прикосновения

    Емкостное измерение это не емкостной сенсор (похожая технология, оптимизированная для выполнения функций цифрового коммутатора)! Емкостная сенсорная система использует множества каналов в строке и столбце расположения (как на сенсорном экране телефона или планшете). Сенсорный экран требует непосредственного контакта и работает в течении очень короткого диапазона – в большинстве случаев это несколько миллиметров.

    В отличии от похожей системы – сенсорного экрана, емкостной датчик является аналоговой системой и работает на расстоянии до 70 см. Он имеет гораздо большую чувствительность и точность, поскольку происходит изменение емкости всего в несколько пикофарад.

    Принцип емкостного измерения


    Емкость системы – это ее способность хранить электрический заряд, который является одним из основных электрических параметров. Самая простая модель конденсатора (устройство для хранения электрического заряда) будет состоять из двух электрических проводников или пластин, разделенных диэлектриком:

    Простая модель емкостного датчика

    Для модели конденсатора представленной выше емкость (в фарадах)  определяется по формуле:

    Формула емкости конденсатора

    Где: А – площадь пластины (WxL); εr – диэлектрическая проницаемость межпластинного материала; ε0 – электрическая постоянная 8,85х10-12 Ф/м; d – расстояние между пластинами в метрах;

    Когда датчик заряжен, он создает электрическое поле:

    Электрическое поле между пластинами емкостного датчика

    Срабатывание емкостного датчика

    Как превращается конденсатор в емкостной датчик? Смотрите ниже:

    Принцип работы емкостных датчиков приближения, измерения жидкости, анализа материала

    На рисунке а) показан датчик приближения, использующий палец в качестве «земли», на рисунке б) показано измерение уровня жидкости с параллельным датчиком и землей, а на рисунке с) показан датчик обнаружения и анализа материала.

    Бесконтактный датчик формируется путем построения изолированного датчика пластины из проводящей области печатной платы и зарядки. Конденсатор будет формироваться в любое время в заземленном проводящем элементе или же в любом другом объекте, имеющем диэлектрическую проницаемость отличную от воздуха. Из рисунка а) видно, что такой принцип будет работать и в случае приближение части человеческого тела (в нашем случае пальца), так как, по сути, человеческое тело будет представлять собой потенциал земли.

    По мере приближения пальца будет изменятся емкость. Даже с учетом того, что эта система нелинейна, обнаружение приближения не составит большого труда.

    Для расширения возможностей данного измерительного устройства могут использовать несколько независимых датчиков – вниз/вверх и  влево/вправо:

    Емкостной датчик измерения перемещения в нескольких координатных осях

    По мере перемещения пальца изменяется емкость всех четырех датчиков. Многоканальный детектор считывает эти показания и передает в микроконтроллер, который проводит вычисления скорости и направления перемещения.

    Во многих системах, таких как хранения химических веществ, промышленные системы контроля и автоматизации или коммерческие машины необходимо измерять уровень жидкости. В этом случае пластины датчика могут располагаться рядом друг с другом (см. рисунок б)), в результате чего получается повышенная чувствительность вдоль вертикальной оси.

    По мере изменения уровня жидкости будет меняться и диэлектрическое значение, соответственно изменится и емкость. Такая конфигурация позволяет использовать края силовых линий. Соответственно и расчеты изменения емкости в данном случае будут значительно сложнее, чем в случае простой пластины.

    Датчик анализа материалов состоит из основной пластины, показанной на рисунке с). Для анализа материала используется эффект изменения проницаемости между пластинами при добавлении или удалении материала. Незагруженный датчик использует в качестве диэлектрика воздух. При попадании в этот воздушный зазор материала, например бумаги, электрическая емкость полученного таким образом конденсатора увеличится, соответственно изменение отслеживаются и передаются в контроллер, который и обрабатывает данные значения, вычисляя, таким образом, тип и свойства материала.

    Экранирование и емкостные измерения

    Одной из проблем емкостных приборов измерения приближений является то, что силовые линии будут распространятся  на любые соседние ячейки с потенциалом земли. Многие паразитные явление (например, ground traces (путь на поверхности Земли оставленный самолетом или спутником )) влияют на чувствительность и расстояние обнаружения датчиком. Данное явление представляет собой проблему для чувствительных к шуму систем.

    Влияние паразитных явлений на точность измерения емкостных датчиков

    Паразитные эффекты на печатных платах (а), влияющие на качество работы устройства уменьшают с помощью защитных электродов. Драйверы защитного экрана включают в интерфейсные устройства емкостных датчиков и специализированных микроконтроллеров.

    Добавление активного экрана может помочь избавится от паразитных влияний на окружающую среду и позволит использовать максимальный потенциал устройства. Хорошо спроектированный активный экран будет направлен на выход датчика и будет направлять его сигнал в нужном направлении.

    Драйвер защиты является активным выходом, который работает от того же напряжения что и само устройство. Таким образом, не будет возникать никакой разности потенциалов между экраном и входом устройства. Любое внешнее вмешательство вызовет минимальное взаимодействие между экранированным электродом и измерительным электродом.

    Блок диаграмма работы емкостного датчика

    Специализированный аналоговый интерфейс преобразует сигнал от емкостного датчика в цифровую форму, которая пригодна для дальнейшей обработки:

    Блок-схема интерфейса преобразующего сигнал от емкостного датчика к микроконтроллеру

    Интерфейс периодически опрашивает измерительное устройство и подает сигнал, необходимый для зарядки сенсорной пластины. Частота дискретизации выходного сигнала относительно медленная, около 500 выборок в секунду, но с высоким разрешением. Это необходимо для определения небольших различий емкости. 16-разрядный сигма-дельта АЦП обеспечивает хороший компромисс между скоростью, разрешением и низким энергопотреблением.

    Многоканальные устройства могут проводить дифференциальные измерения для точного представления разности емкости между двумя датчиками. Например, если на емкость оказывают существенное влияние погодные условия, то один канал может быть посвящен погодным условиям и отслеживать изменения в диэлектриках, вызванные температурой, влажностью, типом материала и так далее. Дифференциальное измерение способно повышать точность благодаря внесению правок, связанных с работой какого-то канала.

    При измерении уровня жидкости один канал измеряет емкость, связанную с уровнем жидкости, а второй канал для опорного датчика, который измеряет электрическую емкость нулевого уровня. Так как емкость пропорциональна высоте уровня жидкости, то измеряемый уровень жидкости будет равен разности или отношению между датчиком уровня и датчиком нулевого уровня.

    LC фильтры как основа емкостного измерения

    Одной из главных проблем емкостного измерения является наличие паразитных шумов. Модификация измерительного устройства включающего в себя частотно-чувствительный компонент позволяет повысить помехоустойчивость. Дополнительно к датчику добавляется конденсатор и катушка индуктивности для формирования резонансного колебательного контура.

    Резонансный колебательный контур, добавленный для улучшения помехозащищенности емкостных датчиков

    Где: а) схема фильтра; б) его характеристика.

    Хотя архитектура LC фильтра проста, он имеет несколько существенных преимуществ при интеграции в состав емкостного измерительного устройства.

    Применение LC фильтров для улучшения характеристик работы емкостных датчиков

    Во-первых, LC резонатор обеспечивает отличную устойчивость к электромагнитным помехам, а во-вторых, работающий на определенных частотах источник шума вполне может быть отфильтрована LC резонатором без использования внешних схем. Это уменьшает сложность системы и уменьшает ее стоимость.

    Изменение емкости LC контура приведет к сдвигу резонансной частоты. Этот принцип использует FDC2214 в емкостно-цифровом преобразователе, который измеряет частоту колебаний LC фильтра. Устройство выдает цифровое значение, пропорциональное этой частоте. Данные измерения могут быть преобразованы в эквивалентную емкость нижестоящему микроконтроллеру.

    Вывод

    Емкостное измерение является гибкой технологией, которая становится все более популярна. Его низкая стоимость и низкое энергопотребление делают его идеальным выбором для широкого круга приложений, как в бытовой сфере, так и в промышленной.

    Источник: elenergi.ru

    Принцип работы емкостного датчика

    Вот что такое емкостные датчики. Принцип работы их не так сложен, но для его понимания нужно кое-что знать. Для начала вспомним принцип определения емкости конденсатора. Выражается это действие при помощи следующей формулы:

    С= εεₒS/δ.

    Данное выражение многим известно из школьного курса физики, но не мешало бы освежить память и вспомнить, что подразумевает каждая из переменных:

    • S – площадь конденсаторной пластины.
    • Ε – относительная проницаемость диэлектрического материала, использованного в конструкции конденсатора.
    • εₒ — так в физике принято обозначать диэлектрическую проницаемость вакуума.
    • δ – так может обозначаться или толщина пластины диэлектрика, или же расстояние между несколькими слоями материала.

    Таким образом, из приведенной формулы следует, что изменить емкость конденсатора легко. Достаточно как-то подействовать на площадь пластины диэлектрического материала, на расстояние между пластинами или непосредственно на проницаемость использованного при производстве материала. Соответственно, выбор конкретной величины зависит исключительно от перечня задач, которые конструкторы поставили перед прибором.

    Таким образом, можно даже сделать емкостной датчик своими руками, так как с конструктивной точки зрения это – обычный плоский или цилиндрический конденсатор, одна из пластин которого постоянно испытывает контролируемое перемещение в пространстве, что приводит к изменению емкости. Следует помнить, что приведенная выше формула верна только в том случае, если вы полностью пренебрегаете краевыми эффектами. Мы еще поговорим об этом в заключительной части нашей статьи.

    Следует знать, что такого рода электронные приборы интенсивно используются для измерения угловых и линейных перемещений предметов, вычисления размеров, прикладываемой работы, влажности, концентрации действующего вещества и прочих характеристик. Что касается конструктивной стороны вопроса, то упомянутые КИПы изготавливают плоскопараллельными, в цилиндрических корпусах, со штыревыми электродами, с прокладкой из диэлектрического материала и вовсе без него.

    Вот как функционируют емкостные датчики. Принцип работы некоторых из них нужно знать особенно подробно. В рамках этой статьи мы приведем несколько формул, которые могут оказаться для вас полезными.

    Формулы для описания принципа действия некоторых видов датчиков

    Датчик уровня с возможным изменением площади диэлектрических пластин может быть довольно легко описан при помощи следующего уравнения:

    С= εεₒаХ/δ.

    Под «Х» в данном случае понимается длина перекрытия используемых электродов. Соответственно, «а» обозначает ширину пластин самого конденсатора. Нужно заметить, что такие приборы нашли свое применение в самых различных областях промышленности, где их используют для точнейшего измерения угловых величин. Емкость преобразователя в таком случае находят посредством следующего выражения:

    С= εεₒ(r₂- r₁)/2δ * (φₒ-φ).

    Дабы точно измерить чувствительность, следует применять несколько иную формулу:

    K= εεₒ(r₂- r₁)/2δ.

    Давайте разберемся, что подразумевается под теми переменными, которые входят в состав данных уравнений:

    • r₁ — внутренний радиус пластины конденсатора;
    • r₂ — наружный радиус все той же пластины;
    • φ – измеряемое в данный момент (текущее) значение угла перекрытия;
    • φₒ — начальное значение угла перекрытия.

    Наконец, разберем математическое выражение, которое описывает принцип работы емкостного измерителя с изменяемым воздушным зазором:

    С= εεₒS/(δₒ-Х).

    Нетрудно догадаться, что под δₒ понимается первичный зазор, литерой же Х обозначают величину перемещения пластины. Обратите внимание! Так как статические характеристики сугубо не линейны, обычно датчик уровня такого типа применяют для измерения чрезвычайно малых перемещений, величина которых не превышает 0,1δₒ. Естественно, эти приборы крайне востребованы в точном машиностроении, где даже меньшая погрешность может привести к возникновению достаточно серьезных проблем.

    Где они могут быть использованы?

    Области их возможного применения чрезвычайно разнообразны. Так, практически во всех отраслях промышленности можно встретить операции, которые контролируются именно этими приборами. Их применяют для контроля над заполнением различных резервуаров, причем их содержимое может быть жидким, сыпучим или же газообразным (датчик газа).

    Распространенность их в промышленности и обычной производственной деятельности человека тем выше, чем надежнее и проще конструкция таких приборов. По совокупности этих признаков они настолько хороши, что их можно использовать даже в невероятно агрессивных условиях трюмов нефтеналивных танкеров.

    Кроме того, емкостной датчик может быть использован в качестве конечного выключателя на конвейерной линии или станке производственного цеха. Необходим он и для наиболее точного позиционирования различных механизмов.

    Датчики приближения

    Но в настоящее время особым спросом пользуются датчики приближения, которые выполнены по точно такому же принципу. Спектр их использования еще шире. Связано это с копеечной стоимостью устройств и возможностью работы практически во всех видах промышленности. Впрочем, имеются типичные отрасли, где приборы этого типа являются наиболее востребованными:

    • Контроль над заполнением жидкостью прозрачных емкостей из пластика или стекла.
    • Аналогичная функция выполняется ими на производстве продуктов питания (в том числе и детских), где готовый товар расфасовывается в емкости из прозрачных материалов. На этом же принципе основана и работа такого КИПа, как емкостной датчик топлива.
    • Для контроля опасных участков, где возможен обрыв обмоточного провода.
    • Контроль аналогичных мест, где может быть повреждена несущая лента конвейера.
    • Поштучный контроль выпускаемого типа продукции (пересчет банок, бутылок, упаковок).

    Неудивительно, что эти электронные приборы являются наиболее распространенной в точном машиностроении, энергетике и многих других отраслях разновидностью датчиков.

    Инклинометры

    Приборами, которые стали сравнительно распространенными только в последние годы, являются малогабаритные емкостные инклинометры, обеспечивающие передачу электрического выходного сигнала, величина которого прямо пропорциональна углу наклона используемого датчика.

    Наиболее распространенные основные области использования данных приборов: системы выравнивания платформ, определение величины прогиба и технической деформации разного рода опорных балок, а также точнейший контроль уклона автомобильных, железнодорожных путей еще на этапе их строительства.

    Кроме того, с помощью таких устройств определяют крен большегрузных автомобилей и прочего транспорта, подъемников и промышленных экскаваторов, а также выясняют степень углового перемещения в отношении сельскохозяйственных и промышленных машин особо большого размера.

    Очень важны емкостные датчики уровня топлива в нефтяной промышленности. Они используются даже на супертанкерах, которые за один рейс перевозят десятки и сотни тысяч тонн переработанных нефтепродуктов. Чрезвычайно эффективны эти приборы даже в условиях образования крайне обильного конденсата и высокой степени запыленности производственного помещения (тот же датчик газа).

    Находят они свое применение и при измерении величины абсолютного и относительного уровня давления, а также толщины диэлектрического материала, что чрезвычайно важно практически во всех отраслях промышленности, где используются действительно мощные конденсаторы.

    Основные преимущества емкостных датчиков

    Необходимо заметить, что емкостной датчик обладает большим количеством преимуществ, если сравнивать его с аналогичными приборами, которые выполнены по несколько иным принципам. Давайте перечислим основные достоинства этих КИПов:

    • В изготовлении они чрезвычайно просты. Кроме того, в их производстве могут быть использованы самые простые и дешевые материалы. Даже емкостные датчики уровня топлива, используемые на важных объектах нефтяной промышленности, имеют крайне скромные габариты, обладают минимально возможным уровнем потребления электрической энергии. При всех этих характеристиках они отличаются превосходным уровнем чувствительности, который нередко недостижим и для более дорогих приборов.
    • В принципе, можно сделать емкостной датчик своими руками, используя в качестве его основы любой более-менее надежный и качественный промышленный конденсатор.
    • Контактов у них нет (очень редко используется один токосъемник), что крайне благоприятно сказывается на работе в условиях высокой запыленности и влажности в помещении.
    • Срок эксплуатации чрезвычайно долог, прибор многократно успевает «отбить» свою невысокую стоимость. Соответственно, датчик емкостной (цена которого находится в пределах 1200-1700 рублей) является чрезвычайно выгодным приобретением.
    • Для перемещения подвижной части прибора требуется приложить удивительно мало усилий.
    • Устройство очень легко сочетается практически со всеми категориями оборудования, которое только используется в промышленной деятельности.

    Отрицательные моменты

    К сожалению, каждый емкостной датчик имеет определенные недостатки, которые в той или иной мере затрудняют повсеместное использование данного типа оборудования. Перечислим их более подробно:

    • Коэффициент преобразования (то есть передачи) сравнительно невысок.
    • Малые размеры и простота конструкции способствуют тому, что выдвигаются довольно высокие требования к качеству экранирования приборов.
    • Хороший емкостной датчик уровня (и прочие подобные измерительные приборы) может эффективно работать только на частоте, намного превышающей стандартное значение в 50 Гц.

    Важные замечания

    Впрочем, все не так плохо. Многие производители добиваются прекрасных характеристик экранировки датчиков за счет внесения минимальных изменений в их конструкцию. Что же касается частоты использования, то на практике они показывают прекрасные результаты при широко распространенном в промышленности значении в 400 Гц.

    Мы уже говорили о верности основной формулы только при условии игнорирования краевого эффекта. Но при этом полезно знать, что он действительно может оказать негативное влияние только лишь в том случае, если расстояние между пластинами диэлектрика сопоставимо с их собственными размерами. Кроме того, негативный эффект можно в значительной степени нивелировать, попросту использовав защитное кольцо. В этом случае границы влияния эффекта удается перенести далеко за пределы используемых обкладок.

    Еще раз заметим, что те же датчики давления отличаются замечательной простотой, которая позволяет создавать на диво устойчивые, прочные и дешевые конструкции. Если правильно подобрать геометрические размеры используемого диэлектрика, то об используемых в производстве такого конденсатора материалах можно особо не беспокоиться.

    Таким образом, правильно подобрав марку металла для изготовления корпуса датчика, можно практически пренебречь даже сильными температурными колебаниями, которые бы могли привести у изменению емкости прибора и неадекватности его показаний. Конечно же, это вовсе не отменяет необходимости максимально тщательно изолировать датчики давления и прочие подобные индикаторы от агрессивных факторов внешней среды. Несмотря на их простоту, высокая влажность и повышенный уровень радиации могут крайне негативно сказаться на надежности прибора.

    Классификация датчиков

    Используемые в промышленности способы их производства позволяют поделить все выпускаемые типы датчиков на две большие группы: одноемкостные и двухъемкостные. Последняя разновидность подразделяется на дифференциальные и полудифференциальные. Расмотрим их более подробно.

    Одноемкостный прибор. В этом случае схемы емкостных датчиков просты до крайности, так как основной их частью является самый обычный конденсатор с переменной емкостью. К сожалению, даже слегка повышенная влажность и температура оказывают на точность показаний весьма ощутимое влияние. Из-за этого нередко возникают различные неисправности датчиков. Чтобы нивелировать величины таких погрешностей, приходится использовать дифференцированные конструкции.

    Двухъемкостный датчик. Собственно, он-то и является такой дифференцированной структурой. Очень часто можно встретить емкостной датчик уровня, изготовленный именно по такой схеме. Эти приборы избавлены от основных недостатков предыдущей модели, но имеют собственные слабые стороны. Наиболее значимым их недостатком является необходимость использования двух-трех экранированных проводов между самим устройством и поверхностью, так как только таким способом можно подавить так называемые паразитные емкости.

    Впрочем, на довольно сложные схемы емкостных датчиков в этом случае легко не обращать внимания, так как взамен вы получаете чрезвычайно точный и чувствительный прибор.

    Специфика конструирования датчиков

    Во многих случаях (с конструкторской точки зрения) создание таких приборов является довольно проблематичным. Особенно это актуально тогда, когда требуется создать датчик с переменным уровнем емкости. Впрочем, практика показывает, что многие проблемы практически полностью решаются точной калибровкой и высокими характеристиками используемых в производстве материалов. Чаще всего с этими затруднениями приходится сталкиваться производителям двухъемкостных датчиков.

    Вообще специфика этого типа измерительных приборов заключается в том, что их можно представить в виде безразмерного соотношения двух физических величин (емкостей), которые имеют точное физическое выражение и значение. Так что их можно смело именовать «датчиками отношения». Преимущество этих приборов (огромный их плюс!) состоит в том, что они вообще могут не иметь в своей конструкции каких-то эталонных мер, что здорово повышает их надежность в действительно экстремальных ситуациях и условиях.

    Характеристика датчиков линейных перемещений

    Все неэлектрические величины, которые часто требуется контролировать в промышленных условиях, чрезвычайно разнообразны и многогранны. Значительную часть мер, которые подлежат строгому контролю, составляют угловые и даже линейные перемещения разного рода поверхностей в пространстве. Если использовать конденсатор, у которого абсолютно равномерное электрическое поле в рабочем зазоре, то не так уж и трудно сделать электронные датчики двух следующих типов:

    • У которых площадь электродов будет переменной.
    • Те, которые имеют переменный зазор между этими электродами.

    Нетрудно понять, что первый тип наиболее подходит для фиксации действительно больших перемещений, в то время как при помощи второй разновидности можно замечать даже такие передвижения тела в пространстве, величина которых равна всего лишь нескольким микронам!

    Датчики для определения угловых перемещений

    В общем-то, по конструкции и назначению они практически полностью идентичны только что рассмотренному нами типу. Схожесть проявляется и в том, что датчики с переменной площадью электродов также следует использовать для больших измерений, а с переменным расстоянием между самими электродами – для малых. Как правило, такие приборы делаются многосекционными, с возможностью изменения площади обкладок конденсатора.

    Чтобы достичь этого, первый электрод крепится к подвижному валу, при вращении которого он меняет свое положение относительно второго, что обеспечивает изменение площади перекрытия пластин диэлектрика в конденсаторе. Естественно, что при этом фиксируется изменение емкости.

    Выводы

    Вот мы и рассмотрели основные характеристики приборов такого уровня, узнали о сферах их применения, об особенностях конструкции, принципе действия и возможных технических решениях. Как вы могли понять из статьи, распространенность емкостных датчиков и их крайне высокая популярность основываются на весьма привлекательной цене таких устройств и долгом сроке эксплуатации даже в сложных условиях внешней среды.

    Все это возможно благодаря тому, что, с конструктивной точки зрения, все эти измерители являются всего лишь стандартными конденсаторами, которые характеризуются несколько необычным способом их применения. Впрочем, вы и сами можете это выяснить, еще раз взглянув на математические формулы, которые в общих чертах отражают принципы работы КИПов.

    Источник: FB.ru

    Конструкция и принцип действия

    Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

    • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
    • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
    • Методом измерения (контактный или бесконтактный).

    Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

    Виды датчиков уровня

    В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

    • поплавочного типа;
    • использующие ультразвуковые волны;
    • устройства с емкостным принципом определения уровня;
    • электродные;
    • радарного типа;
    • работающие по гидростатическому принципу.

    Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

    Поплавковый

    Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.

    Поплавковый датчик для управления насосом
    Рис. 2. Поплавковый датчик для управления насосом

    Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

    • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
    • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

    Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

    Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

    Ультразвуковой

    Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.

    Принцип работы ультразвукового датчика уровня
    Рис. 3. Принцип работы ультразвукового датчика уровня

    Работает система следующим образом:

    • излучается ультразвуковой импульс;
    • принимается отраженный сигнал;
    • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

    Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

    Электродный

    Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.

    Измерение уровня жидкости кондуктометрическими датчиками
    Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

    В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

    Емкостной

    При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).

    Емкостной датчик уровня
    Рис. 5. Емкостной датчик уровня

    Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

    Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

    Радарный

    Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.

    Измерение уровня радарным датчиком
    Измерение уровня радарным датчиком

    Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

    Гидростатический

    Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.

    Измерение заполнения гиростатическим датчиком
    Рисунок 7. Измерение заполнения гиростатическим датчиком

    Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

    В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

    Как выбрать?

    Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

    • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
    • Объем резервуара и материал, из которого он изготовлен.
    • Функциональное назначение емкости для накопления жидкости.
    • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
    • Допустимость интеграции в систему автоматизированного управления.
    • Коммутационные возможности устройства.

    Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

    Делаем датчик уровня воды в резервуаре своими руками

    Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.

    Схема управления водозабоным насосом
    Схема управления водозабоным насосом

    Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня — на замыкание, максимального — на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

    • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
    • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
    • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.

    Источник: www.asutpp.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.