Карта подземных вод


Если вы стали владельцем своей земли, на которой намерены строить дом, выращивать различные садовые и огородные культуры, то вам просто знать о своем приусадебном участке некоторые сведения. Вы должны иметь такие знания о своей земле, как уровень грунтовых вод, карта распределения основных видов почвы, толщина плодородного слоя, глубина промерзания грунта в вашей местности, данные о преобладающей розе ветров и многое другое. Все эти сведения будут очень полезными для вас. Вы максимально эффективно сможете использовать ресурсы участка с наименьшими затратами.

Такие сведения могут реально уберечь вас от многих проблем. К примеру, узнав доминирующую в вашей местности розу ветров, вы сможете учесть этот фактор и возводить строения таким образом, чтобы защитить некоторые из них от воздействия ветра, в качестве банального примера можно указать на строительство кирпичного мангала. Это строение долговечно, в отличие от своего металлического собрата, поэтому его просто так не перенесешь. Если при строительстве не учли доминирующие ветра, то он будет постоянно задымлять дом и двор.

Но еще более важными сведениями являются данные, показывающие уровень грунтовых вод на вашем участке.

Важность знания


Карта уровня грунтовых вод вашего района, а лучше даже конкретно вашего участка, — это крайне важный для любого хозяина земли документ. Обладая этими знаниями, можно уверенно планировать строительство дома или будущие посадки огородных и садовых культур. Только точно зная глубину залегания грунтовых вод, можно правильно выбрать тип и глубину фундамента для дома, ведь малейшие ошибки в расчетах могут привести к деформации основания и даже разрушению всего дома, что повлечет за собой не только материальные потери, но и риск для жизни проживающих в доме людей.

Подземные запасы воды важны и растений. Слишком глубоко пролегающие водоносные слои не смогут напитать почву и дать жизнь растениям, но и слишком близко расположенная вода тоже не принесет радости. Если корни долгое время находятся в воде, то они «задыхаются» и растение может погибнуть. Особенно чувствительны к этому деревья, глубина корней которых намного больше, чем у кустарника и огородных растений.

Уже эти 2 фактора вполне достаточны, чтобы понять, насколько важно знать гидрологическую обстановку на своем участке.

Карта грунтовых вод


Где же взять карту расположения грунтовых вод на вашем участке и как узнать, на какой глубине проходят водоносные слои? Для этого есть 2 пути. Самый простой и разумный — это обратиться в соответствующий орган в вашем городе или районе. Это может быть комитет по землеустройству, архитектурный комитет, гидроразведка и так далее, в разной местности картой грунтовых вод могут обладать различные организации.

Но бывают ситуации, когда такой карты нет или она по какой-то причине вам не подходит. В этом случае вам придется самому заняться исследованиями. Для этого существует множество как строго научных, так и народных способов изучения. Используя некоторые из них или сочетая между собой, можно быстро и качественно определить, на какой глубине пролегают грунтовые воды на вашем участке.

Тут стоит еще отметить такой немаловажный момент, как разновидность подземных вод. Дело в том, что их существует 3 вида. Каждый из них имеет свои особенности и требует различных усилий для своей эксплуатации.

  1. Грунтовые безнапорные воды — это та влага, что выпадает с различными осадками и пропитывает верхний слой почвы. Сюда же может попадать вода из естественных водоемов. Для использования данного вида водных ресурсов достаточно построить простой колодец.
  2. Грунтовые напорные воды использовать немного сложнее, так как они залегают на большой глубине и представляют собой водную линзу, расположенную между 2-мя водонепроницаемыми слоями (обычно глина). Вода попадает в эти подземные резервуары с огромных площадей и может иметь объем, измеряемый в кубических километрах, и, как правило, находится под большим давлением. Для использования этого ресурса необходимо бурить глубокую скважину.
  3. Верховодка. Это вся та вода, что скопилась в верхнем слое почвы после выпадения осадков. Она практически не скапливается, и ее объем имеет прямую зависимость от уровня выпавших осадков.

Примерную схему расположения всех 3-х видов подземных вод можно посмотреть на рис. 1.

Технические способы разведки

Самая простая техническая разведка в вашем случае может выглядеть так. Если рядом с вами проживают соседи и у них уже есть колодцы или скважины, то не поленитесь зайти к ним в гости и попросить посмотреть на уровень воды в этих устройствах. Чем больше колодцев вы сможете проверить, тем более точная картина залегания грунтовых вод предстанет перед вами. Посмотрите на рельеф местности, если он равнинный, то, скорее всего, на вашем участке уровень водоносных слоев находится на той же глубине, что и у соседей. Если же местность изобилует перепадами высот, то это затруднит точный анализ гидрологической обстановки. Но в любом случае эта информация поможет вам хотя бы примерно сориентироваться в данном вопросе.

После этого стоит начать непосредственную разведку водоносных слоев и провести несколько пробных бурений на участке с помощью тонкого бура. Если вы наткнулись на водоносный слой на устраивающей вас глубине, то на этом все работы по поиску можно завершать и бурить уже полноценный колодец. А если найти не удалось, то надо пробурить еще несколько скважин в других местах.


До начала работ очень важно учесть особенности рельефа вашего участка. Например, на ровной поверхности проще найти воду на том же уровне, что и у соседей. В то время как в низине грунтовые воды, как правило, подходят к поверхности земли ближе, чем на холмах. А если по соседству или на самом участке есть овраг или ручей, то колодец можно будет выкопать только на его склоне, так как в остальных местах воды не будет, она уже нашла себе выход и не скапливается в толстые слои.

Как видите, внимательность нужна даже при техническом поиске водоносных слоев. Но особенно важен наметанный глаз при поиске воды народными методами.

Народные приметы

Можно, используя современную технику, пробурить на участке несколько скважин и таким образом быстро выяснить, есть ли вода и на какой она глубине. Но не всегда есть возможность использовать буровую установку, да и при ее наличии можно существенно сэкономить время и ресурсы, проведя предварительное исследовании участка с помощью народных методов. Именно они помогут сократить до минимума места, где может близко пролегать водоносный слой. Итак, рассмотрим их.

Уровень грунтовых вод значительно сказывается на растительности. Если он подходит достаточно близко, то это можно отметить как по состоянию самих растений, так и по их видовому разнообразию.
обенно это заметно в сухой период, когда такой островок свежей зелени напоминает оазис по своей свежести и яркости. Если влаги растениям хватает, то они имеют более насыщенный цвет и растут гуще. Такие места любят: осока, камыш, хвощи, щавель, мать-и-мачеха и некоторые другие растения. Если у вас на участке есть место, где предпочитают расти такие растения и у них сочный и яркий цвет, то можно быть уверенным, что вода близко.

Наблюдательность поможет найти такое место и другими способами. Например, летом, в сумерках, во влажном месте можно заметить легкую туманную дымку, когда влага из воздуха оседает в более прохладном месте. Значит, тут тоже вода находится близко к поверхности.

Можно присмотреться к поведению животных, они тоже могут подсказать вам, где искать воду. Например, общеизвестно, что кошка предпочитает отдыхать там, где прохладно и влажно. Она выберет на земле именно такое место. В то время как собака наоборот, будет избегать такого места.

Внимательно наблюдая за поведением своих питомцев, вы можете многое понять о своем участке. Даже поведение комаров зависит от присутствия воды. Над тем местом, где вода подступает близко, вьется вечерами комариный рой.

Близко подходящая к поверхности вода действует угнетающе на растения, особенно страдают от нее деревья, корни которых могут погибнуть. Точно так же вода влияет и на животных, никому не нравится, когда их жилье подтопляется водой, поэтому в тех местах, где грунтовые воды пролегают близко к поверхности, не найти мышиных норок или колоний рыжих муравьев.

Простые методы обнаружения

Но это все больше относится к наблюдательности, чем к собственно исследованию. В запасах народной мудрости можно найти и специальные опыты, помогающие в поиске места для колодца. Запомните их, возможно, они вам пригодятся.


  1. Удалите на небольшом участке дерн и положите на землю клочок шерсти, а на него свежее яйцо. Все это накройте обычным глиняным горшком и затем дерном. Утром надо проверить: если роса покрывает и яйцо, и шерсть, то уровень воды располагается очень близко. Если влажная только шерсть, то вода есть, но она располагается на глубине в несколько метров. Если и шерсть, и яйцо остались сухими, то вода располагается очень глубоко или ее вовсе нет.
  2. Смешайте в равной пропорции серу, негашеную известь и медный купорос, уложите эту смесь в глиняный горшок и укутайте тканью. После этого поместите горшок в яму на глубине в 0,5 м и засыпьте обратно землей. Но перед этим необходимо тщательно взвесить закладываемую смесь. По прошествии суток выкопайте горшок обратно и взвесьте имеющуюся смесь еще раз. Если масса смеси увеличилась на 10% и боле, это значит, что грунтовые воды проходят близко. Можно использовать вместо смеси указанных веществ силикагель. Способ использования его полностью аналогичен вышеуказанному.

  3. В качестве индикатора, можно использовать даже простые красные кирпичи. Их тоже необходимо хорошо просушить, взвесить, укутать в ткань и закопать на полуметровую глубину. По прошествии суток их выкапывают и взвешивают. Если масса кирпичей увеличилась, значит, они впитали в себя влагу и где-то рядом проходит водоносный слой.
  4. Общеизвестен и поиск воды с помощью так называемых лозоходцев. Кто-то может в этом сомневаться, но долгое время подобные люди были востребованы в крестьянской среде, особенно в засушливых местах. Многочисленные эксперименты доказывали возможность поиска такими людьми не только водяных жил, но даже полезных ископаемых, глубинных пустот и других подземных аномалий.

Итоги

Все народные способы обнаружения воды направлены на поиск именно верховодки и грунтовых, а не напорных слоев воды, так как последние залегают слишком глубоко и не влияют с такой силой на поверхность земли.

Если вам повезло и у вас есть возможность выбирать место, где будет устроен колодец, то советуем строить там, где грунт состоит из песка, гальки, гравия и других зернистых пород. В этом случае скорость наполнение колодца будет очень высоким, а качество воды отличным. Гораздо хуже, если почва на участке будет глинистой: такой грунт плохо пропускает воду. К тому же примеси глины делают качество воды низким. В этом случае, возможно, стоит прокопать чуть глубже и найти воду в слоях именно с зернистыми породами, чем мучиться с дешево сделанным колодцем в глинистом слое.


Советуем вам воспользоваться всем комплексом народных примет и методов поиска воды, а затем перейти к бурению скважины.

В этом случае вы не только существенно сэкономите финансы, но и будете обладать примерной картой водных ресурсов своего участка, которая поможет не только в выборе места для колодца, но и пригодится при возведении сооружений, выборе места для сада и многого иного.


www.vseoburenii.ru

Несколько «дедовских» эффективных способов

Вся вода в толще грунта располагается на разной глубине, поэтому удачно и более точно найдет глубину специальный прибор. Ее водоупорные слоя состоят из залежи глины и более плотных природных материалов. Предлагаем посмотреть, что показывает карта расположения подземных жил. +++ А также посмотрите видео к статье, как найти воду на участке.

Выкапывая отверстие под колодец своими руками, вы можете встретить влагу уже через 2-2,5 метров углубления. Однако такая вода не годиться для бытового применения, а вот воспользоваться ей для полива огорода вполне сносно. Для других нужд потребуется правильный метод чтобы определить глубину водоносного слоя.


Важно! В большинстве случаев залегания подземных вод на глубине не более 3-х метров содержат в себе много грязи и химикатов, которые поступают из поверхности почвы. Поэтому для полноценного использования скважины вам предстоит искать воду на глубине порядка 15 метров ниже уровня почвы.

  1. Еще в старину люди научились самостоятельно определить решение вопроса, как найти воду для колодца в определенном месте на участке под землей. Так, чтобы выполнить поиск воды на территории предположительного обустройства скважины, необходимо взять глиняный горшок (желательно не окрашенный и не покрытый лаком), поставить его вверх дном на место источника на сутки. Спустя 24 часа проверяем наличие влаги в посуде: если внутренность утвари вспотела, значит слоя воды находятся поблизости. Это достаточно просто, что не потребуется никакой прибор для нахождения.
  2. Как найти воду на участке посредством наблюдения за природными явлениями. Для этого вам необходимо выбрать самый жаркий день в летнюю пору и проследить за участком вечером. Если выбранное место для бурения скважины или обустройства колодца выделяет пар и образуется туман, следовательно, вода находиться на близкой глубине. Для большей убедительности, для таких целей может использоваться карта залегания водоносного слоя.

  3. Применяя барометр (электронный прибор), вам необходимо определить давление возле берега ближайшего водоема, а затем определить показатель, которым обладает место, где предположительно будет находиться источник водоснабжения. Сравните обе эти величины и найдите между ними разницу. Полученное значение и будет примерной глубиной залегания подземных слоев воды на дачном участке.
  4. Разведочное бурение — этот метод альтернативный только в период холодов. В летнее время, когда посажен огород и разложены удобрения, вряд ли хозяин согласиться провести бурение отверстия в грунте для поиска водоносного слоя, которое может не принести результатов, но негативно скажется на урожае.
  5. Применение силикатного геля. Такое средство можно определить в каждой обуви и некоторых предметах, которые бояться сырости. Также вы можете приобрести такие гранулы отдельно в строительных или хозяйственных магазинах. Берете гранулированный гель и помещаете в сухую посуду, желательно глиняную, заворачиваете ее в пакет и вкапываете в землю на место скважины на глубину не более полметра. Оставляете на сутки. Спустя это время извлекаете средство и оцениваете его влажность. Если напиталось воды, значит бурение скважины можно выполнять.
  6. Подобный метод предыдущему: берете обыкновенный кирпич и хорошо его просушиваете затем взвешиваете, записываете показания. Аналогично опускаем кирпич в землю на 24 часа, по истечению которых снова взвешиваем материал. Анализируем на сколько увеличился вес, на основе этого можно делать выводы о месте залежей подземных слоев влаги.
  7. Биометрическая рамка (прибор делается своими руками) поможет определить решение вопроса, как найти воду для колодца в толще грунта не менее эффективно. Для ее изготовления вам понадобиться два алюминиевых прута по 40 см. Десять сантиметров загибаются под прямым углом. После берем рамку в руки и исследуем место расположения скважины, если проволоки начнут пересекаться, значит глубина водоносного пласта не большая.

Внимание! Также в жару можете следить за поведением домашних животных. Если кошка или собака расположилась для отдыха прямо на солнце в огороде, значит земля в этом месте прохладная и близко залегание подземных вод.

prokommunikacii.ru

Водоносные слои и их залегание

Структура залегания пород очень неоднородна. Даже на одном участке на расстоянии метра «пирог» — состав слоев и их размеры — может значительно отличаться. Потому и бывает так тяжело найти воду на участке, приходится бурить несколько скважин, чтобы найти нормальный водоносный горизонт. Есть три основных водоносных слоя:

  • Верховодка. Глубина залегания таких вод — до 10 метров. Находится верховодка, как правило, под первым водоупорным слоем — глиной. В некоторых местностях верховодка стоит уже на глубине 1-1,5 метра, что владельцев таких участков не радует — много сложностей. Верховодка — вода, мягко говоря, не очень качественная — в ней содержатся растворенные химикаты с полей, другие загрязняющие вещества. Ее можно использовать для полива, а для того чтобы довести ее до состояния питьевой, требуется многоступенчатая система очищения.
  • Песчаный водоносный слой. Такие скважины называются «на песок» залегают на глубине до 30 метров. Вода на этом уровне уже более чистая — пройдя многослойный «фильтр» из разных пород она уже очистилась. Водоносный песчаный слой обычно располагается под одним из ниже расположенных водоупорных слоев (снова-таки это глины). Недостаток таких скважин или колодцев — большое количество песка в воде, что требует хорошей многоступенчатой фильтрации. В таких источниках вибрационные насосы лучше не использовать — они поднимают песок.
  • Артезианские воды. Водоносным слоем на этом уровне обычно выступает известняк. Глубина залегания — около 50 метров. Вода всегда очень чистая, с богатым минеральным составом. Недостаток — большая глубина, следовательно — высока стоимость бурения, да и насос требуется дорогой. Зато артезианские скважины могут не иссякать десятилетиями.

Надо сказать, что найти на участке верховодку несложно. Зная некоторые особенности растительности, проверив некоторые моменты, вы с довольно высокой точностью определите место нахождения водоноса.

С водоносным песчаным слоем все гораздо сложнее — глубины серьезные, приходится ориентироваться в основном на местоположение скважин-колодцев у соседей, ну и не некоторые косвенные признаки.

Найти артезианскую воду на участке можно только при помощи пробного бурения. Помочь могут карты залегания водоносных слоев. С 2011 года в России они в открытом доступе (без оплаты). Чтобы получить карту вашего региона, надо отправить заявку в «РОСГЕОЛФОНД». Можно это сделать на их официальном сайте, а можно скачать формы требуемых документов, заполнить их и отправить по почте (с уведомлением о вручении).

Как найти воду на участке при помощи народных методов

Есть немало народных способов поиска воды на участке. Можно в них верить, можно не верить, но в среднем, процент попадания — 70-80%, что не ниже чем у «научных» методов, так что попробовать однозначно стоит. Эти методы требуют некоторого количества времени и внимания, зато бесплатны (если вы ищите воду на своем участке сами), так что их вполне можно скомбинировать — протестировать несколько способов, и копать/бурить в той точке, где сошлись их показания.

Обращаем внимание на растения

Этот пункт имеет смысл только в том случае, если участок не освоен, а «заселен» дикорастущими насаждениями. По тому, где и какие растения растут довольно точно можно определить глубину залегания воды.

Всего то и надо — пройтись по участку, посмотреть где то растет, возле найденных растений поставить вешки, на которых можно указать возможную глубину залегания воды. В таблице приведен список растений, по которым можно определять наличие воды на той или иной глубине.

Растение — индикатор Глубина залегания верховодки
Рогоза, багульник болотный, береза пушистая 0 — 1 м
Камыш песчаный, крушина, пырейник, 1 — 3 м
Тростник, лох, сарсазан, ель обыкновенная, ежевика, малина, тополь черный до 5 м
Полынь метельчатая, чий блестящий, вереск, сосна обыкновенная, черемуха, дуб черешчатый, до 7-8 метров
Солодка голая, полынь песчаная, люцерна желтая (до 15 м), можжевельник, орешник, василек, толокнынка лекарственная, бук от 3-5 до 10 метров

В таблице есть несколько видов деревьев. Речь идет не о массивах, а о единичных растениях, может о небольшой группе растений, которые «кучкуются» на одном месте. В случае с травянистыми растениями все наоборот — это не единичные экземпляры, а полянки, занимающие определенный участок почвы.

Использование рамок

На давно освоенном участке определить по растениям, где находится вода, не получится. Здесь придется применять другие методы. Один из самых распространенных и дающих высокую вероятность — поиск с помощью рамок — алюминиевых проволок, согнутых под углом в 90°.  Этот метод называется еще биолокация. Берут два отрезка проволоки длиной 30-40 см. Кусок в 10 см длиной загибают под прямым углом.

Чтобы «показания» были более точными, короткие части вставляют в трубки, сделанные из тонких веток древоподобной бузины. В отрезанных ветках бузины вынимают сердцевину, внутрь вставляют согнутую проволоку. Концы проволоки должны свободно двигаться.

Взяв в обе руки рамки, концы проволок разводят в противоположные стороны (на 180°) и с ними ходят по участку, наблюдая за их состоянием. Где-то рамки будут сходится вместе, где-то поворачиваться в одну сторону (вправо или влево — по течению воды). Вот по этим движениям и определяют где находится вода.

Если рамки сошлись вместе (на какой-то угол сдвинулись их концы), в этом месте находится вода. Пройдя дальше вы увидите, что рамки снова разошлись — водоносный слой закончился. Повторить маневр можно с разных направлений и точек, так можно локализовать местонахождение водоноса. Если при обратном проходе обе рамки сошлись — вы определили место, где надо копать колодец или делать скважину. Если рамки отклонились вправо или влево, надо идти в ту сторону и искать место, где они снова сойдутся.

Если рамки неподвижны — воды на участке нет или водоносы расположены очень глубоко.

Использование лозы (деревянной рогатки)

Найти воду на участке можно при помощи рогатки из дерева. Нужно найти две ветки, которые растут из одной точки. Ветки должны быть толстые, не менее 1 см, ровные. Постарайтесь найти их одной толщины. Их надо отрезать с куском ствола (15-20 см), на котором они росли. Должна получиться большая рогатка.

Листья зачищают, тонкие концы прутьев срезают, оставляя не менее 40 см а каждой из сторон «вилки». Ветки отгибают в стороны, чтобы угол получился не менее 150°, закрепляют их в таком положении и оставляют сохнуть. Древесина может быть не до конца высохшей, но угол должен сохраниться.

Подсохшую лозу берут за концы развилки, держат ее горизонтально на уровне плеч. В том месте, где под землей есть вода, часть ствола будет клониться к земле. В этом месте можно будет копать колодец или бурить скважину. Если отклонений нет — воды на участке на небольшой глубине нет.

Определение количества воды в подземном источнике

Кроме того чтобы найти воду, неплохо было бы определить еще и ее объемы. Приблизительно их можно оценить при помощи глиняных горшков и силикагеля. Берут глиняные горшки, засыпают в них силикагель, горловину завязывают х/б тканью. Упакованные горшки взвешивают (вес можно написать на самом горшке). Заготовленные снаряды закапывают в местах, где предполагают нахождение воды и оставляют на сутки.

Сутки спустя горшки выкапывают и повторно взвешивают.

Тот горшок, который больше других набрал в весе, и отмечает жилу с наибольшим количеством воды.

Поиск воды — наблюдаем за природой

Найти воду на участке можно просто наблюдая за природой. Вы, наверное, замечали, что в некоторых местах туман наиболее густой. Порой он даже напоминает реку — извиваясь тянется в каком-то направлении. В таких точках обычно грунтовые воды находятся ближе всего. Еще надо утром посмотреть на количество росы. Если в местах, где туман был особенно густым, ее больше, то вода там точно есть.

Что еще может помочь найти воду на участке — наблюдение за насекомыми. Теплым безветренным вечером часто мошкара собирается в облака или столбы. И располагаются они в определенных местах. Под местами скопления насекомых обычно располагаются источники воды. Если вы в том месте осмотрите землю и не найдете муравьиных гнезд, значит вода там действительно есть — муравьи над водой свои гнезда не делают.

Как определить уровень залегания подземных вод

Приблизительно оценить, на какой глубине находится верховодка, можно по растущим над ней растениям. Как видно из таблицы, расположенной выше, определенные виды растений нормально себя чувствуют, если вода находится не выше и не ниже определенной глубины. Так и можно приблизительно оценить, насколько глубоко находится вода.

Для участков, где неподалеку есть естественный водоем — река, озеро — можно глубину залегания вод определить с точностью до метра. Для этого понадобится барометр. С ним спускаетесь к самой воде, измеряете давление. Затем идете к предполагаемому источнику воды и измеряете давление там. Разница обычно выражается десятыми долями и каждая десятая (0,1) приравнивается к метру глубины. Например, разница в измерениях составляет 0,7 мм/рт. столба. Это значит что вода находится на глубине 7 метров.

Что еще может помочь найти воду на участке? Общение с соседями, у которых уже есть колодец или скважина. У них желательно узнать, где бурили/копали, сколько раз, много воды или нет, на какой глубине находится зеркало воды, какого она качества. По месту расположения всех ближайших удачных и неудачных попыток у соседей, можно с довольно большой долей вероятности определить, где у вас находится вода.

stroychik.ru

Что представляет собой карта водоносных слоев

Гидрогеологическое исследование грунтов позволяет определить виды и характеристики почвенных слоев на небольшом участке или обширной территории, а также уровень подземных вод. На основе изучения и анализа результатов составляется ряд документов. Как правило, в местных архивах населенных пунктов уже давно имеются геологические разрезы и карты водоносных слоев. Но за городом или на вновь осваиваемых площадках требуется производить выемку образцов грунта и определять расположение подземных уровней водных зеркал.

Карта водоносных слоев является схемой залегания всех типов грунтовых вод в продольном геологическом разрезе, с обозначением почвенных слоев и водоупоров, или планом с указанием уровней и направлений свободных потоков.

Под землей вода ведет себя несколько иначе, чем в емкости, где сомневаться о горизонтальности ее уровня не приходится. В толще грунта линия водного зеркала может изгибаться под влиянием многих факторов:

  • рельефа местности;
  • формы и размещения водоупорных слоев;
  • варианта подпитки и сброса;
  • пропускной способности и плотности грунтовых пластов;
  • близости водоемов и т.д.

Наглядная схема расположения водоносных горизонтов

При составлении карт пользуются замерами УГВ в доступных природных и искусственных источниках. Это могут быть скважины и выработки, колодцы и шурфы, водные объекты и водомерные посты. Для «чистоты» полученных данных, измерения в точках, расположенных неподалеку друг от друга, выполняют в один день по причине того, что уровень подземных вод под влиянием внешних воздействий может существенно меняться. В связи с этим, карты водоносных слоев требуется обязательно датировать.

Если при застройке участка грунтовые воды можно обнаружить при устройстве шурфа, то при выполнении шахтного колодца или артезианской скважины специалистам потребуется взглянуть на карту водоносных слоев. Ее отсутствие в большинстве случаев приводит к непредвиденным ситуациям. К примеру, в процессе опускания колодезных колец может выясниться, что вода находится намного глубже ожидаемой отметки. Смысл в дальнейшей работе отпадет сам собой, а кольца, скорее всего, останутся в земле. В этом случае выгоднее было бы сразу остановиться на устройстве скважины.

Опытные мастера рекомендуют не пренебрегать ознакомлением с картами водоносных слоев или проведением разведывательного бурения. Кстати, определить близкое расположение водоносного слоя можно народными методами, но это не всегда приводит к обнаружению именно питьевой воды.

Расположение подземных вод

Разновидности карт

Замеренные уровни грунтовых вод наносятся на схемы или графики. Название документов зависит от имеющейся на них информации. Наиболее распространенными являются карты:

  • гидроизогипс;
  • гидроизопьез;
  • изменения уровня грунтовых вод;
  • колебания глубины воды в скважинах;
  • гидрогеологических разрезов и т.д.

Карты гидроизогипс и гидроизопьез выполняют по имеющимся данным. Пьезометрическая поверхность характеризуется давлением напорных вод и высотой их горизонта. Сам термин не имеет определенного значения, а условный уровень поверхности воды может располагаться как над землей, так и под ней. Иными словами, это высота, на которую поднимается вода во вскрытых артезианских скважинах. Данный показатель влияет на длину обсадных труб, верхний обрез которых должен возвышаться над пьезометрической поверхностью.

Изогипсы

Для безнапорных условий создается карта гидроизогипс. Они характеризуют единую систему движения воды в водоносных слоях. По расположению линий на графических планах можно определить:

  • особенности направления и уклон потоков;
  • уровень и характер расположения свободных поверхностей;
  • места запитывания слоев и очаги разгрузки;
  • связь подземных вод с открытыми водоемами – дренируются или подпитываются потоки рекой.

Следует отметить, что верхний уровень безнапорных вод остается практически горизонтальным. Тем не менее, на плане водоносных слоев прочерчивается несколько изогнутых линий, соединяющих одинаковые отметки зеркал подземных вод.

Нередко на карты гидроизогипс наносят линии гидроизобат, которые строят на основе интерполяции.

Классификация подземных вод

Группирование грунтовых вод производится по характеру (гидродинамике) и глубине залегания. Прежде всего, различают:

  • безнапорные воды – «опираются» на первый от поверхности земли водоносный горизонт. Их верхний уровень нестабилен и зависит от наличия в определенный период времени атмосферных осадков, интенсивного таяния снега или засухи. Водопроницаемый слой оказывается частично насыщенным грунтовыми водами, а их поверхность остается свободной;
  • напорные воды – располагаются на большей глубине, между двумя водоносными горизонтами.

Водоносные слои

По глубине размещения в толще грунта, подземные воды разделяются на четыре типа.

Верховодка – глубина до пяти метров. Подпитка производится за счет атмосферных осадков. Для сооружения колодцев верховодка считается далеко не лучшим вариантом, так как в засушливый период вода может просто исчезать, а в дождливый – не успевать отфильтровываться.

Грунтовые воды – глубина до десяти метров. В качестве водоупорного пласта служит глина, поэтому источник не следует использовать в качестве питьевого. К тому же, при толщине грунта над водоносным слоем менее шести метров, достаточной фильтрации воды происходить не будет, зато риск загрязнения техническими жидкостями окажется слишком большим.

Межпластовые воды — глубина от 10 до 100 метров. Как правило, находятся между горизонтально водонепроницаемыми пластами, хотя вышерасположенный слой может оказаться и проницаемым. Межпластовые воды считаются наиболее оптимальным вариантом для устройства скважин. Достаточная глубина обеспечивает хорошую фильтрацию и бесперебойную подачу воды с помощью бытового насосного оборудования.

Артезианские воды – самое глубокое залегание (более ста метров под землей). Вода максимально очищается от загрязнений естественным путем, поэтому не требует дополнительной фильтрации. Но в составе может присутствовать недопустимая концентрация минеральных включений. Артезианскую скважину бурят для коллективного использования, так как объем поступающей воды несоизмерим с потребностями одного частного домовладения, не говоря уже о высокой себестоимости работ по устройству глубокого водозабора.

Следует отметить, что для фундаментов основным фактором является не чистота грунтовых вод, а их уровень. Именно он влияет на решение по конструктивным особенностям фундамента, а также на перечень мероприятий по его гидрозащите.

semidelov.ru

Природные методы поиска грунтовых вод

Определить, имеется ли на участке водоносный слой, а также выяснить глубину его нахождения помогут представители местной флоры или, проще говоря, растущие на участке цветы, травы и деревья.

Произрастание некоторых видов растений позволяет с точностью на 100% определить не только наличие грунтовых вод, но и глубину их расположения. Давайте узнаем, какие растения могут помочь в сложной задаче определения глубины залегания грунтовых вод:

  • если на исследуемом участке произрастает рогоз, то можно с уверенностью утверждать, что водоносный слой пролегает на глубине одного метра от поверхности;
  • растущий песчаный камыш – явное свидетельство наличия грунтовых вод, глубина нахождения которых может составлять от одного до трех метров от поверхности;
  • о нахождении водоносного слоя на глубине до трех метров от поверхности способен подсказать черный тополь. При этом верхняя граница слоя может располагаться на расстоянии от 50 сантиметров от поверхности;
  • если в местности произрастает тростник, то стоит говорить о двух уровнях пролегания грунтовых вод. Первый слой находится не глубже полутора метров от поверхности грунта, а второй – располагается на глубине от трех до пяти метров;
  • растущий лох узколистный поможет найти воду на глубине от одного до трех метров от поверхности. Реже воды пролегают чуть глубже – до пяти метров от уровня грунта.

Читайте также: Как сделать бассейн из полипропилена

О близком расположении грунтовых вод к поверхности грунта могут рассказать и следующие виды растений: сарсазан, некоторые разновидности полыни, чий блестящий, солодка, люцерна.

Народные способы нахождения водоносного слоя и определения его глубины

КартаСуществует множество народных методов, позволяющих определить наличие грунтовых вод на конкретном участке, а также сделать выводы о глубине их расположения. Большая часть из этих методов не слишком достоверна: гарантированные результаты дает применение барометра или же силикагеля. Поговорим об этих двух способах более подробно.

Что касается применения силикагеля в исследовании, то нужно сразу отметить, что этот способ хорош лишь для определения наличия водоносного слоя. Точных выводов о глубине его залегания сделать невозможно, однако если метод дает положительные результаты – значит, слой находится не слишком далеко от поверхности.

Чтобы провести исследование, потребуется заранее подготовить гранулы силикагеля, которые высыпаются в небольшой глиняный горшочек (изделие должно быть изготовлено из неглазированной глины). Горшочек оборачивается в кусок натуральной ткани и закапывается в почву на глубину не более одного метра. Емкость должна оставаться в земле не менее 24 часов, после чего ее выкапывают и производят оценку результата.

Чем тяжелее будет выкопанная емкость – тем больше влаги она в себя вобрала. Значительное увеличение веса горшка говорит об однозначном наличии водоносного слоя на участке, а значит бурить скважину в выбранной зоне можно. Если же в весе емкости изменений не произошло, следовательно, грунтовых вод на участке нет.

Барометрический способ позволяет не только установить наличие водоноса на участке, но и выявить глубину его расположения. Однако этот метод возможно применить только в том случае, если участок на котором планируется бурить скважину, располагается неподалеку от естественного водоема.

Для проведения барометрического исследования сначала замеряют показатели на берегу пруда, озера или реки, расположенных рядом с участком. Затем производятся измерения в зоне самого участка. Показания сверяются, и разница между значениями поможет определить глубину пролегания водоносных жил. Поясним, как работает метод на простом примере:

  1. Допустим, на берегу водоема у вас получилось значение в 646, 5 мм.
  2. На участке вы получили показатели в 646, 1 мм.
  3. Из показаний на берегу нужно вычесть показания на участке, у нас получится значение в 0,4 мм.

Так как 0,1 миллиметра ртутного столба соответствует перепаду высоты в один метр, то можно сделать вывод о том, что водоносная жила на участке пролегает на примерной глубине в четыре метра. Этот метод можно применять для определения места под колодец или же под песчаную скважину, но для выявления нахождения артезианского источника барометрический способ не подходит совершенно.

Геофизический способ

Геофизический способ поиска водоносов и определения глубины их пролегания – прекрасная альтернатива и народным методам и дорогостоящему пробному бурению.

Чаще всего данный вариант применяется для исследования большой территории, и ее суть состоит в применении особого электромагнитного зонда. Прибор дает полнейшую информацию о наличии водоносных жил, о глубине их залегания, а также позволит узнать о том, какие породы пролегают в местности, какова их мощность и состав.

Читайте также: Как самостоятельно установить посудомоечную машину

Полученные данные позволят не только не бурить скважину впустую на участках, в которых вообще отсутствуют водоносные жилы, но и провести процесс бурения правильно, без лишних затрат.

Впрочем, в применении всех вышеописанных методов может не возникнуть острой нужды: для крупных областей давно составлены карты с обозначение глубины водоносных жил и указанием их точного расположения. Такие карты есть для Московской, Ивановской, Воронежской, Ярославской, Новгородской, Владимирской и многих других областей страны.

https://youtu.be/6_3P27-K700

canalizacii.ru

Разновидности карт

Название этих документов может быть различным в зависимости от характера нанесенной на них данных:

  • гидроизогипсы – линии, соединяющие точки в недрах земли, с одинаковым уровнем зеркала грунтовых вод относительно нулевой отметки. На картах отображается волнистой линией, образующейся при соединении точек разведанных при геологических исследованиях. Гидроизогипсы составляются для безнапорных водонесущих слоев и дают общее представление о перемещении подземных вод. Учитывая расположение линий на такой карте можно определить характерные направление и уклоны потоков жидкости, места запитывания пластов и точки их разгрузки, а также характер связи грунтовых вод с открытыми водоемами – являются они питающими или дренирующими;
  • гидроизопьезы – линии на карте водных ресурсов, получающиеся соединением точек с одинаковым напором подземных вод;
  • карты перепадов уровней грунтовых вод является наиболее информативными в отношении определения возможности бурения скважины на участке в обследуемом районе. Сплошными линиями соединены эксплуатируемые объекты с одинаковым уровнем залегания водоносных слоев;
  • графики колебания столба воды в скважинах.

По графику рис.4 очевидно, что водозабор интенсивно наполняется весной во время таяния снега и осенью при обильных осадках (данные за 2004 год), низкий уровень в 2005 году объясняется засушливой осенью с небольшим количеством осадков. Напомним, что уровень скважины определяется расстоянием от ее устья до устойчивого зеркала воды при отсутствии откачки.

  • схемы гидрогеологических разрезов – дают четкое представление о наличии и расположении водных горизонтов в исследуемой местности. Карта позволяет узнать места расположения скважин, чтобы составить четкое представление о предполагаемой глубине бурения. Совместив полученные данные с картой перепадов уровней грунтовых вод можно получить всю необходимую информацию о характере будущего ствола, способе бурения и необходимых материалах.

Вся упомянутая документация составляется на основе анализа действующих водозаборов. Показатель пьезометрической поверхности зависит от внутрипластового давления воды и высоты горизонта. Условно уровень может находиться как над поверхностью земли, так и в ней. По сути, показатель говорит о высоте подъема воды при вскрытии артезианской скважины. По нему можно предварительно понять длину обсадной колонны, зная, что она должна быть выше пьезометрического уровня.

Виды и характеристики водонесущих слоев

Подпочвенный слой

Глубина залегания от 2 до 5 метров. Подпитка происходит от атмосферных осадков и таяния снега. Уровень воды в таких пластах нестабилен и колеблется в течение года, в засушливый период может вообще пересохнуть, а в полноводном режиме недостаточная толщина почвенного слоя над ним не позволяет происходить качественной фильтрации. Поэтому на качестве воды негативно сказывается присутствие пахотных земель во время внесения удобрений, наличие ферм или хранилищ химикатов вблизи участка. Не допускается наличие санузлов и дачных туалетов вблизи водозабора.

Типичным представителем водозаборов на подпочвенных водонесущих слоях являются колодцы и скважины типа «абиссинский колодец».

Грунтовые воды

Находятся обычно на глубине до 10 метров и представляют собой водоносный слой с подложкой из глин или глинистых сланцев. Верхний изолирующий слой также состоит из водонепроницаемых глин. Подпитка происходит из подпочвенных вод в разрывах верхнего изолирующего слоя, представляющих собой глинисто – песчаные фильтры. Также возможна подпитка из отрытых водоемов, но нередки случаи дренирующей связи с ними. Качество воды невысокое по причине замутнения ее глиной.

Водозаборы на таких глубинах залегания применяются различные:

  • колодцы;
  • скважины «абиссинский колодец»;
  • обычные водозаборы с бытовыми электронасосами.

На такой глубине залегания водоносный слой обычно является безнапорным с дебитом от 0,5 – 2,5 кубометров в час.

Межпластовые воды

Располагаются на глубине 10 – 100 метров, вода в них, как правило, находится под давлением. Возможно наполнение пласта водоносными песками или гравийно – каменными отложениями. В последних вода наиболее качественная, скважины имеют хороший устойчивый дебит. Нижний изолирующий слой представляет собой глинистые сланцы или скальные образования. При бурении нежелательно применять промывку глинистыми растворами, поскольку они активно «заглинивают» скважину, после чего потребуется длительная промывка стволов.

Водозабор представляет собой скважину с обсадкой диаметром до 219 мм, насос глубоководный.

Артезианские глубоководный пласты

Уровень залегания таких водоносов обычно составляет более 100 метров, и располагаются они в трещиноватых известняках. Часто встречаются пласты чистой воды на скальном основании. Качество воды в таких водоносах исключительно высокое, дебит скважин весьма значителен.

Учитывая высокую стоимость бурения и строгие требования к водоохранным зонам артезианских скважин, а также высокую производительность таких водозаборов, их обустраивают для коллективного пользования. Такое их использование целесообразно также из финансовых соображений.

Артезианский водоносный слой учитывается в специальном госреестре как стратегический объект.

Пользуйтесь доступной информацией и успехов вам!

Советуем почитать: Водоносный горизонт

oburenie.ru

Карта подземных водСхема из книги «Гидрогеология СССР», том 8. Редактор: В.Г. Ткачук. Издательство Недра.

Использование подземных вод Крыма для водоснабжения

Подземные воды могут иметь разнообразное применение в народном хозяйстве Крыма. Целебные свойства минеральных вод позволяют использовать их в лечебных целях; минерализованные воды с бором, бромом, йодом являются ценным сырьем для химической и пищевой промышленности; горячие воды — источник дешевой тепловой энергии. Однако до настоящего времени наиболее широкое применение в народном хозяйстве Крыма находят только пресные подземные воды, используемые как источник водоснабжения городов, курортов, промышленных предприятий и сельских населенных пунктов.

Условные обозначения

Карта подземных вод

Крым располагает довольно значительными запасами подземных вод, практическое значение которых особенно велико в связи с тем, что эта область, обладающая аридными чертами климата, слабо обеспечена поверхностными водами. Региональная оценка эксплуатационных запасов пресных подземных вод Крыма была произведена в 1962 г. (Иванов, Мартакова, Ришес, 1962) в соответствии с методическими указаниями ВСЕГИНГЕO.

При выборе методики расчета была учтена специфика гидрогеологических условий Крыма — связь большинства водоносных горизонтов (с пресными водами) с окаймляющими полуостров морскими бассейнами и с соляными озерами, наличие часто уже на небольших глубинах от поверхности минерализованных вод, широкое развитие карстовых вод, изливающихся в виде источников в Горном Крыму, и т.п.

За эксплуатационные запасы подземных вод принимались их естественные ресурсы — естественный расход потока с проверкой по величине инфильтрационного питания или суммарный подземный отток по данным наблюдений за дебитом источников. Возможность использования упругих и тем более статических запасов подземных вод в большинстве случаев не учитывалась, так как значительное нарушение природной обстановки (развитие районных депрессий) создает условия для проникновения в эксплуатируемые водоносные горизонты соленых вод из других водоносных горизонтов или из моря и соленых озер. Величина естественного расхода потока (эксплуатационные ресурсы рассматриваемого водоносного горизонта) относилась к территории, где этот горизонт является основным. Распределение эксплуатационных ресурсов по площади производилось с учетом водопроводимости водовмещающих отложений. Этим определились различия величин модулей эксплуатационных запасов того или иного горизонта на отдельных участках его распространения. Приведенные на обобщающей карте эксплуатационных ресурсов подземных вод величины модулей зависят от количества водоносных горизонтов, эксплуатируемых на данном участке, и значений модуля эксплуатационных ресурсов этих горизонтов.

Эксплуатационные запасы пресных подземных вод Крыма по данным региональной оценки 1962 г. были определены в 1366 тыс. м3/сутки, из них ранее утверждены ГКЗ—779 тыс. м3/сутки. В 1963—1965 гг. был произведен прирост эксплуатационных запасов до 1725 тыс. м3/сутки. Распределение эксплуатационных запасов подземных вод по гидрогеологическим областям и водоносным горизонтам показано в таблице:

Карта подземных вод

Наибольшее количество эксплуатационных запасов подземных вод, равное 666 тыс. м3/сутки, или около 40% всех запасов подземных вод Крыма, приурочено к Северо-Сивашскому артезианскому бассейну (гидрогеологический район I), где основными водоносными горизонтами являются понтическо-мэотический, сарматский, среднемиоценовый и на небольшом участке воды аллювиальных отложений. Здесь суммарные модули эксплуатационных ресурсов колеблются от 0,1 до 5 л/сек, достигая наибольшего значения в юго-западной части района (погруженная часть бассейна).

Значительные запасы подземных вод (452,0 м3/сутки) приурочены также к Альминскому артезианскому бассейну. Здесь основное эксплуатационное значение имеет сарматский водоносный горизонт и только в северо-западной части — понтическо-мэотический. Модуль эксплуатационных запасов подземных вод в Альминском бассейне значительно колеблется — от 0,05 л/сек и меньше до 10 л/сек, увеличиваясь в основном в направлении погружения отложений.

На погружении наиболее водообильный участок выявлен Крым-геолэкспедицией в 1963—1964 гг. (Л. Я. Вайсман, Ф. Р. Маматказин, О. А. Федосеева и др.) в районе сел. Чеботарки и Ивановки, где эксплуатационные запасы сарматского водоносного горизонта утверждены в ГКЗ в сентябре 1964 г. в количестве 79,6 м3/сутки по категориям А + В. Два водообильных участка располагаются также вблизи крыльев бассейна: а) участок вблизи южного крыла бассейна (устьевая часть р. Качи в районе с. Орловки) с модулем эксплуатационных запасов подземных вод около 10 л/сек. Здесь водообилие сарматских отложений обусловлено подпитыванием их поверхностным стоком р. Качи; б) участок Калиновской синклинали на северном крыле бассейна, захватывающей также южную часть Новоселовского поднятия (район с. Охотниково) с модулем эксплуатационных запасов подземных вод от 2 до 5 л/сек. Здесь грунтовые воды в закарстованных известняках понта и мэотиса получают дополнительно питание с севера — с Тарханкутского плато, а синклинальное строение участка способствует накоплению вод.

В пределах мегантиклинория Горного Крыма эксплуатационные запасы подземных вод равны суммарно 261 тыс. м3/сутки, большую часть этих запасов (204 тыс. м3/сутки) составляют трещинно-карстовые воды в верхнеюрских известняках Западно-Крымского и Восточно-Крымского синклинориев. Здесь модуль эксплуатационных запасов подземных вод колеблется от 0,5 до 5 л/сек. Однако водосборные площади яйлинских плато практически лишены эксплуатационных запасов подземных вод, так как источники карстовых вод вытекают на склонах Горной гряды, а на яйлах уровень подземных вод устанавливается на глубинах более 100 м., т. е. недоступных для использования существующим в настоящее время насосным оборудованиям. Наибольшим водообилием характеризуются бассейны трещинно-карстовых вод западной части Восточно-Крымского синклинория, к которым, в частности, приурочены имеющие большое народнохозяйственное значение источники Аян, Карасу-Баши и др. В пределах мегантиклинория практически лишены эксплуатационных ресурсов поднятия, сложенные водоупорными породами таврической серии и средней юры. Исключением являются те участки поднятий, в пределах которых из четвертичных отложений выходят многочисленные источники, получающие питание за счет трещинно-карстовых вод яйлы.

Наибольшие ресурсы подземных вод (18,5 тыс. м3/сутки) в четвертичных, главным образом в аллювиальных, отложениях определены для площади Туакского антиклинального поднятия, где модуль эксплуатационных запасов колеблется от 0,5 до 1,0 л/сек. Район распространения верхнеюрского флиша в восточной части Восточно-Крымского синклинория и Судакско-Федосийская дислоцированная зона характеризуются модулем эксплуатационных запасов от 0,1 до 0,5 л/сек. Относительно высоким модулем эксплуатационных ресурсов (около 5 л/сек) характеризуется в пределах мегантиклинория — небольшой обособленный участок в районе Агармышского массива верхнеюрских известняков; эксплуатационные запасы подземных вод на этом участке составляют 13,6 тыс. м3/сутки.

Малую водообильность имеет Симферопольское поднятие (с запасами 21,5 тыс. м3/сутки). В пределах Симферопольского поднятия модули эксплуатационных ресурсов колеблются от величин менее 0,05 л/сек до 1,0 л/сек, увеличиваясь в основном в северном направлении, т.е. в направлении погружения отложений.

Сравнительно высокой водообильностью характеризуется и Белогорский артезианский бассейн. Здесь модуль эксплуатационных ресурсов подземных вод на большей части площади не превышает 0,1 л/сек и только на участках распространения аллювиальных вод достигает 1—2 л/сек, а местами 2—5 л/сек.

Наименьшими эксплуатационными запасами подземных вод характеризуются в Крыму две гидрогеологические области, приуроченные к Керченскому полуострову: область XII — восточное замыкание мегантиклинория Горного Крыма, практически лишенное эксплуатационных запасов подземных вод, и область VI — малые артезианские бассейны северной и северо-восточной части Керченского полуострова (Керченско-Таманская система малых артезианских бассейнов), где суммарно запасы подземных вод составляют 33,8 тыс. м3/сутки. Однако на отдельных очень небольших участках (в Керченской мульде и в Приазовской низине) модуль эксплуатационных запасов подземных вод достигает 5—10 л/сек/км2 и более.

Водоснабжение городов, курортных районов и сельских местностей

Водоснабжение городов, крупных промышленных предприятий, курортных районов и сельских населенных пунктов Крыма в значительной мере основывается на использовании подземных вод. Сравнение величины эксплуатационных ресурсов подземных вод Крыма, равной 1725 тыс. м3/сутки, с существующими отборами воды и даже с перспективной потребностью в воде городов и других населенных пунктов на 1980 г., выражающейся 1400 тыс. м3/сутки, позволяет считать достаточно высокой обеспеченность Крыма подземными водами, пригодными для водоснабжения. Однако неполное использование подземных водных запасов, неравномерность распределения запасов подземных вод по территории Крыма, а также несовпадение площадей с обильными запасами подземных вод с площадями наибольшей потребности в воде вызывают необходимость использования для водоснабжения источников поверхностных вод. Вот почему уже в настоящее время во многих городах, курортных районах и других населенных пунктах для водоснабжения используются комплексно подземные и поверхностные воды.

Симферополь

Водоснабжение г. Симферополя в настоящее время осуществляется за счет: 1) верхнеюрских трещинно-карстовых вод, разгружающихся в источнике Аян; 2) аллювиальных вод в долине р. Салгира; 3) вод Симферопольского водохранилища. Суммарный водозабор из этих водоисточников составляет примерно 54 тыс. м3/сутки. Но это количество воды уже не удовлетворяет существующих потребностей города и тем более не сможет удовлетворить перспективной потребности, которая, по данным Гипрограда, с 1980 г. возрастает до 171 тыс. м3/сутки.

Для решения проблемы водоснабжения г. Симферополя построено Партизанское водохранилище на р. Альме. Крымской геологической экспедицией проведена разведка под водозабор в юго-западной части Альминской впадины (район с. Чеботарки). Кроме того, напряженное положение с водоснабжением города частично разрешается за счет бурения эксплуатационных на воду скважин различными промпредприятиями. Для этой цели могут быть в основном использованы аллювиальные воды в долине р. Салгира в среднеэоценовых нуммулитовых известняках в северо-западной части города. Однако эксплуатационные запасы этих водоносных горизонтов в пределах г. Симферополя очень незначительны — поданным на 1966 г. они выражаются примерно следующими цифрами: аллювиальные воды — 6,0 тыс. м3/сутки, воды в среднеэоценовых известняках — 5,0 тыс. м3/сутки. В юго-западной части города, в районе пос. Заводского, выявлен участок, где возможно использование пресных вод в отложениях мазанской свиты неокома; глубина их залегания колеблется примерно от 170 до 200 м, пьезометрический уровень воды устанавливается на глубинах от +8,0 м выше поверхности земли (на погружении) до 20 м ниже поверхности земли, удельный дебит от 0,01 до 0,08 л/сек (Кострик, 1960).

Керчь

Водоснабжение г. Керчи и промышленных предприятий осуществляется в основном за счет вод мэотиса Керченской мульды и только с 1960 г. началось использование для водоснабжения Камыш-Бурунского железорудного комбината этого же водоносного горизонта в Камыш-Бурунской мульде. Потребность в воде г. Керчи и керченских пром-предприятий к 1980 г. возрастает до 100 тыс. м3/сутки.

Водозабор из мэотического водоносного горизонта в Керченской мульде состоит из ряда эксплуатационных скважин (41), которые расположены в наиболее водообильных зонах, приуроченных к прогнутым участкам внутри мульды: Скасиево-Фонтанному, Войковскому, Бондаренковскому и Партизанскому. Эксплуатация подземных вод здесь возобновилась с 1945 г. и затем из года в год стала возрастать. По мере увеличения эксплуатации развилась районная депрессия. За период с 1945 по 1965 г. снижение уровня воды по наблюдательным точкам достигло местами 30—33 м (наибольшее снижение отмечено в центральной части Скасиево-Фонтанного участка). При этом с 1956 г. эксплуатация стала производиться в размерах, превышающих эксплуатационные ресурсы описываемых вод и утвержденных ГКЗ в количестве 13,9 тыс. м3/сутки. Так, в 1961 г. она достигла 21,0 тыс.3/сутки, по — 1965 г. продолжалась примерно в тех же пределах. Все это время наблюдается прогрессирующее снижение уровня. Районная депрессия распространилась и на прибрежные участки, несмотря на то что в соответствии с рекомендациями Крымской опорной государственной гидрогеологической станции основная эксплуатация подземных вод была перенесена в более удаленные от моря участки. В конце 1965 г. отметка уровня эксплуатируемых вод, по наблюдательным точкам на морском побережье, была на 5—7 м ниже уровня моря и таким образом создалась реальная угроза проникновения морских вод в эксплуатируемый водоносный горизонт. В связи с этим здесь особенно актуально продолжение изучения режима эксплуатируемых вод и регулирование их эксплуатации на основе режимных наблюдений.

Водозабор из мэотического водоносного горизонта в Камыш-Бурунской мульде до 1959 г. производился в количестве 0,1—0,5 тыс. м3/сутки (в юго-западной части мульды) и существенно не сказывался на режиме эксплуатируемых вод. С 1959 г. проводилась опытная откачка, при которой максимальный водоотбор достигал 4,5—5 тыс. м3/сутки, а в 1960 г. началась систематическая эксплуатация рассматриваемых вод в количестве 1,8 тыс. м3/сутки (в среднем за год). Влияние эксплуатации сказалось на изменении минерализации подземных вод. В период интенсивной эксплуатации, когда уровень воды на наблюдательной точке, расположенной в 2,0 км от соленого оз. Чурубаш снизился на 0,8 м, минерализация воды по этой скважине возросла примерно на 0,1 г/л, а когда эксплуатация сократилась в 2—2,5 раза, минерализация уменьшилась на 0,2 г/л. В дальнейшем при стабилизации водоотбора (примерно 3,5 тыс. м3/сутки) стабилизировалась и минерализация вод. При регулировании эксплуатации по данным режимных наблюдений особое внимание должно быть обращено на изменения уровня и качества вод на участках, расположенных вблизи контура соленых вод мэотиса и оз. Чурбаш.

В дополнение к водозаборам в Керченской и Камыш-Бурунской мульдах были разведаны и подсчитаны запасы мэотического водоносного горизонта в Маяк-Салынской, Баксинской, Кезенской и Яныш-Такыльской мульдах и запасы пресных вод в четвертичных морских песках Приазовской низины (Фесюнов, 1959; Фесюнов, Фесюнова, 1961). Таким образом, запасы подземных вод, которые могут быть использованы для водоснабжения г. Керчи и промышленных предприятий, составляют (в тыс. м3/сутки):

Воды мэотического водоносного горизонта

Керченская мульда 13,9

Камыш-Бурунская мульда 4,7

Маяк-Салынская мульда 5,1

Баксинская мульда 1,5

Кезенская мульда 0,9

Яныш-Такыльская мульда 1,2

Воды приазовских четвертичных морских песков 6,5

Всего 33,8

Суммарно эксплуатационные запасы подземных вод не удовлетворяют перспективной потребности в воде г. Керчи и промпредприятий и при этом их качество часто не соответствует требованиям ГОСТа к питьевым водам (минерализация в большинстве случаев колеблется рт 2 до 3 г/л). При интенсивной эксплуатации возможен поднос как морских вод, так и соленых подземных вод из соседних участков и из нижних слоев мэотического водоносного горизонта.

Водоснабжение г. Керчи и промышленных предприятий предусмотрено проектом Северо-Крымского канала. Однако одновременно весьма актуальны запроектированные Крымской геологической экспедицией работы по исследованию искусственного пополнения запасов подземных вод в мульдах Керченского полуострова.

Феодосия

Водоснабжение г. Феодосии и его промышленных предприятий в настоящее время осуществляется за счет: 1) Субашского восходящего источника трещинно-карстовых вод из верхней юры, получающего питание на Агармышском массиве; 2) датмонтского водоносного горизонта на участке Климентьевокого тектонического блока, расположенного в 15 км на северо-восток от г. Феодосии; 3) Феодосийского водохранилища. Суммарный водозабор из этих источников составляет максимально (весной) 10 тыс. м3/сутки, в том числе эксплуатационный расход Клементьевского водозабора в 1960—1965 гг.- был равен в среднем примерно 1,0—1,2 тыс. м3/сутки, а подача воды в город из Субашских источников составляла в среднем 5,6—6,5 тыс. м3/сутки.

Общий дебит перечисленных водозаборов ниже современной потребности в воде г. Феодосии и тем более не удовлетворит перспективной потребности, которая к 1980 г. достигнет 43,3 тыс. м3/сутки. При этом запасы подземных вод, используемых Климентьевским водозабором, при региональной оценке определены как временные, так как при эксплуатации их в количестве 1,0—1,2 тыс. м3/сутки отмечается неуклонное снижение их уровня, и местами уже в настоящее время не представляется возможным использовать эти воды существующим насосным оборудованием. Для продления срока действия Климентьевского водозабора необходимо форсировать проведение работ по исследованию возможностей усиления питания рассматриваемых подземных вод.

Для кардинального решения вопроса водоснабжения г. Феодосии предполагается использование вод Северо-Крымского канала; однако это ни в коей мере не исключает необходимости завершения работ по поискам и разведке пресных подземных вод в районе г. Феодосии, в первую очередь верхнеюрских вод в районе Субашского источника и вод палеогена к северу от горы Агармыш в районе сел Золотой Ключ и Кринички.

Бахчисарай

Водоснабжение г. Бахчисарая и его промышленных предприятий осуществляется за счет вод дат-монтского водоносного горизонта. Водозабор в районе г. Бахчисарая состоит из шести эксплуатационных скважин, вскрывших напорные воды этого горизонта на глубинах 130—140 м. Эксплуатируются они уже много лет, но учет эксплуатации не производился. В связи со строительством и пуском в эксплуатацию Бахчисарайского цементного завода в 1960 г. отбор из подземных вод резко увеличился и, по приближенным данным в 1960 — 1961 гг., составлял примерно 7 тыс. м3/сутки, а в 1965 г. достиг 8—8,7 тыс. м3/сутки при перспективной потребности в воде на 1980 г. 11,2 тыс. м3/сутки.

В процессе эксплуатации уровень подземных вод неуклонно снижается; за 1961 г. снижение уровня составило от 2,4 до 3,2 м (Иванов и др., 1962). Даже при сохранении современного водозабора уровень эксплуатируемых вод примерно через 20 лет достигнет глубины 100 м, недоступной для существующего насосного оборудования. В связи с этим эксплуатационные ресурсы дат-монтского водоносного горизонта в районе г. Бахчисарая при региональной оценке были определены как временные в количестве примерно 7 тыс. м3/сутки.

Помимо дат-монтского водоносного горизонта в районе г. Бахчисарая могут быть в незначительной степени использованы аллювиальные воды и воды эоцена поэтому удовлетворение перспективной потребности города в воде возможно только за счет транспортировки подземных вод из более водообильных участков Альминской впадины, например вод сармата из приустьевых участков рек Альмы и Качи. Доразведка таких участков и выявление новых в пределах Альминской впадины является задачей дальнейших исследований.

Евпатория

Для водоснабжения г. Евпатории и евпаторийских курортов используется среднемиоценовый водоносный горизонт. Водозабор производится из 7—10 эксплуатационных скважин глубиной 130—150 м. Эксплуатация подземных вод из года в год возрастает. В 1952 г. она составила 5 тыс. м3/сутки, в 1962 и 1965 гг. соответственно 14,0 и 26—28 тыс. м3/сутки. Начиная с 1958 г. водоотбор стал производиться в размерах, превышающих эксплуатационные ресурсы используемых подземных вод, которые на этом участке составляют 9 тыс. м3/сутки (Иванов и др., 1962). Перспективная потребность в воде г. Евпатории и евпаторийских курортов составляет на 1980 г. 40,8 тыс. м3/сутки.

По мере увеличения эксплуатации развивается районная депрессия; начиная с 1958 г. годовая величина снижения уровня прогрессивно растет. За период наблюдений с 1952 по 1965 г. уровень среднемиоценовых вод в г. Евпатории снизился примерно на 10 м и стал ниже уровня вод сарматского водоносного горизонта. Таким образом, возникла угроза проникновения соленых вод сармата через «окна» в нижнесарматских глинах в эксплуатируемый водоносный горизонт. Среднемиоценовый водоносный горизонт в г. Евпатории является единственным горизонтом пресных вод. Поэтому в настоящее время проектируется водопровод в Евпаторию из разведанного в 1963—1964 гг. водообильного участка в районе сел Ивановки и Чеботарки вблизи г. Саки.

Саки

Саки и курорт используют для водоснабжения воды понтическо-мэотического, сарматского и частично среднемиоценового водоносных горизонтов. Суммарный водоотбор (без Сакского химического завода) в 1961 г. равнялся примерно 1,3 тыс. м3/сутки, в последующие годы он возрос до 7—8 тыс. м3/сутки, а перспективная потребность в воде на 1980 г. составляет 30,0 тыс. м3/сутки. Эта потребность может быть удовлетворена за счет эксплуатационных запасов понтическо-мэотического и сарматского водоносных горизонтов при условии дополнительного использования для орошения вод Северо-Крымского канала. Среднемиоценовый водоносный горизонт не рекомендуется эксплуатировать, так как он является единственным горизонтом, пригодным для водоснабжения на территории г. Евпатории.

Водоснабжение Сакского химического завода, расположенного у Сакского соленого озера, осуществляется на основе использования понт-мэотического, сарматского и среднемиоценового водоносных горизонтов. Водозабор представляет собой шесть кустов скважин, на каждом из которых расположены эксплуатационные и наблюдательные скважины на различные водоносные горизонты. Размеры эксплуатации различных водоносных горизонтов выражаются следующими цифрами:

а) водоотбор из понтическо-мэотического водоносного горизонта в период с 1951 по 1961 г. колебался примерно от 9 до 19 тыс. м3/сутки;

б) водоотбор из сарматского водоносного горизонта возрос от 3 тыс. м3/сутки в 1954 г. до 9—12 тыс. м3/сутки в 1959—1965 гг.;

в) водоотбор из среднемиоценового водоносного горизонта в 1954—1965 гг. колебался от 0,3 до 3 тыс. м3/сутки.

Несмотря на относительно небольшое снижение уровня вод понтическо-мэотического горизонта (0,20—0,30 м за год) по скважине, расположенной вблизи побережья соленого озера, наблюдается повышение минерализации вод этого эксплуатируемого горизонта, обусловленное, очевидно, проникновением в него вод озера. Следовательно, усиливать эксплуатацию понтическо-мэотического водоносного горизонта на территории Сакского химического завода недопустимо.

Наблюдения за режимом сарматского водоносного горизонта на территории Сакского химического завода показывают, что по мере роста эксплуатации уровень эксплуатируемых вод неуклонно снижается, и за период наблюдений с 1952 по 1965 г. снижение уровня воды по наблюдательным точкам составило примерно 2,5 м. В процессе эксплуатации среднемиоценового водоносного горизонта на Сакском химическом заводе отмечается систематическое снижение пьезометрического уровня этих вод по наблюдательным точкам. На формирование депрессии в районе водозабора Сакского химического завода оказывает также влияние отбор по району в целом. Снижение пьезометрических уровней вод среднего миоцена на участке водозабора Сакского химзавода за период с 1954 по 1965 г. составило примерно 8—9 м.

В связи с напряженным положением по эксплуатации среднемиоценового водоносного горизонта в г. Евпатории, где он, как отмечено выше, является единственным источником водоснабжения, Крымская опорная гидрогеологическая станция и Госводинспекция потребовали от Сакского химического завода прекращения эксплуатации этих вод. Сакский химический завод в процессе производства ежесуточно сбрасывает в море 17 тыс. м3 производственных и сточных вод. Поэтому для ограничения бесцельного сброса в море пресных вод, пригодных для водоснабжения, Сакскому химическому заводу необходимо построить комплекс сооружений, обеспечивающих максимальное использование оборотной воды заводом, и таким образом сократить сброс подземных вод в море.

Севастополь

В настоящее время водопотребление г. Севастополя на различные нужды составляет примерно 70 тыс м3/сутки. В том числе отбор аллювиальных вод р. Черной (Инкерманский водозабор) равен 35 тыс. м3/сутки и аллювиальных вод р. Бельбека — 3,5 тыс. м3/сутки, остальная часть потребной воды обеспечивается за счет использования вод Чернореченского водохранилища. Перспективная потребность в воде г. Севастополя составит на 1980 г. 187 тыс. м3/сутки.

В результате разведочных работ, проведенных Крымгеолэкспецицией, выявлены водообильные участки, откуда может быть проведен водопровод для г. Севастополя.

1. Участок в устье р. Качи вблизи с. Орловки с эксплуатационными запасами сарматского водоносного горизонта, утвержденными ГКЗ в количестве 80 тыс. м3/сутки (Мартакова и др., 1961).

2. Участок в устье р. Бельбека вблизи с. Любимовки с эксплуатационными запасами единого аллювиального и сарматского водоносного горизонта, подсчитанными по категориям А+В в количестве 10,3 тыс. м3/сутки и по категориям С2—6,3 тыс. м3/сутки (Мартакова и др., 1966).

Курортный район Южного берега Крыма

Курортный район охватывает южное побережье Черного моря от г. Батилимина до с. Семидворья. Здесь выделяются три зоны: западная (от г. Батилимана до г. Симеиза), центральная (от г. Симеиза до Артека) и восточная (от с. Фрунзенского до с. Семидворья). В настоящее время водоснабжение населенных пунктов и санаторно-курортных учреждений Южного берега Крыма обеспечивается в основном за счет подземных вод — источников карстовых вод юрских отложений и аллювиальных вод речных долин. Суммарный дебит используемых источников составляет около 39 тыс. м3/сутки, из них на водоснабжение санаториев, домов отдыха, пансионатов расходуется около 10,5 тыс. м3/сутки при потребности свыше 32 тыс. м3/сутки.

Перспективные потребности в воде каждой из указанных зон составляют (на 1970 г.): западной — 6,06 тыс. м3/сутки, центральной (без г. Ялты) — 31,16 тыс. м3/сутки и восточной — 59,66 тыс. м3/сутки. Для обеспечения потребностей в воде центральной зоны помимо использования местных ресурсов подземных вод с 1963 г. введены в эксплуатацию водохранилища на северных склонах Крымских гор (Счастливое I, Счастливое II и Ключевское), воды которых в количестве 45 тыс. м3/сутки будут перебрасываться на Южный берег Крыма Ялтинским гидротоннелем. Однако для покрытия потребностей в воде всего Южного берега Крыма необходимо изыскание дополнительных источников водоснабжения. В числе мероприятий по более полному использованию уже известных и выявлению новых ресурсов подземных вод можно указать: а) использование вод Байдарской котловины в количестве около 10 тыс. м3/сутки с переброской их в западную зону Южного берега Крыма; б) увеличение эксплуатации подрусловых вод речных долин и конусов выноса в районах сел Кореиза и Запрудного; в) осуществление мероприятий по искусственному пополнению аллювиальных вод за счет магазинирования в долинах рек поверхностного стока.

Наиболее крупным населенным пунктом на Южном берегу Крыма со многими санаториями, домами отдыха и другими лечебно-оздоровительными учреждениями является г. Ялта, испытывавший до последнего времени большие затруднения в водоснабжении. С вводом в эксплуатацию Ялтинского гидротоннеля эти затруднения устранены. Однако перспективная потребность в воде г. Ялты составляет на 1970 г. 37 тыс. м3/сутки, а на 1980 составит 57 тыс. м3/сутки. Это определяет необходимость дальнейших изысканий дополнительных источников водоснабжения района Большой Ялты.

Джанкой

В народнохозяйственном плане развития Крыма предусматривается создание и рост новых городов и соответственно устройство новых крупных водозаборов. Так, в зоне Северо-Крымского канала значительно расширится г. Джанкой и увеличится его питьевое и техническое водопотребление от 2,0—5,0 тыс. м3/сутки в настоящее время до 108,7 тыс. м3/сутки в 1980 г. Эту потребность предполагается обеспечивать за счет эксплуатации понтическо-мэотического и сарматского водоносных горизонтов, которые после ввода в строй Северо-Крымского канала для орошения не должны использоваться. Для решения проблемы обеспечения перспективной потребности г. Джанкоя в воде необходимо провести разведку сарматского и среднемиоценового водоносных горизонтов и детальные исследования под водозаборы, при которых должны быть изучены взаимосвязь понтическо-мэотического и сарматского водоносных горизонтов и соотношение их пьезометрических уровней, изменчивость водообильности каждого из водоносных горизонтов, радиусы влияния эксплуатационных скважин и т.п. Все это позволит наиболее рационально разместить водозаборы и решить вопрос о совместной или раздельной эксплуатации указанных водоносных горизонтов. Кроме того, целесообразно исследовать вопрос о возможности искусственного пополнения запасов понтическо-мэотического водоносного горизонта за счет использования проточных и дренажных вод во всей зоне Северо-Крымской оросительной системы.

Водоснабжение сельских местностей

Сельскохозяйственное водоснабжение и орошение в настоящее время осуществляется в Равнинном Крыму в основном за счет подземных, а районе предгорий и в горной части — за счет поверхностных вод. После ввода в строй Северо-Крымского канала и строительства ряда водохранилищ на реках в Горном и Предгорном Крыму для орошения предполагается повсеместно использовать поверхностные воды, а подземные воды эксплуатировать для питьевого и промышленного водоснабжения растущих городов, курортов и промышленных предприятий.

В Равнинном Крыму для орошения используются в настоящее время неогеновые водоносные горизонты: понтическо-мэотический в Северо-Сивашском и Белогорском бассейнах и в северо-западной части Альминского бассейна; сарматский и среднемиоценовый водоносные горизонты на южной окраине Северо-Сивашского бассейна, в пределах Новоселовского поднятия и в Альминской впадине. Эксплуатация подземных вод для орошения обусловливает развитие в поливной сезон районных депрессий. При этом в ряде районов за межполивной период уровни полностью не восстанавливаются и из года в год снижаются. К таким районам в первую очередь относятся: а) юго-западная часть Новоселовского поднятия, где в связи с эксплуатацией вод среднего миоцена как для орошения, так и на примыкающем с юга участке для водоснабжения г. Евпатории снижение уровня этих вод с 1961 по 1965 г. составило 5 м; 6) Белогорский бассейн, где отмечается ежегодное снижение уровня понтическо-мэотического водоносного горизонта примерно до 1,5—2,0 м.

С вводом в эксплуатацию Северо-Крымского канала и при использовании для орошения поверхностных вод, подземные воды указанных водоносных горизонтов найдут свое применение в питьевом и хозяйственном водоснабжении сельских населенных пунктов, что позволит перейти к организации централизованного их водоснабжения.

По мере ввода в эксплуатацию Северо-Крымского канала и ряда водохранилищ на реках орошение должно осуществляться за счет поверхностных вод. При этом условии перспективная потребность в подземных водах на водоснабжение будет примерно равна эксплуатационным запасам подземных вод Крыма. Однако их неравномерное распределение обусловливает значительный дефицит в воде в ряде пунктов, что потребует осуществление мероприятий по искусственному пополнению запасов подземных вод или транспортированию подземных вод из других районов и использование для водоснабжения поверхностных вод.

Дополнительные материалы: Гидрогеологическая карта СССР. Крым. Подземные воды.

www.etomesto.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.