Удаление железа


Для многих хозяев загородных домовладений головной болью является проблема железистой либо жесткой воды. Нередко случается, что первоначально прозрачная вода из скважины или из колодца прямо на глазах буреет и приобретает странный привкус. Стоит внимательно рассмотреть, что представляет собой такая вода, опасна ли она и какими способами можно улучшить ее качество. Эта задача, хотя и может показаться сложной, при правильном системном подходе вполне решаема. Чтобы определить, какой способ очистки воды от железа лучше, достаточно пяти осмысленных шагов.

Выясняем, нужна ли воде очистка от железа? Шаг 1

Такой минерал, как железо, встречается в любой питьевой воде: в колодезной, в воде из центрального водопровода или добываемой из скважины. Способы попадания его в воду различны, и, как и концентрация, варьируются в зависимости от региона. Чаще всего железо проникает в состав воды[1]:

  • при ее взаимодействии с грунтовыми породами;
  • из стоков — как промышленных, так и хозяйственно-бытовых;
  • из металлических труб, покрытых коррозией;
  • при контакте воды с с/х удобрениями;
  • при использовании на промышленных очистных станциях железосодержащих коагулянтов[2].

Но так ли вредно содержание данного микроэлемента в воде? Ведь мы часто слышим, что железо полезно для нашего организма, а его дефицит провоцирует возникновение такого серьезного заболевания, как ЖДА — железодефицитная анемия.

Действительно, для организма человека железо необходимо в качестве регулятора клеточного метаболизма, синтеза ДНК и не только. Две трети его присутствует в составе гемоглобина и ферритина, однако лишь в виде двухвалентного гидроксида — Fe+2. Все остальные соединения этого элемента для человеческого организма практически бесполезны. Что касается вреда от избыточной концентрации таких соединений в воде, на этот счет существует два почти противоположных мнения:

  1. Всемирная организация здравоохранения (ВОЗ) устанавливает предел концентрации железа в составе воды в 0,3 мг/л, обосновывая этот показатель исключительно органолептическими характеристиками, и не заявляет о его вреде для здоровья[3]. Объясняется это тем, что проблема недостаточно изучена. Помимо того, в тех случаях, когда данный норматив превышается, вода становится неприемлемой для употребления, соответственно, по мнению ВОЗ, и негативного воздействия она оказать не может.

  2. Другая точка зрения изложена на сайте Роспотребнадзора: «железистая» вода может приводить к раздражению ЖКТ, патологиям крови, заболеваниям печени, почек, поджелудочной железы, к аллергиям. На внешности переизбыток железа в употребляемой воде также отражается не самым лучшим образом: начинают желтеть зубы, волосы и кожные покровы, приобретая нездоровый оттенок[4]. Данное мнение подтверждают многие исследования российских ученых[5].

Обычно спутником высокой железистости является и повышенная жесткость воды. В первую очередь в зоне риска находятся те, кто получает воду, поставляемую по изношенным водопроводным магистралям, из скважин и колодцев. Поскольку наши органы чувств явно сигнализируют об опасности употребления «некрасивой» и неприятно пахнущей воды, очевидно, к ним стоит прислушаться и не рисковать своим здоровьем. Тем более что переизбыток железа и жесткость воды однозначно негативно сказываются на функционале бытовой техники и инженерных коммуникаций, портят внешний вид мебели и вкус пищи:

  • Дорогостоящие бытовые приборы, такие как стиральная машина-автомат, проточный водонагреватель, посудомоечная машина могут выйти из строя, поскольку металлические поверхности ржавеют и покрываются накипью, а внутри пластиковых труб скапливается склизкий налет, забивающий просвет.
  • Появляются неприглядные подтеки и пятна на всех контактирующих с водой предметах.
  • Страдает качество блюд. Пища приобретает жесткий привкус и странный цвет.
  • Белье теряет привлекательность, обесцвечиваясь или приобретая оттенок ржавчины.

В связи с вышеперечисленным явной становится необходимость очистки воды от избыточного железа до норм, рекомендованных СанПиН 2.1.4.1074-01[6]. Первым шагом на пути решения этой проблемы станет сбор и анализ проб воды. Цель исследования — определить, с какими именно загрязнениями мы имеем дело, чтобы правильно подобрать тип фильтра.

Определяем тип фильтра: шаг 2

Когда на руках имеется анализ состава воды и известно, какие именно примеси, помимо железа, в ней находятся, можно приступать к выбору фильтра. На сегодняшний день производители предлагают их следующие разновидности:

  • Фильтры для удаления железа, находящегося в воде в растворенном состоянии.
  • Многофункциональные варианты, объединяющие обезжелезивание с умягчением (уменьшение жесткости).
  • Комплексные приборы для выполнения нескольких задач: фильтрация воды от всех разновидностей железа, а также марганца, пестицидов и органики (например, фульвокислот), хлора, солей. Такие приборы также осуществляют аэрацию, освобождая воду от сероводорода.

Выбирая фильтр, стоит задуматься и о том, для каких целей вам будет нужна вода. Особенно это актуально для загородных домовладений. Для получения воды в технических целях и для бытовых потребностей можно установить фильтры разной степени очистки.

Выбираем способ обезжелезивания: шаг 3

Следующий шаг — выбор конкретной методики обезжелезивания, на основе которой работает фильтр. Условно выделяют реагентный и безреагентный способ.

Безреагентная очистка воды от железа подойдет в тех случаях, когда его концентрация в воде не слишком значительна. По способу функционирования выделяют следующие типы фильтрации:


  • Очистка при помощи каталитических загрузок (наполнителей). Принцип работы прост: при прохождении воды через слои загрузок — обычно применяется Pyrolox («Пиролокс») либо Birm («Бирм»), а также сорбенты АС/МС — катализаторами ускоряется процесс окисления железа, и образовавшийся 3-валентный оксид задерживается слоями загрузки. При этом эффективно удаляется не только железо, но и сопутствующие загрязнители (марганец, сернистый водород).
  • Обратный осмос. Магистральный фильтр для очистки воды от железа, применяемый в данном случае, состоит из мембраны, через которую под давлением пропускается жидкость. Отверстия мембраны настолько малы, что блокируют молекулы практически всех растворенных в воде веществ, кроме молекул непосредственно H2O. Вода при этом очищается от примесей, но одновременно и полностью деминерализируется, становясь похожей на дистиллированную. Минусом данных систем потребители называют их низкую пропускную способность, большие потери воды в качестве непрошедшего фильтрацию субстрата и получение на выходе воды, практически лишенной природных микроэлементов (в связи с чем требуется дополнительная минерализация).

  • Электромагнитная очистка воды от железа. Осуществляется в несколько этапов. На первой стадии используется ультразвук, затем вода проходит через электромагнитное поле, после чего фильтр из кварцевого песка достаточно эффективно улавливает отделенные магнитным полем оксиды железа.
  • Аэрация, основанная на подаче в воду потока воздуха и окислении находящегося в ней железа. Наиболее простым методом является безнапорная аэрация, при которой вода разбрызгивается в верхней части аэрационного бака. Падая вниз, она насыщается кислородом, окисляющим растворенное в ней двухвалентное железо до состояния трехвалентного, которое оседает на дне емкости. Потоком воды осадок уносится в механический фильтр, где и остается. При напорной аэрации кислород нагнетается в воду под давлением.
  • Магнитные фильтры. Это устройства накладного типа (магниты), устанавливаемые на поверхность трубы. В настоящее время промышленным способом они не выпускаются, поскольку имеют очень много минусов, в связи с чем были забракованы массовым потребителем. Однако мастера-самоучки до сих пор применяют принцип воздействия магнитного поля для очистки воды от железа в домашних условиях. Об уровне эффективности данного метода говорить сложно.
  • Стоит также упомянуть полифосфатный фильтр, который является разновидностью магистрального. Осуществляет только смягчение воды. Представляет собой пластиковую колбу (картридж) с наполнителем, которым выступают кристаллы полифосфата натрия. Монтируется непосредственно в систему подачи воды, например перед бойлером.

Реагентный метод разработан для фильтрации воды со значительным содержанием примесей, как железа, так и прочих загрязнителей, которыми в основном являются соли марганца и сероводород. Уже из названия ясно, что в основе метода лежит осуществление химической реакции. Это может быть:

  • Добавление в воду окислителей: гидрохлорида натрия — NaOCl, который повсеместно используется на промышленных очистительных станциях, перманганата калия — KMnO4 («марганцовки»), а также очистка воды от железа озоном. После выпадения железистого осадка он задерживается механическими фильтрами.
  • Коагулирование, которое требует введения в воду специальных реагентов, в качестве которых выступают железный купорос, сульфат алюминия и пр. После осуществления химической реакции «феррум» выпадает в осадок.
  • Применение ионообменных фильтров для очистки воды от железа, которые представляют собой наполненный гранулированной ионообменной смолой корпус, снабженный блоком управления. Принцип действия основан на способности катионов смолы извлекать из воды двухвалентные металлы. Данный фильтроматериал имеет особое молекулярное строение, благодаря которому ионы непрочно держатся в молекуле. При контакте с водой они легко меняются местами с растворенными в воде металлами. В итоге «феррум» (а также другие металлы) прочно соединяется с молекулами ионообменной смолы и остаются в фильтре. Данные фильтры относятся к многофункциональным, поскольку они одновременно смягчают воду, удаляют растворенное в ней железо, марганец и другие металлы, находящиеся в воде в двухвалентном состоянии.

Реагентные методы чаще применяются для очистки больших объемов воды и используются для работы станций очистки воды от железа.

Для собственного дома наиболее перспективными выглядят фильтры с использованием каталитических загрузок и ионообменные фильтры, поскольку они являются многофункциональными. Электромагнитные приборы способны осуществить только очистку воды от растворенного железа, полифосфатный фильтр рассчитан всего лишь на умягчение жесткой воды, а об эффективности работы сделанных в домашних условиях магнитных фильтров говорить всерьез достаточно сложно.

Немаловажным моментом в принятии решения является пропускная способность установки очистки воды от железа, которая должна покрывать бытовые потребности всех живущих в коттедже, а также при необходимости полив огорода и прочие технические расходы.

Оцениваем предложения рынка: шаг 4

На рынке присутствует довольно много компаний, предлагающих установку фильтров для очистки воды от железа. При разумном подходе к решению проблемы становится ясно, что фильтрационная установка — сложный прибор, требующий подбора методов и средств очистки в соответствии с параметрами поступающей воды, желаемыми объемами и режимами потребления. Также необходимо учитывать особенности размещения в помещении. Поэтому торопиться с выбором не стоит.


Доверить установку такой системы лучше специализированным компаниям с большим опытом и хорошей репутацией, устанавливающим самое современное оборудование и имеющим собственные наработки в сфере его производства, подбора и отладки. В частности, к таковым можно отнести торговые марки Profwater, «Гейзер», «Аквафор». Лидеры отрасли обычно предлагают выгодные и опробованные на практике решения вопроса обезжелезивания воды. Небольшие компании зачастую не в состоянии предложить приемлемый уровень цен, всерьез гарантировать качество и долговременное обслуживание, поскольку сами работают в этой сфере недолго.

Что обычно входит в комплекс услуг от компании с именем? Чтобы не быть голословными, рассмотрим их на конкретном примере, изучив предложения компании Profwater, предлагающей при покупке оборудования и заказе монтажа:

  • выезд на объект и предпродажные консультации, помогающие определиться с выбором фильтра;
  • бесплатный анализ воды, в который входит отбор проб (до и после установки фильтра);
  • бесплатную доставку оборудования;
  • пуско-наладочные работы (комплекс услуг, необходимых для корректного функционирования системы фильтрации);
  • консультации заказчика в рамках обучения по эксплуатации современного водоочистительного оборудования;
  • льготную доставку в пределах РФ;
  • сервис на выгодных условиях.

Отдельного упоминания заслуживают широкий ассортимент и разумный ценник, поскольку компания Profwater сама является производителем оборудования данной марки.

Покупаем фильтр для очистки воды от железа: шаг 5

Подведем итоги:

  1. У нас на руках анализ воды, объективно показывающий, с какими типами загрязнений нам приходится иметь дело.
  2. Мы определились с типом фильтра, понимая разницу между устройствами, выполняющими исключительно обезжелезивание воды, и многофункциональными фильтрами.
  3. Выбрали наиболее эффективный и производительный способ обезжелезивания.
  4. Обсудили со специалистами компании режим работы фильтра и требуемые объемы очистки.
  5. Убедились в рентабельности долгосрочного сотрудничества с данной фирмой.
  6. Можем совершенно спокойно приобретать систему фильтрации воды от железа и/или для ее умягчения, наилучшим образом подходящую для конкретных условий эксплуатации.

Если возникают сомнения в качестве потребляемой воды, стоит подумать о своем здоровье и сделать хотя бы первый шаг — заказать анализ воды. При вдумчивом подходе уже на этом этапе можно сэкономить, заранее определившись с компанией-установщиком. Последовательно рассматривая все аспекты проблемы, вам удастся потратить деньги рационально, вложив их в заботу о здоровье, а также в долговечную эксплуатацию технологического и бытового оборудования.

Источник: www.pravda.ru

Когда необходимо удаление щитовидной железы?


В России теми или иными заболеваниями щитовидной железы страдает около 30% населения. При этом у женщин патология встречается в 10 раз чаще, чем у мужчин. В большинстве случаев заболевание удается взять под контроль с помощью консервативных методов лечения, но есть определенные ситуации, когда удаление железы необходимо:

  • Злокачественные новообразования щитовидной железы (рак). В этом случае операция является первым этапом комплексного лечения.
  • Когда щитовидная железа поражена узловыми новообразованиями. Сами по себе «немые» узлы (узловые новообразования, не обладающие избыточной секреторной активностью) не являются показанием к операции. Но при определенных условиях их необходимо удалять, например, если узлы имеют большие размеры и образуют зоб (выраженный эстетический дефект), или мешают глотанию, дыханию и голосообразованию.
  • Лечение тиреотоксикоза.

Для лечения узлового зоба и тиреотоксикоза могут применяться и органосохраняющие операции, когда щитовидная железа удаляется частично. Но от них начинают отказываться, поскольку часто возникают сложности в плане последующего контроля уровня гормонов. При наличии остаточной ткани органа бывает сложно подобрать адекватную гормональную заместительную терапию.

Последствия удаления щитовидной железы у женщин

Удаление щитовидной железы не является обширной и травмирующей операцией, поэтому достаточно легко переносится пациентами. Выписка из стационара производится на 5-7 сутки после вмешательства.

После операции на щитовидной железе остается рубец длиной около 7 см. Он располагается в области яремной ямки. Из-за травмирования тканей первое время может быть сложно двигать головой. Со временем болезненные ощущения пройдут и никакого дискомфорта не останется.

Самым важным моментом раннего послеоперационного периода является коррекция неизбежно развивающегося гипотиреоза. Пока не подберут оптимальную дозу тироксина, могут присутствовать симптомы гипо- и гипертиреоза:

  • Повышенная нервная возбудимость, плаксивость, раздражительность, подавленное состояние.
  • Головокружение.
  • Выраженная слабость.
  • Учащенное сердцебиение.
  • Тремор рук.
  • Изменение веса как в сторону увеличения либо уменьшения.
  • Судороги.
  • Ухудшение качества кожи и волос.

Следует помнить, что все эти трудности временные и по мере коррекции дозы тироксина пройдут без следа.

Помимо этого, могут встречаться хирургические осложнения, связанные непосредственно с оперативным вмешательством:

  • Изменение или частичная потеря голоса. Она происходит из-за повреждения гортанного нерва, проходящего рядом со щитовидной железой. В подавляющем большинстве случаев со временем он восстанавливается, и голос возвращается в норму.
  • Резкое падение уровня кальция. Оно происходит из-за повреждения паращитовидных желез, в результате которого развивается гипопаратиреоз – состояние, сопровождающееся резким снижением уровня кальция в крови и костях, а также увеличением уровня фосфора в крови. В большинстве случаев ситуация со временем может компенсироваться самостоятельно. В других же придется принимать специальные препараты для коррекции гипопаратиреоза пожизненно.
  • Кровотечения. Из-за повреждения крупных кровеносных сосудов, а также при наличии патологии свертываемости крови может развиться кровотечение. В тяжелых случаях кровь может попадать в дыхательные пути и вызывать их обструкцию и пневмонию. Чтобы этого не произошло, врач будет пристально следить за гемостазом во время и после операции.

Многих женщин волнует проблема послеоперационного шрама на видном месте. К сожалению, сделать его абсолютно незаметным невозможно. В лучшем случае он будет выглядеть как тонкая белесоватая полоска. У некоторых людей, например, при склонности к келоидным рубцам, могут остаться заметные шрамы. Для их устранения применяются различные аппаратные косметологические процедуры.

Удаление железа

Заместительная терапия после удаления щитовидной железы

Ключевым моментом при удалении щитовидной железы является резкое снижение уровня тиреоидных гормонов. Уже на следующий день после операции женщина должна начать принимать гормональную заместительную терапию в полной дозировке. Если до операции уровень гормонов был в норме, назначат препарат из расчета 1,6 мкг тироксина на 1 кг веса. Для женщин средняя дозировка составляет 100 мкг. Это ориентировочная цифра, которая в дальнейшем будет корректироваться в соответствии с результатами анализов.

Препарат необходимо принимать строго натощак за пол часа до еды. Запивать таблетку нужно исключительно водой. Эти принципы очень важны, чтобы полноценному всасыванию тироксина ничего не мешало. Если пациент случайно забудет принять таблетку, нет необходимости на следующий день увеличивать дозу. Нужно продолжать принимать препарат в стандартном режиме.

Правильность дозы тироксина определяется по уровню ТТГ (тиреотропного гормона, который секретируется в особом отделе головного мозга – гипофизе). При адекватной гормонально заместительной терапии (ГЗТ) его цифры должны быть в пределах 0,4-4,0 мЕД/л. Исключение составляет некоторые виды рака щитовидной железы. Здесь необходим прием тироксина в супрессивных дозах, которые позволяют достичь уровня ТТГ не более 0,1 мЕд/л. Такие цифры позволяют вовремя отслеживать рецидивы заболевания.

В первый год после операции по удалению щитовидной железы необходимо измерять уровень ТТГ раз в 3-4 месяца. Чаще делать такие анализы нецелесообразно, поскольку это интегральный показатель, который отражает средний уровень тиреоидных гормонов в крови за последние 2-3 месяца. После того, как дозу гормонов подберут, необходимо будет проводить контроль ТТГ не реже 1 раза в год.

Особенности жизни после удаления щитовидной железы у женщин

Глобальных изменений образа жизни после удаления щитовидной железы у женщин не происходит, за исключением периода подбора терапии. В остальном жизнь проходит в обычном режиме, без ограничений. Даже наоборот, многие женщины отмечают улучшение самочувствия, поскольку уходят тягостные симптомы заболевания щитовидной железы. В целом единственное что нужно делать, это применять ГЗТ и своевременно проходить диспансерное наблюдение.

Диспансерный учет

Все пациенты, прошедшие операцию по удалению щитовидной железы, подлежат диспансерному учету, главной задачей которого является контроль и коррекция гормонального статуса. Сроки визитов к врачу и перечень необходимых исследований зависят от основного заболевания, которое послужило причиной тиреоидэктомии. Наиболее пристальное наблюдение осуществляется за пациентами, прошедшими лечение по поводу рака щитовидной железы.

В первый год после удаления железы они должны посещать врача каждые 3 месяца, во второй год — раз в четыре месяца, с 3 по 5 год — раз в 6 месяцев и далее раз в год. Во время визита врач проведет осмотр, уточнит наличие жалоб и назначит необходимое обследование (лабораторные анализы, УЗИ, рентген). При других заболеваниях такого пристального наблюдения не требуется. В первый год после удаления щитовидной железы осмотр врача проводится раз в 3-4 месяца, а затем однократно ежегодно. При правильно подобранной заместительной терапии необходимость в коррекции дозы возникает редко. Показания для пересмотра дозы тироксина:

  • Существенное изменение веса пациентки.
  • Беременность.
  • Необходимость приема некоторых других лекарственных препаратов — гормональная контрацепция, препараты кальция и др.

Планирование беременности

Состояние после удаления щитовидной железы не является противопоказанием к беременности. Более того, данная операция может проводиться как один из этапов лечения бесплодия.

Планирование зачатия можно начинать через 6-8 недель после подбора оптимальной дозы ГЗТ. Исключение составляют ситуации, когда требуется дополнительная терапия радиоактивным йодом. В этом случае беременность придется отложить минимум на 8-10 месяцев.

Что касается ведения беременности, то потребуются регулярные консультации гинеколога-эндокринолога с мониторингом уровня ТТГ и тиреоидных гормонов. При необходимости будет проводиться коррекция дозы принимаемого препарата. В остальном наблюдение такое же, как и за здоровыми женщинами.

Физические нагрузки

После подбора ГЗТ можно заниматься любыми видами спорта. В некоторых случаях могут присутствовать ограничения относительно кардионагрузок.

В целом женщины после удаления щитовидной железы живут полноценной жизнью. Они могут заниматься спортом, путешествовать, меняя климатические пояса, рожать детей и в целом не иметь никаких ограничений помимо ежедневного приема таблетки. Современный уровень медицины позволяет без проблем обеспечить высокий уровень жизни таких пациенток.

Источник: www.euroonco.ru

Какие ассоциации вызывает слово "вода"? Несомненно, практически каждый человек тут же представит себе бескрайний океан с чистейшей поверхностью, такой прозрачной, что можно увидеть песчаное дно. К сожалению, вода в условиях городской жизни выглядит совсем по-другому. Она бывает непрозрачна, с осадком или неприятным запахом. 

Конечно, такая вода не принесет пользы. Более того, часто причиной многочисленных болезней человека становится употребление в пищу некачественной воды. И использование ключевой воды, или воды из колодца не является панацеей. К сожалению, зачастую, и она не отвечает предъявляемым к ней требованиям по химическим и органолептическим свойствам.

Для полноценной жизни человеку нужно ежедневно употреблять не менее двух литров чистой воды. Под термином "чистая вода" в соответствии с действующими санитарными правилами и нормами (СанПиН) понимается такая вода, которая имеет щелочность 7-7,5 и жесткость не выше 7 ммоль/л,а суммарное количество полезных минералов не более 1 г/л, в которой вообще отсутствуют или составляют десятые-сотые доли предельно допустимой концентрации вредные химические примеси, а также отсутствуют и болезнетворные бактерии. 

Согласно данной классификации, далеко не каждый источник или водоем может похвастаться чистой водой. Для того, чтобы вода стала пригодной к употреблению, она должна пройти соотвествующую водоочистку.

Железо может в воде может присутствовать в четырех различных формах:

  • двухвалентное железо Fe+2 в виде растворенных ионов;
  • трехвалентное железо Fe+3 (или так называемое коллоидное железо) в виде осажденных частиц;
  • железо общее в виде растворенных ионов двухвалентного железа и ионов трехвалентного железа;
  • в виде неотъемлемой части живого организма, т.е. так называемое бактериальное железо.

Наиболее сложная и самая распространенная проблема очистки воды — удаление растворенного железа. Железо может попадать в воду не только естественным путем, но и в результате коррозии труб. Появление железа в воде негативно сказывается на свойствах воды: оно ухудшает вкус и запах воды, окрашивает воду а коричневатый "ржавый" цвет. Употребление такой воды грозит возможным возникновением заболеваний почек и печени. Кроме того, вода, насыщенная железом, оказывает негативное воздействие на кожный покров человека, что может стать причиной аллергических реакций. Согласно российским нормам, содержание в воде железа не должно превышать 0,3-0,5 мг/л перед фильтрованием.

Кроме того, что употребление воды с высоким содержанием железа негативно сказывается на здоровье человека, она еще может нанести огромный вред технике, способствуя появления ржавых пятен, подтеков, коррозии, выходу из строя отнюдь не дешевого оборудования. В таких случаях, без фильтров обезжелезивания и деманганации воды обойтись никак нельзя.

Железо может способствовать также развитию "железобактерий", образующих на трубопроводах и оборудовании, скоплению слизи, что негативно сказывается на качестве питьевой воды.

Выбор оптимального метода удаления растворенного железа определяется целями, для которых будет использоваться подготавливаемая вода. Стоит отметить, что на сегодняшний день нет единого универсального метода очистки от всех существующих форм железа. Но используя ту или иную форму водоподготовки, можно добиться удаления растворенного железа в каждом конкретном случае.

Методы удаления растворенного железа различны:

  • методом окислительного обезжелезивания;
  • методом аэрации;
  • методом окисления двухвалентного железа с добавлением сильных окислителей;
  • методом осаждения коллоидного железа традиционным промышленным способом;
  • методом каталитического окисления с последующей фильтрацией;
  • ионообменным методом;
  • мембранными методами;
  • биологическим обезжелезиванием;
  • электромагнитным полем.

Каждый из указанных методов, конечно, имеет свои достоинства и недостатки. Кроме того, метод удаления растворенного железа следует подбирать в каждом конкретном случае индивидуально, с учетом того, какое содержание железа присутствует в воде.

Для водоподготовки с небольшим содержанием железа следует применять безагрегатные методы. При высоких концентрациях желез в воде следует применять более эффективные окислители.

Источник: www.bwt.ru

Железо (лат. Ferrum) – химический элемент VIII группы периодической системы элементов Д. И. Менделеева, атомный номер 26, атомная масса 55,847. Блестящий серебристо-белый пластичный металл, плотностью 7,874 г/см3 , tплав. =1535 °С.

Железо – один из семи металлов, известных человечеству с глубокой древности. По распространенности в литосфере железо находится на 4-м месте среди всех элементов и на 2-м месте после алюминия среди металлов. Его кларк (процентное содержание по массе) в земной коре составляет 4,65%. Железо входит в состав более 300-х минералов, но промышленное значение имеют только руды с содержанием не менее 16% железа: магнетит (магнитный железняк) – Fe3O4 (72,4% Fe), гематит (железный блеск или красный железняк) — Fe2O3 (70% Fe), бурые железняки (гётит, лимонит и т.п.) с содержанием железа до 66,1% Fe, но чаще 30-55%.

Железо давно и повсеместно применяется в технике, причем не столько в силу своего широкого распространения в природе, сколько в силу своих свойств: оно пластично, легко поддается горячей и холодной ковке, штамповке и волочению. Однако чистое железо обладает низкой прочностью и химической стойкостью (на воздухе в присутствии влаги окисляется, покрываясь нерастворимой рыхлой ржавчиной бурого цвета). В силу этого в чистом виде железо практически не применяется. То, что мы в быту привыкли называть «железом» и «железными» изделиями на самом деле изготовлено из чугуна и стали – сплавов железа с углеродом, иногда с добавлением других так называемых легирующих элементов, придающих этим сплавам особые свойства.

 

Типы железа

Железо существует в природе в различных формах (в зависимости от валентности: Fe0, Fe2+, Fe3+), а также в виде различных сложных химических соединений.

I. Элементарное железо (Fe0). Элементарное или металлическое железо безусловно нерастворимо в воде. В присутствии влаги и кислорода окисляется до трехвалентного, образуя нерастворимый оксид Fe2O3 (процесс, известный в быту как «появление ржавчины»).

II. Двухвалентное железо (Fe2+). Почти всегда находится в воде в растворенном состоянии, хотя возможны случаи (при определенных и редко встречающихся в природной воде уровнях рН), когда гидроксид железа Fe(OH)2 способен выпадать в осадок.

III. Трехвалентное железо (Fe3+). Гидроксид железа Fe(OH)3 нерастворим в воде (кроме случая очень низкого рН). Хлорид FeCl3 и сульфат Fe2(SO4)3 трехвалентного железа – растворимы и могут образовываться даже в слабощелочных водах.

IV. Органическое железо. Органическое железо встречается в воде в разных формах и в составе различных комплексов. Органические соединения железа, как правило, растворимы или имеют коллоидную структуру и очень трудно поддаются удалению. Различают следующие виды органического железа:

1) Бактериальное железо. Некоторые виды бактерий способны использовать энергию растворенного железа в процессе своей жизнедеятельности. При этом происходит преобразование двухвалентного железа в трехвалентное, которое сохраняется в желеобразной оболочке вокруг бактерии.

2) Коллоидное железо. Коллоиды – это нерастворимые частицы очень малого размера (менее 1 микрона), в силу чего они трудно поддаются фильтрации на гранулированных фильтрующих материалах. Крупные органические молекулы (такие как танины и лигнины) также попадают в эту категорию. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда (отталкивающего частицы друг от друга, препятствуя их укрупнению) создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии.

3) Растворимое органическое железо. Также как, например, полифосфаты способны связывать и удерживать в растворе кальций и другие металлы, некоторые органические молекулы способны связывать железо в сложные растворимые комплексы, называемые хелатами. Примером такого связывания может служить удерживающая железопорфириновая группа гемоглобина крови или удерживающий магний хлорофилл растений. Так, прекрасным хелатообразующим агентом является гуминовая кислота, играющая важную роль в почвенном ионообмене.

Все вышеперечисленные виды железа «ведут» себя в воде по-разному. Так, если наливаемая в сосуд вода чиста и прозрачна, но через некоторое время в процессе отстаивания образуется красно-бурый осадок, то это признак наличия в воде двухвалентного железа. В случае если вода уже из крана идет желтовато-бурая и образуется осадок при отстаивании – надо «винить» трехвалентное железо. Коллоидное железо окрашивает воду, но не образует осадка. Бактериальное железо проявляет себя радужной опалесцирующей пленкой на поверхности воды и желеобразной массой, накапливаемой внутри труб. Основные отличительные признаки приведены в таблице.

Необходимо только отметить, что «беда никогда не ходит одна» и на практике почти всегда встречается сочетание нескольких или даже всех видов железа. Учитывая, что нет единых утвержденных методик определения органического, коллоидного и бактериального железа, то в деле подбора эффективного метода (скорее комплекса методов) очистки воды от железа очень много зависит от практического опыта фирмы, занимающейся водоочисткой. К сожалению, очень часто достаточно очевидные стандартные методы не работают в, казалось бы, простой ситуации.

 

Источники

Главными источниками соединений железа в природных водах являются процессы химического выветривания и растворения горных пород. Железо реагирует с содержащимися в природных водах минеральными и органическими веществами, образуя сложный комплекс соединений, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками. В питьевой воде железо может присутствовать также вследствие применения на муниципальных станциях очистки воды железо-содержащих коагулянтов, либо из-за коррозии «черных» (изготовленных из чугуна или стали) водопроводных труб.

Содержание железа в пресных поверхностных водах составляет десятые доли миллиграмма. Основной его формой в поверхностных водах являются комплексные соединения трехвалентных ионов железа с растворенными неорганическими и органическими соединениями, главным образом с солями гуминовых кислот – гуматами. Поэтому повышенное содержание железа наблюдается в болотных водах (единицы миллиграммов), где концентрация гумусовых веществ достаточно велика. При рН = 8,0 основной формой железа в воде является гидрат оксида железа Fe(OH)3 , находящийся во взвешенной коллоидной форме. Наибольшие же концентрации железа (до нескольких десятков миллиграмм в 1 дм3 ) наблюдаются в подземных водах с низкими значениями рН и с низким содержанием растворенного кислорода, а в районах залегания сульфатных руд и зонах молодого вулканизма концентрации железа могут достигать даже сотен миллиграммов в 1 литре воды. В подземных водах железо присутствует в основном в растворенном двухвалентном виде. Трехвалентное железо при определенных условиях также может присутствовать в воде в растворенном виде как в форме неорганических солей (например, сульфатов), так и в составе растворимых органических комплексов.

Влияние на качество воды

Содержащая железо вода (особенно подземная) сперва прозрачна и чиста на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/л такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/л вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения. По органолептическим признакам предел содержания железа в воде практически повсеместно установлен на уровне 0,3 мг/л (а по нормам ЕС даже 0,2 мг/л). Здесь необходимо подчеркнуть, что это ограничение именно по органолептическим соображениям. По показаниям вредности для здоровья такойпараметр не установлен.

 

Пути поступления в организм

Основной путь поступления железа в организм человека – с пищей. По оценкам ВОЗ доля воды в общем объеме естественного поступления железа в организм среднестатистического человека не превышает 10 %.

У людей определенных профессий (шахтеров, занятых на разработках железных руд и в меньшей степени у сварщиков) возможно попадание соединений железа с пылью при дыхании, что может вызывать профессиональные заболевания.

Из продуктов питания наиболее богаты железом печень, мясо и почки животных, яичный желток, рыба, а также сушеные белые грибы, бобовые (горох, фасоль, соя), гречка, зелень шпината и петрушки, айва, чернослив, абрикосы, другие овощи и фрукты. При этом надо отметить, что железо – трудно усваиваемый элемент и с точки зрения его поступления в организм усвояемость железа становится даже более важным показателем, чем его абсолютное содержание в том или ином продукте. Так, из продуктов животного происхождения, где железо содержится в так называемой гемовой (дословно – «относящийся к крови») форме, усваивается от 10% (рыба) до 20-30% (телятина) железа. Из продуктов же растительного происхождения (где железо содержится в негемовой двухвалентной форме) этот показатель ниже – от 1% (рис, шпинат) до 6% (соевые бобы). Железо же в трехвалентной форме практически не усваивается. Таким образом, средняя усвояемость железа из продуктов питания составляет около 10% (порядка 6% у мужчин и 14% – у женщин).

Всасыванию железа способствует витамин С — аскорбиновая кислота (восстанавливающая нерастворимое трехвалентное железо до растворимого двухвалентного), витамины группы В, микроэлементы медь и кобальт.

Препятствуют усвоению железа высокое содержание в пище (и, можно предполагать, воде) кальция и фосфатов, с которыми железо образует нерастворимые соединения; фосфатин и фитин, содержащиеся в зерновых продуктах (например, в хлебе и дрожжевом тесте); чай (железо образует трудно растворимые комплексы с дубильными веществами); избыток жиров; молоко и т.п.

 

Потенциальная опасность для здоровья

Как уже упоминалось выше, при систематическом вдыхании воздуха, содержащего железосодержащую пыль (например, оксид железа), возможно возникновение профессиональных заболеваний. Так, в легких шахтеров, занятых на разработках красного железняка, может накапливаться до 45 грамм железа. Это приводит к возникновению такого профессионального заболевания из разряда пневмокониозов (от греческих pneumon — легкие и konia — пыль), обусловленного длительным вдыханием производственной пыли, как сидероз (от греческого sideros — железо), чреватого развитием пневмосклероза.

Что же касается вредного воздействия железа при его поступлении в организм с пищей и водой, то Всемирная Организация Здравоохранения (ВОЗ) не предлагает какой-либо рекомендуемой величины по показания здоровья, так как нет достаточных данных о негативном воздействии железа на организм человека. При уровне установленного ВОЗ переносимого суточного потребления (ПСП) железа, равном 0.8 мг/кг массы тела человека, безопасное для здоровья суммарное содержание железа в воде составляет 2 мг/л. Это означает, что употребляя ежедневно на протяжении всей жизни такую воду, можно не опасаться за последствия для здоровья (другое дело, что вода с 2 мг/л железа будет иметь весьма «неаппетитный» вид).

В российской прессе регулярно проскакивают упоминания о вредном воздействии железа на организм, причем в концентрациях уже выше 0,3 мг/л. В качестве последствий упоминаются неприятности со здоровьем, начиная от аллергических реакций, что, вполне не исключено – хронических профессиональных заболеваний легких, обусловленных длительным вдыханием производственной пыли, аллергия может быть на что угодно, до «увеличения риска инфарктов и негативного влияния на репродуктивную функцию организма… сухости и зуда». Безусловно, в больших количествах железо, как и любое другое химическое вещество, способно вызвать в организме человека нарушения и даже патологии. Учитывая, однако, что железо очень трудно усваиваемый элемент, особенно в неорганической форме (в которой оно в основном и содержится в воде), представляется, что «перебрать» его достаточно трудно. Так что, гораздо более близкой к истине нам кажется точка зрения ВОЗ.

 

Физиологическое значение

Железо относится к числу эссенциальных (жизненно важных) для человека микроэлементов, участвуя в процессах кроветворения, внутриклеточного обмена и регулирования окислительно-восстановительных процессов.

Организм взрослого человека содержит 4-5 г железа, которое входит в состав важнейшего дыхательного пигмента гемоглобина (55-70% от общего содержания), вырабатываемого костным мозгом и ответственного за перенос кислорода от легких к тканям, белка миоглобина (10-25%), необходимого для накопления кислорода в мышечной ткани, а также в состав различных дыхательных ферментов (около 1% общего содержания), например, цитохромов, катализирующих процесс дыхания в клетках и тканях. Кроме того, 20-25% железа хранится в организме как резерв, сосредоточенный в печени и селезенке в виде ферритина – железо-белкового комплекса, служащего «сырьем» для получения всех вышеперечисленных многообразных соединений железа. В плазме крови содержится не более 0,1% от общего содержания железа.

Выделяется железо из организма в основном через стенки толстого кишечника и незначительно через почки. За сутки выводится примерно 6-10 мг железа. Отсюда и суточная потребность человека в железе (в усредненных цифрах). У женщин, например, потребность в железе выше, чем у мужчин – 15-18 мг. Однако, учитывая низкую усвояемость железа, с пищевым рационом человек должен получать в норме 60-100 мг железа в сутки.

В целом, обмен железа в организме зависит от функционирования печени. При нарушениях в ее работе, а также при бедном железом рационе (например, при искусственном вскармливании детей, особенно чрезвычайно бедными железом коровьим и козьим молоком) возможно развитие железодефицитной анемии или, по-простому говоря, «малокровия». Это заболевание характеризуется бледностью кожи и слизистых, одутловатостью лица и сопровождается общей слабостью, быстрой физической и психической утомляемостью, отдышкой, головокружениями, шумом в ушах.

При нарушении клеточного метаболизма может развиваться и обратное явление – избыточное накопление железа в организме. При этом содержание железа в печени может достигать 20-30 г, а также наблюдаться повышенная его концентрация в поджелудочной железе, почках, миокарде, иногда в щитовидной железе, мышцах и эпителии языка.

 

Технологии удаления железа из воды

Удаление из воды железа – без преувеличения одна из самых сложных задач в водоочистке. Даже беглый обзор существующих способов борьбы с железом позволяет сделать обоснованный вывод о том, что на данный момент не существует универсального экономически оправданного метода, применимого во всех случаях жизни. Каждый из существующих методов применим только в определенных пределах, и имеет как достоинства, так и существенные недостатки. Выбор конкретного метода удаления железа (или их комбинации) в большей степени зависит от опыта водоочистной компании. Не без гордости можем сообщить, что нам в своей практике неоднократно приходилось сталкиваться с содержанием железа в 20-35 мг/л и успешно удалять его.

Итак, к существующим методам удаления железа можно отнести:

1. Окисление

Окисление кислородом воздуха или аэрацией, хлором, перманганатом калия, перекисью водорода, озоном с последующим осаждением (с коагуляцией или без нее) и фильтрацией.

Традиционный метод, применяемый уже много десятилетий. Так как реакция окисления железа требует довольно длительного времени, то использование для окисления только воздуха требует больших резервуаров, в которых можно обеспечить нужное время контакта. Это наиболее старый способ и используется только на крупных муниципальных системах. Добавление же специальных окислителей ускоряет процесс.

Наиболее широко применяется хлорирование, так как параллельно позволяет решать проблему с дезинфекцией. Наиболее передовым и сильным окислителем на сегодняшний день является озон. Однако установки для его производства довольно сложны, дороги и требуют значительных затрат электроэнергии, что ограничивает его применение. Необходимо отметить также, что в концентрированном виде (например, на точке ввода в воду) озон является ядом (как, собственно говоря, и многие другие окислители) и требует очень внимательного к себе отношения.

Частицы окисленного железа имеют малый размер (1-3 мкм) и осаждаются достаточно долго, поэтому применяют специальные химические вещества – коагулянты, способствующие укрупнению частиц и их ускоренному осаждению. Применение коагулянтов необходимо также потому, что фильтрация на муниципальных очистных сооружениях осуществляется в основном на устаревших песчаных или антрацитовых осветлительных фильтрах (не способных задерживать мелкие частицы). Однако даже применение более современных фильтрующих засыпок (например, алюмосиликатов) не позволяет фильтровать частицы размером менее 20 микрон. Проблему могло бы решить применение специальной керамики, но она достаточно дорого стоит (так как не производится в России). У всех перечисленных способов окисления есть ряд недостатков.

Во-первых, если не применять коагулянты, то процесс осаждения окисленного железа занимает долгое время, в противном же случае фильтрация некоагулированных частиц сильно затрудняется из-за их малого размера.

Во-вторых, эти методы окисления (в меньшей степени это относится к озону) слабо помогают в борьбе с органическим железом.

В-третьих, наличие в воде железа часто (а практически всегда) сопровождается наличием марганца. Марганец окисляется гораздо труднее, чем железо и, кроме того, при значительно более высоких уровнях рН.

Все вышеперечисленные недостатки сделали невозможным применение этого метода в сравнительно небольших бытовых и коммерческо-промышленных системах, работающих на больших скоростях.

2. Каталитическое окисление с последующей фильтрацией

Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2): Birm, Greensand, Pyroloxи др. Эти фильтрующие засыпки отличаются между собой как своими физическими характеристиками, так и содержанием диоксида марганца, и поэтому эффективно работают в разных диапазонах значений характеризующих воду параметров. Однако принцип их работы одинаков. Железо (и в меньшей степени марганец) в присутствии диоксида марганца быстро окисляются и оседают на поверхности гранул фильтрующей среды.

Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители. Наиболее распространенным является перманганат калия KMnO4 , так как его применение не только активизирует реакцию окисления, но и компенсирует «вымывание» марганца с поверхности гранул фильтрующей среды, то есть регенерирует ее. Используют как периодическую, так и непрерывную регенерацию. Все системы на основе каталитического окисления с помощью диоксида марганца, кроме специфических (не все из них работают по марганцу, почти все они имеют большой удельный вес и требуют больших расходов воды при обратной промывке) имеют и ряд общих недостатков.

Во-первых, они неэффективны в отношении органического железа. Более того, при наличии в воде любой из форм органического железа, на поверхности гранул фильтрующего материала со временем образуется органическая пленка, изолирующая катализатор – диоксид марганца от воды. Таким образом, вся каталитическая способность фильтрующей засыпки сводится к нулю. Практически «на нет» сводится и способность фильтрующей среды удалять железо, так как в фильтрах этого типа просто не хватает времени для естественного протекания реакции окисления.

Во-вторых, системы этого типа все равно не могут справиться со случаями, когда содержание железа в воде превышает 10-15 мг/л, что совсем не редкость. Присутствие в воде марганца только усугубляет ситуацию.

3. Ионный обмен

Ионный обмен как метод обработки воды известен довольно давно и применялся (да и теперь применяется) в основном для умягчения воды. Раньше для реализации этого метода использовались природные иониты (сульфоугли, цеолиты). Однако с появлением синтетических ионообменных смол эффективность использования ионного обмена для целей водоочистки резко возросла.

С точки зрения удаления из воды железа важен тот факт, что катиониты способны удалять из воды не только ионы кальция и магния, но и другие двухвалентные металлы, а значит и растворенное двухвалентное железо. Причем теоретически, концентрации железа, с которыми могут справиться ионообменные смолы, очень велики. Достоинством ионного обмена является также и то, что он «не боится» верного спутника железа – марганца, сильно осложняющего работу систем, основанных на использовании методов окисления. Главное же преимущество ионного обмена в том, что из воды могут быть удалены железо и марганец, находящиеся в растворенном состоянии. То есть совсем отпадает необходимость в такой капризной и «грязной» (из-за необходимости вымывать ржавчину) стадии, как окисление.

Однако на практике, возможность применения катионообменных смол по железу сильно затруднена. Объясняется это следующими причинами:

Во-первых, применение катионитов целесообразно там, где существует также и проблема с жесткостью воды, так как железо удаляется из воды вместе с жесткостью. Там, где ситуация с жесткостью достаточно благополучная, применение катионообменных смол нерационально.

Во-вторых, ионообменные смолы очень критичны к наличию в воде трехвалентного железа, которое «забивает» смолу и очень плохо из нее вымывается. Именно поэтому нежелательно наличие в воде не только уже окисленного железа, но и растворенного кислорода и других окислителей, наличие которых может привести к его образованию. Этот фактор накладывает также ограничение и на диапазон рН, в котором работа смол эффективна.

В-третьих, при высокой концентрации в воде железа, с одной стороны возрастает вероятность образования нерастворимого трехвалентного железа (со всеми вытекающими отрицательными последствиями – см. выше) и, с другой стороны, гораздо быстрее истощается ионообменная ёмкость смолы. Оба этих фактора требуют более частой регенерации, что приводит к увеличению расхода соли.

В-четвертых, наличие в воде органических веществ (в том числе и органического железа) может привести к быстрому «зарастанию» смолы органической пленкой, которая одновременно служит питательной средой для бактерий. Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с железом и марганцем в воде. Задача заключается в том, чтобы подобрать такую комбинацию ионообменных смол (подчас весьма сложную и многокомпонентную), которая была бы эффективна в достаточно широких пределах параметров качества воды.

4. Мембранные технологии

Мембранные технологии достаточно широко используются в водоподготовке, однако удаление железа отнюдь не главное их предназначение, скорее побочный эффект. Этим и объясняется тот факт, что применение мембран пока не входит в число стандартных методов борьбы с присутствием в воде железа. Основное назначение мембранных систем – удаление бактерий, простейших и вирусов («холодная стерилизация»), частичное или глубокое обессоливание, подготовка высококачественной питьевой воды. То есть они предназначены для глубокой доочистки воды.

Тем не менее, микрофильтрационные мембраны пригодны для удаления уже окисленного трехвалентного железа, ультрафильтрационные и нанофильтрационные мембраны также способны удалять коллоидное и бактериальное железо, а обратноосмотические мембраны удаляют даже растворенное органическое и неорганическое железо. Практическое же применение мембран для работы по железу ограничено следующими факторами:

Во-первых, мембраны даже в большей степени, чем гранулированные фильтрующие среды и ионообменные смолы, критичны к «зарастанию» органикой и забиванию поверхности нерастворимыми частицами (в данном случае ржавчиной). Это означает, что мембранные системы требуют достаточно тщательной предварительной подготовки воды, в частности – удаления взвесей и органики. То есть мембранные системы применимы либо там, где нет органического, коллоидного, бактериального и трехвалентного железа, либо проблема с этими загрязнениями должна быть предварительно решена другими методами.

Во-вторых, стоимость. Мембранные системы пока недешевы и их применение рентабельно только там, где требуется очень высокое качество воды (например, в пищевой промышленности).

5. Дистилляция

Дистилляция является давно известным и проверенным способом глубокой очистки воды. Принцип дистилляции фактически повторяет круговорот воды в природе. Вода, испаряясь, освобождается практически ото всех растворенных и нерастворенных примесей. В дистилляторах для ускорения естественного процесса испарения воды применяется нагревание (в подавляющем большинстве случаев с помощью электричества) воды до температуры кипения, что приводит к интенсивному образованию пара. При этом механические частицы, содержащиеся в воде (включая бактерии, вирусы и прочую «живность», а также коллоиды и взвешенные частицы) оказываются слишком тяжелыми, чтобы быть подхваченными паром. Одновременно почти все растворенные в воде химические вещества (включая соли железа, других тяжелых металлов, соли жесткости и т.д.) достигают предела своей растворимости (за счет повышенной температуры и особенно увеличения концентрации – вода-то постоянно улетучивается) и выпадают в осадок. Таким образом, вместе с паром могут «вознестись» только летучие органические соединения (среди которых, правда и такие опасные, как тригалометан – потенциальный канцероген – и другие). Именно поэтому в дистилляторах часто устанавливают фильтр доочистки на основе активированного угля из скорлупы кокоса.

В дальнейшем пар, охлаждаясь (в природе в верхних слоях атмосферы, в дистилляторах – в специальных конденсаторах, простейшим из которых является змеевик), конденсируется, опять превращаясь в воду. Этот конденсат и является той высокоочищенной водой, которую называют дистиллятом. Иногда дистиллированную воду «прогоняют» через дистиллятор еще раз и получают так называемый би-дистиллят.

Дистиллированную воду достаточно широко используют в промышленности, медицине, в химических лабораториях. Хорошо всем известный пример использования дистиллированной воды – заливка в аккумуляторы автомобиля. В быту же дистилляторы не нашли широкого применения. И дело здесь совсем не в непригодности дистиллированной воды для питья. Вредность такой воды из-за отсутствия в ней «полезных» минеральных веществ – это скорее укоренившийся предрассудок. Дистиллированная вода действительно имеет невысокие вкусовые качества, часто ее вкус характеризуют как «затхлый». Связано это с тем, что такая вода — это действительно жидкость без вкуса (!) и запаха (см. любой учебник по химии). То есть вкус дистиллированной воды не затхлый – он никакой. Мы же привыкли, что вода имеет вкус (пусть даже едва уловимый), который определяется ее минеральным составом и наличием растворенных газов. Однако с точки зрения влияния на здоровья нет никаких свидетельств того, что дистиллированная вода непригодна для питья. Ограниченность же применения дистилляторов в настоящее время объясняется следующими причинами.

Во-первых, бытовые дистилляторы имеют малую производительность – что-то около 1 литра в час.

Во-вторых, в бойлере дистиллятора постоянно образуются осадок, накипь и т.п., которые надо вычищать.

В-третьих, дистилляторы излучают тепло и в довольно значительных количествах.

В-четвертых, дистилляторы потребляют значительное количество электроэнергии, что для многих применений делает их использование менее рентабельным, чем обратный осмос или деминерализация на ионообменных смолах.

Источник: watera.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.