Аэрация воды это


Вода, используемая под разные бытовые и технические цели, обычно предполагает высокое насыщение кислородом, воздухом. Фактор естественного «проветривания» водной массы бассейнов, скважин, водоёмов и т.п., видится реальной необходимостью. Однако существующие ныне системы водной аэрации (поверхностные или нижние) характерны малой эффективностью и значительной энергоёмкостью. Инженеры-сантехники уже долгое время пытаются отыскать оптимальное решение. И вот в 2017 году финская компания представила миру интересный проект системы аэрации воды, который заслуживает рассмотрения.

Освоенная техника аэрации воды

Существующие системы поверхностной и нижней водной аэрации в основном используют технику подмешивания к неподвижной воде или без подмешивания путём создания низкой концентрации кислорода в атмосфере над бассейном. На практике реакционные газы переносятся обратно в воду.


Техника аэрации воды
Обработка водоёма с целью насыщения жидкости воздухом, что является необходимым условием для качественного природного баланса. Однако фонтанирование не даёт того эффекта, который требуется

Современные технологии процессов водной аэрации пытаются скопировать с оглядкой на процессы, происходящие в природе:

  • смешивание,
  • фонтанирование,
  • разбрызгивание,
  • расплёскивание,
  • просачивание и т.п.

Часто применяется генерация пузырьков пропусканием сжатого воздуха через диффузоры, и даже генерация плазмы электрической дугой. Однако все существующие способы отмечены множественными недостатками.

Недостатки существующих систем

  1. Возможности снижения коэффициента растворения (К-фактор) зачастую не рассматриваются. В некоторых случаях К-фактор настойчиво стремятся увеличивать без какого-либо учёта результатов исследований.
  2. Потребление энергии в целом велико в силу того факта, что процесс растворения отделен от потока жидкости. То есть кинематическая энергия потока не используется.
  3. Зачастую аэрация воды производится для небольшой части обрабатываемой жидкости (на поверхности или на дне объёмных сосудов), в то время как основная часть жидкости остается пассивной.

  4. Огромный сосуд с пассивной жидкостью внутри непроизвольно становится питательной средой для различных бактерий, планктона, водорослей. Поддерживать чистоту объёмных сосудов крайне сложно и экономически накладно.
  5. Концентрация кислорода в воздухе над аэрационными сосудами низкая из-за сильной ферментации и биогазификации. При поверхностной аэрации воды биогазы растворяются в жидкости активнее кислорода по причине увеличенной сопротивляемости О2 к растворению в жидкостях.
  6. Аэрация поверхностным способом становится бесполезной, когда над поверхностью воды отмечается высокая концентрация биогазов. Поверхность неподвижной воды в сосуде становится жестче и плотнее. Поверхностное натяжение усиливается, что увеличивает растворяющее сопротивление.
  7. Каскадная аэрация способствует активному отделению кислорода от воды. По этой причине содержание кислорода в воздухе над каскадной системой всегда выше, чем непосредственно в составе жидкости.
  8. Способствует снижению насыщаемости воды кислородом и технология прямого удара, которая достаточно часто применяется в условиях аэрации технических вод.

Обоснование эффективных процессов аэрации воды

Наиболее распространенная теория растворения газа путем диффузии может быть представлена в виде двух графиков


Графики процессов аэрации
Графики процессов аэрации: А — стандартные условия; В — условия с финским модулем; 1, 2, 3, 4 — транспорт; 5, 6 — объёмная газовая факция; 7, 8 — объёмная жидкостная факция; 9,10 — коэффициент растворяемости; 11, 12 — взаимодействие

Согласно теории, факцию материала окружают тонкие пленки, что в принципе приводит к появлению сопротивления растворению. В стандартных случаях переход насыщения осуществляется от газа к жидкости.

Однако на практике возможны неблагоприятные реакции вкупе с композитами между слоями, что может вызвать изменение направления транспортировки.

При рассмотрении оксигенации или аэрации воды, эти процессы представлены как: ХПК (химическая потребность в кислороде) и БПК (биологическая потребность в кислороде).

Теоретически, газы транспортируются путем растворения в водах незамедлительно, когда сохраняются следующие условия:

  • молекулы расположены близко друг к другу;
  • сопротивление растворения снижается до минимума;
  • отсутствуют другие газы и примеси;
  • кислород вводится непосредственно в структуру аэрируемой воды;
  • организовано движение воды, подвергаемой аэрации;
  • растворяемая область остаётся равномерно чистой.

Аэрация воды по финской технологии

Модульное решение от финской компании SansOX – интересный вариант аэрации воды на новом технологичном уровне. Модуль аэрации легко доработать, смонтировать или удалить. Систему удобно обслуживать на всех этапах процесса аэрации воды.

Финский модуль аэрации воды
Простое, но эффективное инженерное решение от финских специалистов в области сантехники и устройств, предназначенных для качественной обработки воды

Инженерное решение, получившее название «OxTube», интегрируется в любую систему, где есть потребность обработки пресной воды или очистки сточных вод, где требуются системы с полной водной оксигенацией и аэрацией.

Исследования и экспериментальные опыты показали: финская система «OxTube» насыщает воду кислородом быстрее и эффективнее, затрачивая меньше энергии, по сравнению с другими существующими системами.

Устройство «OxTube» может применяться с различными очистными сооружениями и естественными потоками воды. Инвестиционные затраты при этом относительно низки.

Есть смысл рассмотреть финский вариант аэрации воды ближе, чтобы иметь возможность оценить новую инженерную мысль.


Финский аэратор воды универсального назначения

Основной задачей для финских инженеров при разработке OxTube виделась задача увеличения К-фактора сопротивляемости растворению. Процессы растворения и жидкостной обработки исследовались в условиях их длительного и неэффективного применения.

Так удалось определить теоретические условия, а также оптимальную скорость растворения воздуха и кислорода в жидкости.

На основе полученных результатов финские инженеры создали модульную конструкцию аэрации воды, что на картинке ниже.

Финская система обработки жидкостей
Аэрационный модуль: 1 — фланец на входе; 2 — промывочный штуцер; 3 — газовый эжектор; 4 — вихревая труба; 5 — газовый эжектор питатель; 6 — рассеиватель; 7 — газовый эжектор с модулем подачи; 8 — импульсный модуль; 9 — микро барботажный модуль; 10 — выходной фланец

Вода насыщается кислородом (озоном) непрерывно в течение 0,5-10 секунд в зависимости от назначения и технологических потребностей.

В большинстве случаев система «OxTube» способна принимать газы и химикаты путем подачи и / или всасывания, эффективно смешивать их и равномерно растворять ингредиенты в текущей транспортируемой жидкости.

Основные компоненты универсального аэратора

Инженеры SansOx разработали две новых конструкции эжекторов:

  1. Дроссельная заслонка.
  2. Прямоточный вихревой канал.

Благодаря прямоточному вихревому каналу обеспечивается эффективное осевое всасывание в центре потока. Оба эжектора равномерно смешивают жидкость, газ, ингредиенты.

Вихревой канал формирует спиральный поток. За счёт этого давление на поверхности трубы увеличивается, а в центральной области уменьшается.

Тем самым снижается турбулентность на трубной поверхности и осуществляется смешение на всасывании в центральной области потока.

Вихревой поток создаваемый системой
Повышенное давление на поверхности трубы и пониженное давление в центральной линии делают смешивание более эффективным и ровным, чем обеспечивается высокоэффективное растворение

Импульсный модуль обеспечивает эффективное растворение сразу после того, как жидкость, газы, ингредиенты прошли стадию вихревой обработки.

Максимальная аэрационная способность достигается благодаря процессам подачи, смешивания и растворения. Кинетическая энергия потока используется для плотного сближения молекул на косых поверхностях импульсного модуля.


Барботажный модуль устройства состоит из трубки и направляющих пластин, сделанных из нержавеющей стали с отверстиями.

Микро-барботаж доводит процесс растворения до логической завершённости, а также выдерживает необходимый период времени для химических реакций в обработанной жидкости.

Преимущества финской системы аэрации

Устройство «OxTube» видится эффективным уникальным инструментом сантехники, способным эффективно растворять кислород и другие газы в воде и других жидкостях.

Финский модуль обработки воды
Схема с двумя эжекторами, газоотделителем и рециркуляцией нерастворённого газа: 1, 2 — вход воды; 3 — ввод кислорода; 4 линия рециркуляции; 5 — газовый насос; 6 — газоотделитель; 7, 8 — выход воды

Более того, технология также эффективна для растворения или смешения, к примеру, химикатов, коагулянтов и подобных веществ.

Благодаря модульности «OxTube» инструмент относительно легко приспособить для удовлетворения разнообразных потребностей. Общие преимущества включают:

  • быстрый и непрерывный процесс с растворением и перемешиванием;
  • постоянное качество процесса;
  • отсутствие необходимости в использовании внешней энергии;
  • простота обслуживания.

Модуль «OxTube» предоставляет лучший вариант экономии затрат на жизненный цикл. Экономия достигается за счет повышения эффективности, экономии времени, энергии, ингредиентов.

Также благодаря своей высокой производительности и постоянному качеству процесса, модуль видится экономичным инструментом. Отдельным преимуществом стоит отметить экономию на этапах инвестирования и обслуживания.

Система аэрации финских инженеров может настраиваться под широкий спектр потребностей в процессах вода / жидкость. При использовании O2 или O3 можно достичь уровней растворения кислорода выше 50 мг O2/л.

Результат работы двух разных технологий
Результат работы двух разных технологий: 1 — стандартный малоэффективный способ; 2 — способ финских инженеров. Молочный цвет потока — косвенное подтверждение качественного насыщения жидкости кислородом

Конструкция допускает использование нескольких видов материалов для изготовления. Рабочий диаметр патрубков системы может варьироваться в пределах 16-200 мм.

Краткий функционал на четыре шага

Завершая обзор финской разработки для аэрации, можно всего в четыре шага расписать весь функционал системы:


  1. Вихревые и эжекторные модули генерируют
    всасывание газа в поток воды. Происходит эффективное смешивание кислорода, воздуха или другого газа с водой или другой жидкостью.
  2. Дисперсионный модуль генерирует сотни
    противодействующих водных вихрей, ускоряющих перемешивание. Закрученный водный поток направляется с высокой скоростью на импульсный модуль.
  3. Импульсный модуль создает высокоскоростной импульсный поток на стенках, стимулируя быстрое растворение газа путем диффузии.
  4. Наконец, микро барботажный модуль открывает своеобразную «зону отдыха», где стабилизируется эффект диффузии и выдерживается время идеального растворения.

Простая, эффективная и действительно экономически целесообразная аэрация. Имеются все основания повторить финский опыт аэрации!

Аэрационная ветрогенераторная система частного водоёма

zetsila.ru

СТАТЬИ

АЭРАЦИЯ ВОДЫ.
(автор: Ген.директор компании «МИРОВЫЕ ВОДНЫЕ ТЕХНОЛОГИИ» — С.В.Черкасов)


1. ВВЕДЕНИЕ

     Аэрацией воды называется процесс насыщения воды кислородом воздуха. Аэрация воды производится:

  • в очистных водопроводных сооружениях с целью удаления из воды гидроокиси железа, свободной углекислоты и сероводорода;
  • в сооружениях биологической очистки сточных вод (аэротенках, аэрофильтрах, биофильтрах) для обеспечения жизнедеятельности микроорганизмов (аэробных бактерий), осуществляющих процесс минерализации растворённых в сточных водах органических веществ и других загрязнений.

     Аэрация обычно характеризуется следующими параметрами:

  • производительность аэрационных систем по кислороду (выражается в кг растворенного кислорода на 1 м3 аэрируемого объема);
  • количество введенного кислорода за 1 час (выражается в кг растворенного кислорода в час);
  • удельное количество введенного кислорода (выражается в кг растворенного кислорода на кВт затраченной энергии);
  • эффективностью растворения кислорода (выражается в % от массы введенного кислорода, который действительно растворился к массе кислорода, поданного компрессионной установкой).

     По принципу действия аэрационные установки подразделяют на:

  • Установки безнапорной (упрощенной) аэрации воды, в которых происходит распыление исходной воды в окислительном баке (контактной емкости). Дополнительно можно осуществить аэрацию с помощью компрессора, подающего воздух в толщу воды через мелкопузырчатые аэраторы. Благодаря этому вода в окислительном баке перемешивается, что ускоряет процесс окисления железа и газов. Поскольку в безнапорной аэрационной станции происходит разрыв струи воды, то после нее необходимо ставить насосную станцию для поднятия давления до необходимой величины (2,5 – 4 атм.). На дне окислительного бака постепенно накапливается слой окислившегося железа, который необходимо периодически удалять (2 – 4 раза в год).
  • Установки напорной аэрации воды, в которыхаэрация осуществляется путем нагнетания сжатого воздуха в аэрационную колонну или окислительный бак при помощи компрессора, при этом отделяемые от воды газы и избыток воздуха отводятся из аэрационной колоны через воздухоотделительный клапан. По сравнению с безнапорной аэрацией в данном случае не требуется дополнительный насос для повышения давления, аэрационная колонна монтируется непосредственно в магистраль водопровода, уменьшаются габариты установки, но производительность и эффективность аэрации несколько хуже, поскольку меньше время контакта воды с воздухом.

     Более подробно работу установок безнапорной и напорной аэрации воды мы рассмотрим ниже. А для того, чтобы понять, какие факторы могут повлиять на процесс аэрации воды, нам необходим анализ, как самого процесса, так и процесса растворения кислорода воздуха в воде.

2. РАСТВОРИМОСТЬ КИСЛОРОДА В ВОДЕ

     Растворенный в воде кислород находится в виде гидратированных молекул О2. Содержание растворенного кислорода (в дальнейшем по тексту РК) зависит от температуры, атмосферного давления, степени турбулизации воды, количества осадков, минерализации воды др.
На содержание РК в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее.

     К числу первых относят:

  • поглощение кислорода из атмосферы (абсорбция);
  • выделение кислорода водной растительностью в процессе фотосинтеза;
  • поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

     Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация — обогащение глубинных слоев воды кислородом — происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.
     Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P, N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).
     Снижение содержания кислорода в воде меньше теоретически возможного происходит в силу протекания химических и биохимических процессов: потребления кислорода различными организмами, брожения, гниения органических остатков, реакций окисления и пр. Примерами причин снижения содержания РК, это могут быть: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe2+, Mn2+, NO2–, NH4+, CH4, H2S). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.
     Все эти рассуждения справедливы для поверхностных вод. В артезианских же водах все эти факторы практически не действуют и поэтому кислород в таких водах, как правило, отсутствует.
     Концентрация кислорода в воде определяет величину окислительно-восстановительного потенциала (RedOx потенциала) и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Поэтому контроль содержания кислорода в воде – чрезвычайно важная проблема, в решении которой заинтересованы практически все отрасли народного хозяйства, включая черную и цветную металлургию, химическую промышленность, сельское хозяйство, медицину, биологию, рыбную и пищевую промышленность, службы охраны окружающей среды. Содержание РК определяют как в незагрязненных природных водах, так и в сточных водах после очистки. Процессы очистки сточных вод всегда сопровождаются контролем содержания кислорода. Определение РК является частью анализа при определении другого важнейшего показателя качества воды – биохимического потребления кислорода (БПК).

     При каждом значении температуры воды существует равновесная концентрация кислорода, которую можно определить по специальным справочным таблицам, составленным для нормального атмосферного давления. Растворимость кислорода в воде возрастает с уменьшением температуры и минерализации и с увеличением атмосферного давления. Зависимость растворимости кислорода в большинстве жидкостей, включая воду, в первом приближении описывается законом растворения идеального газа – законом Генри. Закон пригоден лишь для идеальных растворов и невысоких давлений. При постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором:

                                                                    С = k×Р

где С – массовая концентрация газа в насыщенном растворе (моль/л); Р –  парциальное давление; k – коэффициент пропорциональности, называемый константой Генри (или коэффициентом Генри).
     Однако коэффициент Генри зависит от давления, хотя и в небольшой степени. Зависимость растворимости кислорода от температуры или зависимость k (Р°,Т) проявляется в уменьшении растворимости с повышением температуры.
     Растворение кислорода и других газов в воде вызывает нарушение ближнего порядка, поскольку требует затраты энергии. Процесс растворения является самопроизвольным. Растворение кислорода в воде следует рассматривать как совокупность физических и химических явлений, выделяя при этом три его основных стадии:

  • Разрушение химических и межмолекулярных связей в растворяющихся газах, требующее затраты энергии. Энтальпия системы при этом растет: H1 > 0;
  • Химическое взаимодействие растворителя с растворяющимся веществом, вызванное образованием новых соединений – сольватов (или гидратов), сопровождающееся выделением энергии. Энтальпия системы при этом уменьшается: ∆Н2 < 0;
  • Самопроизвольное перемешивание раствора или равномерное распределение сольватов (гидратов) в растворителе, связанное с диффузией и требующее затрат энергии. Энтальпия системы при этом растет: ∆Н3 > 0.

     Суммарный тепловой эффект процесса растворения (∆Н = ∆H1 + ∆Н2 + ∆Н3) может быть положительным (эндотермическое растворение) и отрицательным (экзотермическое растворение). Растворение кислорода в воде идет с выделением теплоты (∆Н< 0) и с убылью энтропии (S< 0).
     В результате всего перечисленного выше растворимость в воде оказывается на порядок меньше, чем в неполярных жидкостях. Следует заметить, что учет особенностей молекулярного строения воды оказался достаточно сложным, и до сих пор нет хороших теоретических подходов для его оценки. Поэтому чаще всего приходится пользоваться эмпирическими данными.
     Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания и называется степенью насыщения воды кислородом. Вычисляется по формуле:

                                                                    M = (a×101308×100)/С×P,

где М – степень насыщения воды кислородом, %; а – концентрация кислорода, мг/л; Р – атмосферное давление в данной местности, МПа; С – нормальная (равновесная) концентрация кислорода (мг/л) при данной температуре и общем давлении 0,101308 МПа, приведенная в таблице 1.
     Степень насыщения воды кислородом, соответствующая равновесной концентрации, принимается равной 100%. Этот параметр зависит от температуры воды, атмосферного давления и уровня минерализации.

3. МЕТОДЫ КОНТРОЛЯ СОДЕРЖАНИЯ КИСЛОРОДА В ВОДЕ

     Для определения кислорода предложено множество методов, основанных на различных принципах. К ним относятся объемные (главным образом, йодометрические, колориметрические и фотометрические), электрохимические (амперо- и вольтметрические, полярографические, кулонометрические, кондуктометрические и прочие методы (радиометрические, хроматографические, масспектрометрические и т. д.).
     Растворенный кислород является весьма неустойчивым компонентом химического состава вод. При его определении особо тщательно следует проводить отбор проб: необходимо избегать контакта воды с воздухом до фиксации кислорода (связывания его в нерастворимое соединение).
     Наиболее широкое распространение в анализе поверхностных вод получили йодометрический (по Винклеру) и электрохимический методы.
     Известно, что скорость насыщения воды кислородом зависит от площади границы раздела двух сред (вода/воздух), коэффициента переноса и градиента концентрации кислорода и описывается следующей формулой

                                                                    dC/dT=KL (A/V)(Cs – C), (Ф. Уитон, 1985)

где dC/dT – скорость изменения концентрации кислорода со временем, мг/(л×ч); KL — коэффициент переноса кислорода, см/ч; А – площадь контакта газа и жидкости, см2V – объем воды, см3Cs – концентрация насыщения кислорода жидкостью, мг/л; С – концентрация кислорода в жидкости в любой момент времени, мг/л.
     Как видно из приведенной формулы, скорость насыщения воды кислородом зависит от градиента концентрации между фактическим содержанием кислорода в воде (С) и максимально возможным насыщением (Cs), которое достижимо при данных условиях (температура воды, давление и соленость). Иными словами, чем ближе фактическое насыщение воды к максимально возможному, тем ниже скорость насыщения воды кислородом.

     Различные системы обычно сравнивают при стандартных условиях, а именно:

  • в чистой (дистиллированной) воде;
  • при температуре 20оС (в некоторых странах при 10оС);
  • при стандартном атмосферном давлении – 760 мм мм.рт.ст. (0,101308 МПа);
  • концентрации растворенного кислорода 0 мг/л.

     Поправка для перехода от стандартных условий к реальным условиям.
     Чтобы перейти от стандартных условий к реальным, применяют поправочный фактор Т:
реальные условия = стандартные условия * Т
где Т – произведение трех коэффициентов: Тр, Тd, Тt.
Коэффициент Тр оценивает перенос кислорода к реальной воде по отношению к чистой (дистиллированной) воде; он зависит от состава воды (в частности от содержания ПАВ, жиров, нефтепродуктов, взвешенных веществ и пр.)

wwtec.ru

Какая я же концентрация кислорода в аквариуме является нормой?

Измерить концентрацию О2 в аквариуме, можно при помощи тестов, которые продаются во многих аквамагазинах.

 

 

А теперь, хитрости и секреты аэрации аквариума:

Лайфхак № 1: Многим известно, что потребление кислорода гидробионтами растет с повышением температуры воды. С другой стороны, концентрация кислорода в воде противоположно зависит от понижения температуры. При температуре 20 °С концентрация кислорода достигает около 9,4 мг/л, при 25 °С — 8,6 мг/л и при 30 °С — 8,0 мг/л. Это утверждение можно прекрасно воспользоваться в случаях асфиксии рыб. Охлаждение аквариумной воды — это +++ к концентрации кислорода. 

Лайфхак № 2: Мало кто из начинающих аквариумистов знает о применения аптечной 3% перекиси водорода в аквариуме, вот что она делает:

1. Оживляет задохнувшуюся и удушенную рыбу;

2. Эффективна против некоторых видов нитчатой водоросли;

Перекись водорода – это экологически чистый продукт. В воде она распадается на воду и кислород — вещества безвредные. Поэтому, если правильно ею пользоваться, то полезную микрофлору в фильтре и грунте можно сохранить целехонькой, или только чуть-чуть ее подзадушить (при передозировке и в фильтре выделится слишком много кислорода, что для бактерий не полезно). Но микрофлора быстро восстановится, ведь вредных веществ в воду не поступило. Рыбу при правильном дозировании перекись не травит. Если при применении перекиси на губках фильтров, стенках аквариума, рыбах и растениях появляются пузырьки, то значит доза была велика. Допустимо только едва заметное появление пузырьков.

Аптечная 3% перекись применяется для:

1. ОЖИВЛЕНИЯ ЗАДОХНУВШЕЙСЯ РЫБЫ.

Добавление до 40 мл на 100 л. Когда начнут высыпать пузырьки на стеклах, фильтрах и, возможно, рыбках, воду надо подменить, продувку усилить. Если за 15 мин воздействия нет эффекта, то уже не судьба. Для реанимации рыбы, пострадавшей от высоких доз углекислого газа, обычно достаточно 25 мл в 100 л.

2. БОРЬБЫ С НЕЖЕЛАТЕЛЬНОЙ АКВАРИУМНОЙ ЖИВНОСТЬЮ (планарии, гидры).

Концентрация до 40 мл в 100 л. Вносить надо несколько дней подряд до полной победы над врагом. Растения можно при этом заморить, но если применить более низкие концентрации, то можно и не победить, хотя растения будут живы. Однако, как правило, все получается, процесс занимает неделю и более. Жестколистные растения типа анубиасов к перекиси относительно устойчивы.

3. БОРЬБЫ С СИНЕ-ЗЕЛЕНЫМИ ВОДОРОСЛЯМИ.

Если в аквариуме есть любимые растения, то нельзя превышать дозировку 25 мл на 100 л 1 раз в день. Рыбы обычно без вреда переносят дозу 30 или даже 40 мл на 100 л. Эффект при ежедневном внесении заметен на третий день. За неделю все проходит. Доза, которой еще можно бороться с водорослями – это 20 мл на 100 л. Длинностебельные растения с перистыми листьями плохо переносят перекись, поэтому эту дозировку превышать нельзя. Жестколистные растения можно несколько раз выкупать в отдельно приготовленном растворе перекиси 50-40 мл на 100 л. Держать полчаса, час. Точного времени не знаю. Говорят, так и обрастания вьетнамки можно свести. Возможно, что перекись поможет при борьбе с вьетнамкой в аквариуме (20-25 мл в 100 л). Но в этом случае надо еще снизить нитратное и фосфатное загрязнение воды.

4.ЛЕЧЕНИЯ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ НА ТЕЛЕ И ПЛАВНИКАХ РЫБ.

25 мл на 100 л ежедневно или 2 раза в сутки многократно (7-14 дней).
Можно приготовить лечебный раствор перекиси из промышленного продукта пергидроля — примерно 30% перекись. То есть, его надо разбавить в 10 раз, чтобы получить аналог аптечной перекиси. Вещество это едкое и взрывоопасное! Разбавлять можно только водой в пластиковой таре. С металлом, щелочами, органическими растворителями контачить не должен.

Таким образом, с учетом темы статьи, следует сказать, что перекись водорода «уникальная штука» и играет важнейшую роль! С ее помощью можно в мгновение обогатить аквариумную воду кислородом и тем самым спасти рыбок, находящихся даже в тяжелой стадии асфиксии. Для большей эффективности, рекомендуем набирать перекись в шприц и распылять ее по дну аквариума в разных местах.

Лайфхак№3: Многие знают, что такое кислородные таблетки и многие их часто применяют при транспортировке рыбок. Однако, мало кто знает и сталкивался с таким аквариумным оборудованием, как ОКСИДАТОРЫ.

Оксидаторы бывают разными: для долгой транспортировки рыб, для мини аквариумов, для аквариумов больших объемов, для прудов. Суть их проста – перекись водорода помещается в сосуд, в который добавляется катализатор, после начинается реакция, в результате которой выделяется кислород.

 

Как работают оксидаторы для аквариума

Размеры: диаметр 9 см, высота 18 см

Содержимое контейнера: для аквариумов до 400 л. — 250 мл 3 %-ого раствора перекиси водорода, для 600 л — 250 мл 6 %-го раствора.

Продолжительность работы: при температуре 25 °С от двух до восьми недель в зависимости от концентрации раствора и количества используемых катализаторов.

Отсутствие идущих из прибора пузырьков указывает на необходимость перезарядки ОКСИДАТОРа.

1 литра перекиси достаточно на 1 месяц для 20 крупных рыб.

Вы также можете использовать его в аквариуме большего объема, но продолжительность работы прибора уменьшается.

Если Ваш аквариум имеет емкость до 400 л, а двухнедельная продолжительность работы ОКСИДАТОРа для вас слишком мала (например, вы уезжаете в отпуск), вы можете использовать два ОКСИДАТОРа А, поместив в их контейнеры по одному катализатору. В результате продолжительность их работы до перезарядки увеличится до четырех недель.

Размеры: диаметр 4 см, высота 6 см

Содержимое контейнера: —  20 мл раствора перекиси водорода.

В комплекте два флакона по 50 мл с 4,9 %-м раствором перекиси водорода.

Продолжительность работы: при температуре 25 °С 2 — 4 недели в зависимости от количества катализаторов и объема аквариума.

Вы можете установить в аквариуме большего объема до четырех ОКСИДАТОРов МИНИ, либо заменить его катализаторы на более мощные (от ОКСИДАТОРов W, D или A).

ОКСИДАТОР MINI — НЕ ЗАМЕНЯЕТ компрессор или фильтр, он является универсальным окислителем и работает при отсутствии электроэнергии, длительной транспортировке рыб, повышенной требовательности рыб к содержанию кислорода или летнем увеличении температуры воды. Убивает вредные бактерии и лечит наружные болезни рыб.

 

ОКСИДАТОР D

Размеры: диаметр 8,5 см, высота 8,5 см

Содержимое контейнера: для аквариумов от 60 до 150л. — 125 мл 3-6 %-го раствора перекиси водорода.

Продолжительность работы: при температуре 25 °С 1 литра перекиси достаточно на 2 месяца работы в аквариуме с 10-ю крупными рыбами.

Первый безопасный и саморегулируемый прибор, который может круглогодично снабжать пруды кислородом без применения шлангов и электропроводов даже в лютую зиму.

Он предназначен для садовых прудов, а также больших аквариумов объемом свыше 700 л.

Размеры: диаметр 15 см, высота 18 см

Содержимое контейнера: 1 л 6-30 %-го раствора перекиси водорода.

Продолжительность работы:

Летом при разовой заправке — 1-2 месяца.

Зимой подо льдом — на 4 месяца.

Годовая потребность в растворе в зависимости от температуры составляет 3-5 литра.

Плавает в транспортировочной емкости благодаря кольцевому поплавку.

Прибор позволяет транспортировать или содержать большое количество рыб (до 25 золотых рыбок с длиной тела 8 см в 20 л воды) в небольшой емкости (кан, термосумка, пакет и т. д.) объемом 2-20 л в течение длительного времени без дополнительного компрессора или заполнения пакета кислородом.

Продолжительность работы — от 144 часов (при 9 °С) до 36 часов (при 25 °С).

Компактный прибор ОКСИДАТОР FTc позволяет транспортировать или содержать рыбу в небольшой емкости (ведре, полиэтиленовом пакете и др.) объемом 2-20 л в течение длительного времени без дополнительного компрессора.

Усиление потребления кислорода рыбами при повышении температуры (в разумных пределах) автоматически компенсируется прибором.

Один ОКСИДАТОР FTc содержит 1000 мг чистого кислорода.

Рабочее время при температуре 20 °С — приблизительно 12 часов. При повышении температуры время работы уменьшается, но количество выделяемого кислорода увеличивается. При понижении температуры продолжительность работы увеличивается.

 Стоит отметить, что оксидаторы очень редко применяются аквариумистами на постсоветском пространстве. Стоят они относительно не дорого – ОКСИДАТОР А стоит примерно 100 у.е., плюс они экономят электроэнергию… но увы даже спросить не у кого о практике применения. Чаще всего их применяют лишь при длительных перевозках рыбках.

 

Видео об аэарции аквариума

fanfishka.ru

Что такое аэрация

Вода из скважина может быть чересчур насыщенна такими элементами как:

Естественно, что употреблять ее для питья не стоит. Поэтому нужно задуматься о системе очистки. Принцип аэрации, заключен в насыщении воды кислородом. Т.е. при поступлении из скважины в систему водопровода, вода проходит через специальные устройства, в которых обеспечивается ее интенсивный контакт с воздухом.

Благодаря этому, происходит процесс окисления железа, содержащегося в воде. А в ней оно может находиться в двух формах:

Таким образом, после аэрации, минералы окисляются и выпадают в осадок. А дальше, дело уже за системами фильтрации, которые очищают воду.

Зачем нужна такая система

Вода слишком насыщенная железом и другим примесями не пригодна для питья. Нормальным, считается содержание железа, не превышающее 0,5 мглитр. Если значение больше, значит, нужна система очистки.

Помимо вреда здоровью, железо может испортить водяное оборудование. Твердые частицы быстро выведут его из строя. Кроме того, быстро засоряется и система водопровода.

Что может аэратор для воды из скважины:

Также, такие установки проводят обеззараживание воды от примесей органического происхождения.

Достоинства метода

Как метод очистки воды, аэрация имеет ряд преимуществ:

Еще один плюс – после аэрации, вода становится лучше на вкус.

Единственный недостаток – это большие габариты установки. Впрочем, не обязательно размещать ее прямо в доме. Обычно, фильтрационные системы располагаются в помещении с другим скважинным оборудованием, поэтому большие размеры это не слишком большой минус.

Виды аэрационных систем

Всего существует три разновидности очистительных установок:

Они отличаются эффективностью и технической реализацией.

Безнапорная система

Безнапорная аэрация воды из скважины основана на распылении воды, за счет чего происходит ее насыщение кислородом. В этой технологии, используется герметическая емкость, в верхней ее части располагается ввод воды, которая поступает из скважины.

Она подается через мелкий распылитель, и пока капли воды долетят вниз, они успевают окислиться. Т.е. двухвалентное железо, превращается в трехвалентное. Помимо этого, происходит и насыщение кислородом и удаление сероводорода.

Также в емкость осуществляется дополнительная подача воздуха. Это делается специальным компрессором, вывод которого, устанавливается примерно на середине бака. Это также повышает эффективность очистки воды.

Из специфики технологии, в системе водопровода происходит разрыв подачи воды в месте ее распыления. Поэтому начальное давление, создаваемое глубинным насосом, падает. Для компенсации этого явления, к аэрационному баку подсоединяется дополнительный насос, который закачивает воду дальше по системе.

Достоинства:

Недостатки:

Благодаря своей простоте и высокой производительности, безнапорная аэрация воды из скважины является очень востребованным методом для очистки.

Оборудование

Система фильтрации, включает в себя такое оборудование:

Также, система может оснащаться гидроаккумулятром, предназначенным для выравнивания давления в системе водопровода и ее защиты от гидроударов.

Напорная аэрация

В этом случае, аэратор для воды из скважины состоит из одной емкости, в которой и происходит процесс окисления. Очистка воды делается без потери давления в системе, т.к. технология не предусматривает использование распылителей. Она подается в емкость, где осуществляется ее насыщение кислородом.

В аэрационную колонну, воздух подается мощным компрессором под большим давлением. За счет этого, происходит интенсивное перемешивание воды. Сама же емкость, оснащается специальным клапаном, через который происходит периодический сброс накопившегося воздуха.

Также, колонна изначально оснащается фильтрами, которые очищают жидкость от окисленных элементов. Таким образом, в водопровод поступает уже полностью очищенная вода.

Элементы фильтрационной системы:

Достоинства:

Однако, сама по себе, напорная установка гораздо сложнее и дороже безнапорной. Кроме того, технология не может эффективно удалять сероводород. Для этого, система очистки комплектуется дополнительным оборудованием. А это усложняет и удорожает конструкцию.

Эжекторная аэрация

Довольно распространенный способ для чистки от железа. Принцип действия системы такой же, как и у других технологий – он основан на контакте жидкости с воздухом. Однако, в этом случае, используется компактная установка, сделанная по принципу Вентури.

Во время прохождения через нее жидкости, в устройство засасывается воздух, который и контактирует с водой. Дальше, жидкость проходит через фильтры, на которых оседает окислившееся железо.

Плюсы:

Недостаток у этой технологии один – низкая производительность. Кроме того, при сильном загрязнении, использование эжекторов будет нецелесообразным.

Изготовление аэратора

Учитывая дороговизну оборудования для аэрации, многие домовладельцы хотят сделать систему для очистки воды из скважины своими руками. И это вполне реально.

Для самостоятельного изготовления лучше выбирать безнапорную установку, потому что она:

Требуемое оборудование

Перед изготовлением, нужно правильно рассчитать объем потребления воды. От этого зависит объем бака для аэрации. Нужно учитывать, что потребление должно быть меньше 50% от его объема. Если не соблюсти это условие, вода не просто не будет успевать отстаиваться.

Для самостоятельного изготовления системы очистки, потребуется такое оборудование:

Помимо этого, понадобится поплавковый выключатель. Он нужен для своевременного отключения глубинного насоса.

Инструкция по созданию

Собственноручное изготовление такой установки не слишком сложное и состоит из таких этапов:

Кроме поплавкового выключателя, нужно предусмотреть защиту системы от перелива. Для этого, на уровне ввода, врезается еще один вывод и подключается к канализации. Если выключатель не сработает – вода будет уходить в слив.

На этом, установка закончена. Как видно из инструкции, схема ее реализации достаточно простая и для нее не требуется использование специфического оборудования. А большой плюс такой установки, в том, что помимо окисления железа, она обеспечивает эффективное удаление сероводорода.

kanalizaciyasam.ru

1 Очистка с помощью метода аэрации

Процесс аэрации позволяет очистить воду от следующих вредных примесей:

  • Железо;
  • Марганец;
  • Сероводород.

Очистка воды от этих элементов происходит в результате реакции окисления молекул и их перехода из растворимой, в нерастворимую форму, которая, по сути, является обычными механическими частицами, оседающими на фильтрующих устройствах.

Сам процесс аэрации не может быть единственным этапом водоподготовке, но он является необходимым условием, без выполнения которого не может быть произведена качественная фильтрация воды.

Читайте также: обзор систем водоподготовки в загородном доме.

Сегодня доступно большое количество методов окисления и подготовки воды к фильтрации, однако большинство из них имеют ряд существенных недостатков в виде себестоимости процесса, либо в его несоответствии экологическим нормам, в то время как аэрации полностью удовлетворяет все основные требования качественной промышленной обработки воды.

Преимущества аэрации:

  • Безопасность: в воду не добавляются никакие сторонние химические вещества, которые могут принести вред человеческому организму;
  • Стоимость процесса аэрации, в сравнении с методами дающими идентичный результат, достаточно низкая: финансовые затраты требуются лишь на закупку оборудования, и на последующую оплату электроэнергии для работы машин;
  • обезжелезивание аэрацией может проводиться для больших объемов жидкости одновременно;
  • Улучшение вкусовых качеств воды вследствие обогащения её кислородом;
  • Возможность полной автоматизации работы;
  • Безопасность для экологии: поскольку аэрация не предусматривает использование каких-либо химических реагентов, по завершению процесса отсутствуют отходы из химикатов, которые нужно как-то утилизировать.

Единственным существенным недостатком аэрации является необходимость использования громоздкого оборудования, что несколько затрудняет её бытовое применение.

Однако существуют виды аэрации, при выполнении которой задействованы весьма компактные устройства, отлично подходящие для домашнего использования. Более того, при правильном подходе простейшая аэрация воды вполне может быть выполнена на оборудовании, произведенном своими руками.

к меню ↑

2 Виды очистки аэрацией

В зависимости от технологических особенностей процесса, выделяют три основных способа аэрации:

  • Напорная аэрация;
  • Безнапорная аэрация;
  • Эжекторная аэрация.

Каждый из этих методов требует определенного оборудования, имеет разные особенности и этапы проведения. Рассмотрим детальнее каждый из них.
к меню ↑

2.1 Напорная аэрация воды

Поскольку свободная реакция соединения молекул воды с кислородом протекает довольно медленно, для её ускорения используются специальные аэрационные колонны.

Аэрационная колона является герметичным баком, укомплектованным компрессором на входе, и фильтром для удаления окислившихся частиц железа и марганца на выходе. Водопровод, который подключен к системе, наполняет бак водой, после чего срабатывает датчик потока, активирующий компрессор.

Посредством компрессора в камеру через специальную трубу под сильным давлением подается воздух, который интенсивно взаимодействует с водой, окисляя двухвалентное железо.

Как только давление внутри бака давление достигает граничного предела, срабатывает датчик на клапане сброса, и происходит выведение лишнего количества воздуха и газов, вследствие чего давление нормализуется и продолжается работа устройства.

После того как процесс аэрации закончен вода из баллона проходит через фильтрующую установку, которая задерживает окислившиеся частицы железа, и попадает в водопровод, транспортирующий её к устройствам потребления.

В целом, среднестатистическая аэрационная напорная система состоит из следующего оборудования:

  • Колонна для аэрации (герметичный баллон объемом от 100 до 500 литров)
  • Компрессор высокого давления;
  • Датчик потока воды;
  • Датчик уровня давления;
  • Оголовок колонны, укомплектованный специальным клапаном для сброса внутрибаллонного давления;

Аэрация воды напорным методом позволяет выполнить эффективную очистку воды от двухвалентного железа, однако не показывает достаточной эффективности в удалении сероводорода.

Для того чтобы гарантировать качественную фильтрацию воды от сероводорода в основном используется сопутствующая обработка воды химическими окислителями, для чего производители очень часто комплектую аэрационные установки дополнительным оборудованием:

  • Насос для дозировки;
  • Канистра для хранения окисляющих реагентов;
  • Блок автоматического управления насосом.

Эффективная совместная работу двух этих систем обеспечивает максимальную степень удаления всех вредных элементов содержащихся в воде в течение короткого времени.

Детально изучив все особенности аэрации под давлением можно выделить следующие преимущества этого метода;

  • Напорная обработка воды (давление внутри системы составляет от 2 до 6 атмосфер) гарантирует её максимальное взаимодействие с кислородом и, как следствие, наилучшее окисление железа.
  • Баллоны для напорной аэрации достаточно компактны, такие устройства могут быть применены в бытовом использовании;
  • При выходе не происходит потери давления воды в водопроводе;

Единственным существенным минусом является более высокая стоимость оборудования, в сравнении с безнапорной аэрацией.
к меню ↑

2.2 Безнапорная аэрация воды

Суть данного метода заключается в том, что вода при попадании в герметичную аэрационную емкость распыляется форсунками, что обеспечивает её разделение на мельчайшие капельки, которые во время полета от верхней точки к поверхности воды получают необходимый уровень взаимодействия с кислородом для окисления молекул двухвалентного железа.

Кроме того происходит дополнительное насыщения воды кислородом: за это отвечает специальный компрессор, который подает воздух в саму толщу воды (для сравнения приведем устройство производящее пузырьки в аквариуме). Это также позитивным образом влияет на окисление, так как вода перемешивается и пропитывается дополнительным количеством воздуха.

Стоит отметить, что в отличие от напорного метода, в безнапорной аэрации из-за распыления входных потоков воды происходит снижение её давления на выходе.

Для того чтобы слабый поток воды в трубопроводе не доставлял вам дополнительных неудобств, актуальным является приобретение дополнительной насосной станции AL-KO, которая будет нормализовать давление в водопроводе. Отметим, что современные аэрационные устройства изначально комплектуются такими насосами.

Окислившееся железо оседает на дне аэрационного бака, что обуславливает необходимость его очистки с периодичностью в 3 месяца (если вода слишком загрязненная – чаще).

Системы для безнапорной аэрации комплектуются следующим оборудованием:

  • Рабочая емкость (герметичные бак объемом от 400 до 700 л.);
  • Форсунки для распыления воды;
  • Низконапорный компрессор и набор аэраторов, для подачи кислорода в водный слой;
  • Насос для увеличения давления выходного потока;
  • Гидроаккумулятор;
  • Блок управления системой.

Несмотря на наличие существенных недостатков, метод безнапорной аэрации был и остается самым популярным промышленным способом обезжелезивания воды. Рассмотрим детальнее его плюсы и минусы.

Преимущества:

  • Высокая производительность (можно обрабатывать около 5 тыс куб.метров воды за сутки)
  • Обезжелезивание аэрацией воздействует не только на молекулы железа, но и на марганец с сероводородом.

Недостатки:

  • Необходимость дополнительного оборудования для поддержания нормального давления потока воды в трубопроводе, вследствие чего повышается уровень шума всей системы, так как насос довольно громко работает;
  • Отсутствие самоочищения системы, (если вы не будете выполнять регулярную очистку бака своими руками, в осевшем слое железа и серы могут развиваться вредные бактерии);
  • Большие размеры оборудования.

к меню ↑

2.3 Эжекторная аэрация воды

Это наиболее распространенный в бытовом использовании метод аэрации, так как он не требует дорогостоящего и крупноразмерного оборудования.

Аэрационная установка в данном случае представляет собою компактное устройство, которое работает за счет энергии потока вода в трубопроводе, и не требует подключения к электросети. Такие механизмы построены по принципу Вентури: вследствие применения в конструкции эжектора сопла Вентури, в трубе образовывается зона низкого давления, которая провоцирует засасывание пузырьков воздуха через специальное отверстие.

При этом движение воды наружу, сквозь это отверстие, невозможно, так как устройство оборудовано обратным клапаном защиты.

В большинстве случаев данный метод не предусматривает использования аэрационной колоны и дополнительного оборудования, а насыщение воды кислородом происходит исключительно через эжектор, после чего вода выводится непосредственно на фильтрующее устройство.

Разумеется, такая аэрация не может соперничать с более продвинутыми безнапорными и напорными способами ни по эффективности, ни по количеству обрабатываемой воды, однако для домашнего использования, при удовлетворительном, в целом, изначальном качестве воды, данный способ вполне подходит.
к меню ↑

byreniepro.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.