Для чего нужен дроссель


Катушка индуктивности, дроссель — принцип работы

Катушка индуктивности, дроссель. - фото 1

  • Катушка индуктивности, дроссель — принцип работы
  • Как работает дроссель
  • Устройство дросселя
  • Как работает трансформатор
  • Для чего нужен дроссель
  • Как обозначается дроссель на схеме
  • Из чего состоит дроссель
  • Как подключить дроссель
  • Как отличить резистор от дросселя

Катушка индуктивности – устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник.

При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электротехнике.


Что такое дроссель, его применение и принцип работы - изображение 2

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания.

В последнее время применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель в электрике - фотография 3

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Как работает дроссель - изображение 5

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Как работает дроссель


В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.

Устройство дросселя

Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности.

Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Как измерить индуктивность дросселя мультиметром - фото 6

Без дросселя схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.


Присмотревшись, можно заметить, что, во-первых, лампа загорается не сразу, а с некоторой задержкой, во-вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит, потому что в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Как обозначается дроссель на схеме - фотография 7


Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)Т. е — магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор


Рассмотрим работу дросселя, собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается — вторичной .


Из чего состоит дроссель - изображение 8

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений — Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Как подключить дроссель - изображение 9

Таким образом, устройство, состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока, можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор.

Для чего нужен дроссель

Принцип работы - фото 18Виды дросселей

Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току.

При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.

Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход.

Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.


Основные характеристики - изображение 19Источник питания с дросселем

На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор. Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр». Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.

Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.

Разновидности дросселей - изображение 20Дроссель в собранном приборе

Пример:

Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.


Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.

Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).

Как обозначается дроссель на схеме

Условные обозначения:

Принцип работы - фотография 27Условное графическое обозначение дросселей

Из чего состоит дроссель

Элементы:

  • катушка;
  • провод, намотанный на сердечник;
  • магнитопровод.

Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.

Как подключить дроссель

Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.


Применение дросселя - фотография 28Схема подключения дросселя

Источник: principraboty.ru

Электрический дроссель 1

 Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение. 

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).

Условно такие широкие границы подразделяются на несколько участков:


  1. низкие ( звуковые) частоты (20 Гц – 20 кГц);
  2. ультразвуковые частоты (20 – 100 кГц);
  3. высокие и сверхвысокие частоты (от 100 кГц и выше).

Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.

Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.

Последний показатель широко используется при расчетах колебательных контуров. 

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне. Электрический дроссель 2

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

  • переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
  • насыщения. Главное область применения – стабилизаторы напряжения.
  • сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
  • магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Интересное видео об электрических дросселях смотрите ниже:

Источник: pue8.ru

Электрический дроссельКатушку индуктивности, используемую для подавления помех, для сглаживания пульсаций тока, для накопления энергии в магнитном поле катушки или сердечника, для развязки частей схемы друг от друга по высокой частоте — называют дросселем или реактором (от нем. drosseln — ограничивать, глушить).

Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.

Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца.

Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.

Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением. Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.

В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.

Итак, дроссель — катушка самоиндукции, применяемая в качестве большого индуктивного сопротивления для тех или иных переменных токов.

В том случае, если дроссель должен представлять большое индуктивное сопротивление токам низкой частоты, он должен обладать большой индуктивностью, и в этом случае он делается со стальным сердечником. Дроссель высокой частоты (представляющий большое сопротивление токам высокой частоты) делается обычно без сердечника. 

Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.

Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.

Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.

Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.

Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).

Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.

Виды дросселей

Безвитковые дроссели предназначены для подавления высокочастотных помех в электрических цепях. Обычно они представляют собой ферритовый сердечник, выполненный в виде полого цилиндра (или кольца круглого сечения), через который проходит проводник.

Реактивное сопротивление такого дросселя на низких частотах (в том числе на промышленной частоте) мало, а на высоких частотах (0,1 МГц…2,5 ГГц) велико. Таким образом, если в кабеле возникает высокочастотная помеха, то такой дроссель ее подавляет с вносимым затуханием 10…15 дБ. Для создания магнитопроводов безвитковых дросселей применяют марганец-цинковые и никель-цинковые ферриты.

Дроссели переменного тока широко используются в качестве реактивных (индуктивных) сопротивлений, элементов LR- и LC-контуров, а также в выходных фильтрах преобразователей переменного тока. Такие дроссели изготавливают с индуктивностью от десятых долей микрогенри до сотен генри на токи от ~1 мА до 10 А. Они имеют одну обмотку, расположенную на магнитопроводе из ферро- или ферримагнитного материала.

При проектировании дросселя переменного тока необходимо учитывать его следующие основные номинальные параметры: требуемую мощность (наиболее допустимое значение тока), частоту тока, добротность и массу.

Повысить добротность можно различными методами. С точками зрения изготовления магнитопроводов необходимо учитывать, что повысить добротность можно за счет:

  • выбора магнитного материала с высокой магнитной проницаемостью и малыми потерями;

  • увеличения площади поперечного сечения магнитопровода;

  • введения немагнитного зазора.

Сглаживающие дроссели – элементы преобразователей, предназначенные для уменьшения переменной составляющей напряжения или тока на входе или выходе преобразователя. Такие дроссели имеют одну обмотку, в токе которой (в отличие от дросселей переменного тока) присутствуют как переменная, так и постоянная составляющие. Обмотка дросселя включается последовательно с нагрузкой.

Дроссель должен иметь большую индуктивность (индуктивное сопротивление). На его обмотке происходит падение переменной составляющей напряжения, в то время как постоянная составляющая (за счет малого активного сопротивления обмотки) выделятся на нагрузке.

Составляющие тока создают в магнитопроводе дросселя постоянный магнитный поток (который играет роль подмагничивающего) и переменный поток, изменяющийся по синусоидальному закону. За счет постоянной составляющей тока магнитный поток (индукция) в магнитопроводе изменяется в соответствии с начальной кривой намагничивания, в то время как за счет переменной составляющей перемагничивание осуществляется по частным циклам при соответствующих значениях тока.

При увеличении тока переменная составляющая магнитного потока уменьшается (при постоянстве переменной составляющей тока), что приводит к уменьшению дифференциальной магнитной проницаемости и, следовательно, к уменьшению индуктивности дросселя. Физически уменьшение индуктивности с увеличением подмагничивающего тока связано с тем, что по мере увеличения этого тока магнитопровод дросселя все более и более насыщается.

Дроссели насыщения используются в качестве регулируемых индуктивных сопротивлений в цепях переменного тока. Такие дроссели имеют не менее двух обмоток, одна из которых (рабочая) включается в цепь переменного тока, а другая (управляющая) – в цепь постоянного тока. В принципе работы дросселей насыщения лежит использование нелинейности кривой В(Н) магнитопроводов при их намагничивании управляющим и рабочим токами.

Магнитопроводы таких дросселей не имеют немагнитного зазора. Основными особенностями дросселей насыщения (по сравнению со сглаживающими дросселями) являются значительно большее значение переменной составляющей магнитного потока в магнитопроводе и синусоидальный характер ее изменения. 

Развитие радиоэлектронной аппаратуры предъявляет к дросселям различные требования, в частности требует уменьшения габаритов и снижения уровня электромагнитных помех в условиях высокой плотности монтажа компонентов. Для решения этой задачи были разработаны многослойные ферритовые чип-фильтры на основе поверхностного монтажа на печатной плате.

Такие устройства получают по тонкопленочной технологии. На подложку наносятся тонкие слои феррита (например, тайваньская компания «Chilisin Electronics» использует Ni–Zn-феррит), между которыми формируется структура полувитка катушки.

После нанесения слоев, количество которых может достигать нескольких сотен, производится спекание, при котором формируется объемная катушка с ферритовым магнитопроводом. Благодаря такой конструкции минимизируются поля рассеяния и соответственно практически исключается взаимное влияние элементов друг на друга, так как силовые линии в основном замыкаются внутри магнитопровода.

Многослойные ферритовые чип-фильтры

Многослойные ферритовые чип-фильтры: а – технология изготовления; б – внешний вид, соотнесенный со шкалой с шагом 1 мм

Многослойные ферритовые чип-фильтры используются для фильтрации высокочастотных помех в силовых и сигнальных цепях бытовой электроники, источников питания и др. Основными производителями чип-фильтров являются компании «Chilisin Electronics», «TDK Corporation» (Япония), «Murata Manufacturing Co., Ltd» (Япония), «Vishay Intertechnology» (США) и др.

Дроссели с магнитопроводом, изготовленным из магнитодиэлектрика на основе карбонильного железа применяются в радиоаппаратуре, работающей в диапазоне 0,5…100,0 МГц.

В дросселях могут использоваться магнитопроводы, изготовленные из всех известных магнитомягких материалов: электротехнических сталей, ферритов, магнитодиэлектриков, а также прецизионных, аморфных и нанокристаллических сплавов.

В отличие от дросселей в трансформаторах, магнитных усилителях и других подобных устройствах магнитопровод служит для концентрации магнитного потока при минимизации магнитных потерь. В этом случае основная функция, которую выполняет магнитопровод, практически исключает его изготовление из магнитодиэлектрика, который обладает малой относительной магнитной проницаемостью.

Широкая номенклатура ферритов различных марок, предназначенных для работы в аналогичных с магнитодиэлектриками диапазонах частот, сужает область применения магнитодиэлектриков для изготовления магнитопроводов электромагнитных устройств. 

Применение дросселей

Итак, по назначению электрические дроссели подразделяются на:

Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.

Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).

Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.

Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.

В то время в цепях питания вакуумных дуговых ламп применялись дроссельные усилители — это были специальные усилители, в котором анодными нагрузкамиламп служили дроссели.

Дроссельный усилитель

Выделяющееся на дросселе Др усиленное переменное напряжение подавалось на сетку следующей лампы через разделительный конденсатор С. Вследствие того, что индуктивное сопротивление дросселя растет с частотой, дроссельный усилитель не мог давать сколько-нибудь равномерного усиления в широкой полосе частот и применялся только в тех случаях, когда нужно усиливать сравнительно узкую полосу частот и большой равномерности усиления в этой полосе не требовалось.

Андрей Повный, FB, ВК

Источник: ElectricalSchool.info

Электротехнический вид

По своей конструкции этот вид устройства представляет собой магнитопроводящий сердечник с намотанным на него проводником. При прохождении через него переменного тока возникает магнитный поток в сердечнике, имеющий небольшое временное запаздывание по сравнению с силой тока. В период спадания прохождения электротока магнитный поток еще некоторое время находится на стадии возрастания и индуцирует ток, имеющий направление, противоположное основному.

Иначе говоря, дроссель является индукционным сопротивлением, способным сглаживать пиковые значения силы тока уменьшать амплитуду пульсации. Это свойство используется во многих бытовых и промышленных электроприборах, работающих от сети переменного тока.

Особенности конструкции

Как отмечалось, конструктивно это устройство состоит из проводника, который намотан на сердечник. По форме сердечник может быть любым:

  • линейным;
  • кольцеобразным;
  • овальным;
  • подковообразным.

Выпускаются эти элементы как открытого типа, так и с закрытым корпусом в зависимости от сферы применения и конструкции конкретного прибора.

Сфера применения

Самодельные дросселиВо время включения электродвигателей переменного тока отмечается скачок напряжения. Дроссель в этом случае играет роль токоограничителя и защищает сеть от перегрузки.

В стабилизаторах напряжения такое устройство служит для уменьшения амплитуды переменного тока и сглаживания пульсаций.

В магнитных усилителях устанавливаются особые дроссельные устройства: их сердечник способен подмагничиваться постоянным током. Изменяя параметры последнего, можно изменять параметры самого дросселя, а конкретно — индуктивное сопротивление.

В лампах дневного света (ЛДС) дроссель выполняет две задачи:

  • способствует зажиганию тлеющего разряда после срабатывания стартера;
  • предотвращает мигание лампы из-за перепадов напряжения в сети.

Использование дросселяВ инверторах и импульсных блоках питания применяют дроссельные блоки с целью ограничения резких всплесков тока. Рассматриваемое устройство в этом случае играет роль фильтра.

При выборе сварочного аппарата возникает дилемма: отдать предпочтение качеству или цене. Второе, как правило, побеждает. Более дешевые «сварочники» отличаются тяжелым зажиганием дуги и разбрызгиванием металла во время сварки из-за пульсаций силы тока. Использование дросселя в цепи сварочного аппарата позволяет получить качественный и ровный сварочный шов, упрощает поджиг дуги и ее удержание.

Проверка исправности

Устройство дроссельКонструкция дросселя настолько простая, что он очень редко выходит из строя. Но к сожалению, иногда это случается. Самые распространенные неисправности — межвитковое замыкание и обрыв цепи, причинами которых, как правило, являются внешние воздействия (вибрация, намокание, механическое повреждение и т. п. ).

Обрыв цепи диагностировать проще всего: с помощью прозвонки или тестера проверяется цепь между контактами на входе и выходе. Если мультиметр показывает бесконечное сопротивление или на прозвонке индикатор не горит, значит, где-то есть обрыв.

Замыкание между витками определить при помощи прозвонки не получится. В этом случае необходим прибор, который точно замеряет сопротивление. Используют мультиметр в режиме омметра, замеряют показатели и сравнивают с номинальным значением. При расхождении более 20% однозначно необходима замена дросселя, так как присутствует межвитковое замыкание.

Источник: tokar.guru

Назначение

Многих интересует, что такое дроссель и как он выглядит. Устройство выполнено в виде железного трансформатора, единственным отличием является наличие одной обмотки. Катушка накручена на сердечник из трансформаторной стали, при этом пластины разделены и не контактируют друг с другом с целью снижения вихревого тока.

Электронный дроссель характеризуется высоким уровнем индуктивности до 1Гн, катушка эффективно противодействует изменениям тока в электроцепи. При снижении силы тока катушка его поддерживает, а в случае резкого повышения катушка обеспечивает ограничение и предотвращение резкого скачка.

Рассматривая, для чего нужен дроссель, следует назвать такие цели:

  • снижение помех;
  • сглаживание пульсаций электрического тока;
  • накапливание энергии в магнитном поле;
  • отделение частей схемы по высокой частоте.

Зачем же нужен дроссель? Основным его назначением в электросхеме является задержка на себе тока конкретного частотного диапазона или накопление энергии  в магнитном поле.

Важность дросселя объясняется тем фактом, что люминесцентные газоразрядные лампы (к примеру, бытовые светильники, фонари на улицах) не функционируют без дросселя. Он выступает в роли ограничителя напряжения, подающегося на электроды газоразрядной лампы.

Также дроссельные устройства формируют пусковое напряжение, требуемое для создания электрического разряда между электродами. Благодаря этому обеспечивается включение люминесцентной лампы. Пусковое напряжение рассчитано всего на доли секунды. Таким образом, дроссель – это устройство, отвечающее за включение лампы и ее стабильное функционирование.

Принцип работы

Электронный дроссель имеет простую конфигурацию и понятный принцип функционирования. Он представляет собой катушку из электропровода, которая намотана на сердечник из специального ферромагнитного материала. Принцип работы базируется на самоиндукции катушки. При рассмотрении конструкции дросселя, становится понятным, что она работает как электрический  трансформатор, только с одной обмоткой.

Сердечник и ферромагнитные пластины изолированы с целью предотвращения токов Фуко, создающих существенные помехи. Катушка имеет большую индуктивность, причем непосредственно выступает защитным ограждением при резких скачках напряжения в сети.

Однако данная конструкция считается низкочастотной. Переменный ток в бытовых сетях колеблется в широком диапазоне, поэтому колебания разделяются на три категории:

  • низкие частоты в пределах 20Гц-20кГц;
  • ультразвуковые частоты от 20 кГц до 100 кГц.;
  • сверхвысокие частоты более 100 кГц.

В высокочастотных устройствах не предусмотрен сердечник, вместо него применяются каркасы из пластика или стандартные резисторы. А сам дроссель в таком случае имеет конфигурацию многослойной навивки.

В процессе расчетов и составления схем, как подключить дроссель учитываются его параметры и характеристики сети, в которой необходимо поддерживать работу ламп. Особенное внимание при подключении необходимо уделять этапу начала свечения лампы, когда требуется пробивание газовой среды при помощи разряда. В этот момент необходимо высокое напряжение, а после этого прибор выступает в качестве сдерживающего напряжение элемента.

Основные характеристики

В большинстве своем дроссели имеют существенные габариты. Чтобы сделать приборы компактными без ухудшения технических характеристик, катушка индуктивности заменяется стабилизатором, который по сути является мощным транзистором. В результате получается электронный дроссель. Однако прибор такого типа является полупроводником, поэтому его нецелесообразно использовать в высокочастотных приборах.

Электронный дроссель необходимо выбирать по нескольким параметрам, основной из которых считается индуктивность, измеряемая в Гн. Также важными техническими характеристиками приборов выступают:

  • сопротивление, которое принимается во внимание при постоянном токе;
  • изменение напряжения в допустимых рамках;
  • ток подмагничивания – используется номинальный показатель.

Выбирая устройство, в первую очередь необходимо ориентироваться на цели и задачи, для чего нужен дроссель в схемах электроцепей. Применение в электрических дросселях магнитных сердечников дает возможность обеспечить компактность приборов при сохранении  прежних показателей индуктивности. Ферритовые и магнитодиэлектрические составы, благодаря низкой емкости, могут использоваться в широких диапазонах частот.

Разновидности дросселей

Выделяют следующие виды электрических дросселей, на основании видов ламп, в которых они используются:

  • однофазные – подходят для бытовых и офисных систем освещения, которые работают от сети 220 Вольт;
  • трехфазные – рассчитаны на сети 220 и 380 Вольт. Такие дроссели подойдут для ламп ДРЛ и ДНАТ.

Электронный дроссель может принадлежать к одной из категорий в зависимости от места установки:

  • встраиваемые или открытые. Они монтируются в корпус светильника, который обеспечивает защиту от внешних факторов;
  • закрытые – отличаются герметичностью и влагозащищенностью. Такие устройства можно устанавливать в уличных условиях на открытых участках.

Что такое дроссель?

В зависимости от назначения дроссели разделяют на виды:

  • переменного тока. Применяются с целью ограничения напряжения в сети, к примеру, в момент запуска электромотора или импульсных ИВЭП;
  • насыщения. В основном устанавливаются в стабилизаторах напряжения;
  • сглаживающие – для снижения пульсаций выпрямленного тока;
  • магнитные усилители. Такие катушки индуктивности предполагают наличие подмагничивающегося сердечника благодаря наличию постоянного тока в сети. При регулировке его параметров можно менять значения индуктивного сопротивления.

Дроссели могут сохранять работоспособность на протяжении длительного срока эксплуатации при правильном использовании. Прибор предназначен для ограничения резких скачков напряжения, что позволяет обезопасить как приборы, так и всю сеть.

Похожие статьи:

Источник: odinelectric.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.