Назначение и принцип действия защитного заземления


Защитное заземление — это специальное электрическое соединение с контактом «земля» различных электроприборов, металлические элементы которых не находятся под напряжением, но могут проводить опасные токи при неправильной работе.

Основное назначение защитного заземления — повышение безопасности и исключение возможности поражения человека электрическим током (ПУЭ 1.7.29).

Защитное заземление 1
При правильно сделанном соединении, в ситуации с нарушением изоляции и появлении тока утечки, срабатывает УЗО, тем самым защищая человека, от поражения током при прикосновении к металлическим частям какой-либо техники (стиральные машины, электрические плиты и так далее).

Функции и отличия

Заземление имеет большой ряд назначений, а основной принцип действия защитного заземления — отвод электрического тока в землю от металлических поверхностей электрических приборов. Рассмотрим, для каких же целей применяется защитное заземление и в чем отличия от обычного заземления ?


Основная функция обычного, так называемого рабочего заземления — защита электроприборов от неустойчивой работы и сбоев, а также предупреждение внештатных ситуаций, таких как короткое замыкание.

Основная функция ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ — защита человека при возникновении аварийной ситуации, когда велика вероятность поражения электрическим током при соприкосновении с металлическими частями электроприборов.

Кроме того такой вид соединения:

  • соответствует регламенту ПУЭ (правила устройства электроустановок);
  • снижает помехи при работе электрической техники;
  • является отличной молниезащитой здания.

В современном доме/квартире просто необходимо проводить работы по прокладке заземляющего кабеля и его подключению к общему «контуру земли». Обусловлено это тем, что современные бытовые приборы обладают серьезными мощностными показателями, они способны потреблять большое количество энергии, а их корпусные детали, как правило, выполнены из металлов, которые, как известно, хорошо проводят электрический ток. Отсутствие заземляющей цепи грозит серьезными последствиями, в особенности при установке в помещении такой техники как:

  • стиральные машины;
  • холодильники;
  • электрические плитки;
  • водонагреватели и котлы;
  • микроволновые печи.

Защитное заземление 2

Прямое подключение через такую цепь позволяет избежать появления высокого напряжения на поверхностях этих электроприборов и снизить количество помех, возникающих при эксплуатации этой техники.

Заземляющая цепь в квартирах и частных домах

Далеко не все знают, что при работе той же микроволновой печи без подключения к «земле» возникает большое количество помех, вредно влияющих на организм человека. А в случае установки стиральной машины подобные «контуры» безопасности остро необходимы, так как при поломке агрегата и появлении протечек риск поражения человека электрическим током возрастает в разы!

Поэтому у большинства приборов такого класса часто имеется отметка на корпусе или же в инструкции о необходимости подключения к заземляющей цепи, зачастую без указания типа заземления. Лучше лишний раз перестраховаться и подключать такую технику через отдельную клемму на корпусе, в особенности если не указан метод проведения заземления.

Защитное заземление 3

Современная бытовая техника заведомо рассчитана на эксплуатацию с розетками имеющими  «выход на землю», но далеко не всегда эти розетки, установленные в домах подключены к этому выходу. Особенно это касается старых зданий, без модернизированной электропроводки. Обусловлено это тем, что во времена строительства зданий (до 1998 года) были совершенно иные ГОСТы, регламенты и правила проведения электрических цепей, а у населения отсутствовала мощная электрическая техника, требующая отдельного заземления.


Однако позже ситуация изменилась и заземляющие проводники появились в распределительных общедомовых щитках. В частных же домах ситуация обстоит несколько иначе, заземляющая цепь может быть установлена, а может отсутствовать вовсе, все зависит от того, позаботился ли владелец или строительная компания об установке электропроводки соответствующей всем необходимым нормам или нет.

Виды заземлений

Электропроводка и заземление в зданиях может быть нескольких типов:

  • типа TN-C (глухо заземленная нейтраль), подача напряжения через два провода — один из которых нейтральный, а второй находится под напряжением, ЗАЗЕМЛЕНИЕ ОТСУТСТВУЕТ, необходима его прокладка (возможна только в частном доме);
  • типа TN-S (используется трехжильный кабель) —  ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении;
  • типа TN-C-S (используется пятижильный кабель — 3 провода фаза, 4 провод — нулевой, 5 провод — защитное заземление, подключение к отдельной шине в щитке), ЗАЗЕМЛЕНИЕ ПРИСУТСТВУЕТ, возможна необходимость разводки проводки с заземлением в помещении.

Основными отличиями систем типа TN-C от систем TN-S (TN-C-S) является наличие отдельного заземляющего провода в системе TN-S (TN-C-S), у архаичных же систем TN-C отдельного заземления нет, оно выполнено вместе с нулем.

Защитное заземление 4

Отсутствует заземление, что делать

В случае, если дом старый, а электропроводка не модернизирована, то в электрической схеме такого здания отсутствует канал заземления. В такой ситуации нет возможности создания защиты металлических поверхностей приборов от электрического тока. Однако в данном случае все таки присутствует метод защиты электрических цепей при аварийных ситуациях, таких как короткое замыкание, он называется ЗАНУЛЕНИЕ.

В чем отличия? Если при защитном заземлении происходит защита металлических поверхностей и отвод тока в землю через общую шину, то при занулении канал «земля» какого-либо прибора или розетки осуществляется соединение этого канала с нулем (нулевым проводником электропроводки).

Основное отличие заключается в том, что в схеме с занулением при возникновении аварийной ситуации происходит отключение прибора, поверхности которого оказались под напряжением из-за «пробоя» изоляции, от электросети. Так, зануление не защищает полностью от поражения электрическим током, но минимизирует воздействие на человека за счет моментального отключения электричества.

Если в условиях многоквартирного дома отсутствует возможность установки заземления из-за использования проводки типа TN-C, то стоит использовать метод зануления. Если же присутствует возможность прокладки новой современной проводки, например, в частном доме, то необходимо проводить работы по созданию защитного контура заземления.

Заземляем сами


При прокладке заземляющего контура защиты в первую очередь необходимо выбрать тип схемы, по которой будут вестись работы. Опытные мастера рекомендуют выбирать схему типа TN-C-S. Её основное преимущество заключается в том, что оборудование имеет непосредственный контакт с землей. Контакт нейтрали и земли ведется одним проводником, а на входе в щиток разделяются на 2 отдельных. Данная схема обеспечивает надежную защиту, поэтому устанавливать УЗО нет необходимости, достаточно лишь простых автоматов. Однако согласно ПУЭ обязательно выполнить требования по механической защите общего контакта нейтрали и земли (PEN), а также создать дополнительное резервное заземление на опорах на расстоянии 200 м или 100 м.

Защитное заземление 5

Создать контур защитного заземления достаточно просто, если руководствоваться правилами перечисленными ниже. В первую очередь для создания контура необходимо выбрать схему защитного заземления, их существует несколько видов, самые надежные и удачные:

  • замкнутая (выполняется, как правило, по форме треугольника);
  • линейная.

В замкнутой схеме все заземляющие проводники вкопаны в землю, находятся на одной глубине и соединены между собой металлической перемычкой. Основное преимущество — работоспособность в случае разрыва (от коррозии или других воздействий) металлической перемычки.

Защитное заземление 6

В линейной же схеме проводники выстроены в одну линию и соединены перемычкой последовательно друг с другом. Данная схема чуть более проста в создании, но имеет недостаток — при повреждении перемычки из строя выходит вся система.

Создание контура заземления

Итак, для создания контура заземления нам понадобятся следующие инструменты и материалы:

  • Лопата.
  • Сварочный аппарат (обязателен).
  • Пила по металлу или болгарка.
  • Кувалда.
  • Пассатижи, гаечные ключи.
  • Металлический уголок/швеллер/П-образный профиль из нержавеющий стали длиной от двух метров (с площадью поперечного сечения ДО 150 мм²).
  • Металлические полоски длиной от 110 см, шириной 4 см, толщиной 4–5 мм.
  • Металлическая полоса необходимой длины (от места залегания до места контакта с домом), ширина 4 см, толщина 4–5 мм.
  • Крупные болты, гайки и шайбы (М8-М10).
  • Провод из меди с толщиной не менее 6 мм².

После того как все необходимое имеется в наличии можно приступать к монтажу защитного заземления. В первую очередь следует выбрать место, лучше всего выбрать такой участок земли, где редко находятся люди или животное, так как во время отвода электричества в почву может произойти поражение электрическим током. Лучше всего выбрать место на границе участка, на максимальном удалении от зоны постоянного посещения.

После чего необходимо выкопать узкую траншею глубиной 60–70 см от места контакта с домом до места отвода электричества. В месте отвода электричества необходимо выкопать соответствующую фигуру (в зависимости от выбранной схеме) со сторонами ~1.2 м между проводниками.

Защитное заземление 7

Затем в каждом углу фигуры (у нас это треугольник) — вкапываются металлические уголки в землю на глубину 2 м и больше. К торчащим концам вкопанных проводников привариваются заготовленные заранее металлические пластины, к одному концу которой приваривается полоса-проводник, идущая непосредственно к месту контакта заземления с домом.

Защитное заземление 8

В месте контакта заземления к этой пластине монтируется провод из меди, который уже выходит из под земли и выводится в электрощиток.

Защитное заземление 9

После выполнения этих работ траншеи обратно закапываются. На данном этапе работы по защитному заземлению можно считать законченными.

Источник: ProFazu.ru


Классификация заземляющих систем (естественные и искусственные конструкции)

В качестве заземляющих устройств с характеристиками, соответствующими требованиям ПУЭ, широко применяются как естественные, так и искусственные системы и приспособления. Естественными ЗУ называются уже заглубленные в землю металлические конструкции и трубопроводы или их части, находящиеся в непосредственном соприкосновении с грунтом.

Дополнительная информация: К ним также относят не имеющие разрывов оболочки кабелей, металлические шпунты и подобные им элементы заземленных конструкций и систем коммуникации.

Назначение и принцип действия защитного заземления

oads/2019/02/estestvennye_zazemliteli.jpg.webp 770w" data-lazy-sizes="(max-width: 500px) 100vw, 500px" data-lazy-src="https://fishkielektrika.ru/wp-content/webp-express/webp-images/doc-root/wp-content/uploads/2019/02/estestvennye_zazemliteli-500x227.jpg.webp" />
Естественные заземлители зданий и сооружений

Поскольку на обустройство таких ЗУ специальных затрат совершенно не требуется – действующими нормативами они рекомендуются к применению в первую очередь. И только в случае, если естественные заземляющие конструкции отыскать не удается – приходится устраивать их искусственный аналог. Для выяснения того, что является определением понятия искусственного заземления, потребуется разобраться с ним более подробно.

Под такой системой понимается устройство, изготавливаемое специально в целях организации местного заземления на трансформаторной подстанции или на стороне потребителя. В качестве элементов конструкции традиционно применяются вбиваемые вертикальные или укладываемые горизонтальные стальные заготовки. В первом случае используются стальные прутки диаметром не менее 12 мм и длиной 3-5 метра, а во втором – уголки с типоразмером 50x50x6 мм. Для этой же цели могут выбираться металлические трубы диаметром не менее 6 мм.


Установка заземлителя в грунт
Установка заземлителя в грунт

Вертикальные электроды (смотрите фото слева) забиваются в грунт на глубину 2,5 метра, для чего в нем предварительно подготавливается траншея глубиной около 0,5-0,6 метра. Оголовок вбитого электрода должен выступать над поверхностью земли выкопанной траншеи на высоту порядка 0,1-0,2 метра. Вертикальные элементы конструкции соединяются с горизонтальными перемычками на сварку.

Обратите внимание: Систему траншей с размещенными в них электродными прутьями необходимо засыпать выбранной ранее землей, очищенной от крупных камней и постороннего мусора.

Выбор параметров электродных прутьев и глубина их погружения зависят от характера грунта в данной местности и особенностей ее климатических условий.

Согласно ГОСТ и действующим положениям ПУЭ сопротивление Rз контура заземления на протяжении периода эксплуатации должно составлять:

  1. не более 8 Ом при питающем фазном напряжении подстанции 220/127 Вольт,
  2. порядка 4 Ома при линейном питающем напряжении 380 Вольт;
  3. не более 2-х Ом при электропитании 660/380 Вольт.

Эти параметры действительны для случая, когда ЗУ применяются в сетях напряжением до 1000 Вольт. Если они обустраивается для действующих электроустановок с рабочими напряжениями выше 1000 Вольт и с малыми токами замыкания на землю – сопротивление высчитывается по специальным формулам (смотрите ПУЭ).

Защитное заземление и зануление

Чтобы понять, что такое защитное заземление – потребуется разобраться в особенностях организации и обустройства. При этом важно научиться отличать его от рабочего аналога, необходимого для нормального функционирования питающих цепей. Защитное заземление в отличие от рабочего обеспечивает безопасные условия для обращения с оборудованием, открытые части которого в случае аварии оказываются под напряжением. Однако нередки ситуации, когда обустроить защитный контур на конкретном объекте не представляется возможным. Это может быть связано с отсутствием условий для его размещения или другими причинами организационного характера.

Важно! Для защиты человека от удара током в условиях, когда невозможно организовать обычное заземление, используется защитное зануление.

Чтобы детально разобраться в том, что это такое защитное зануление потребуется ознакомиться с принципом его действия. Суть этой системы заключается в соединении открытых токопроводящих частей, которые могут оказаться под напряжением, с наглухо заземленной нейтралью питающей линии (трансформатора).

Схема заземления и зануления
Защитное заземление и зануление решают одну и ту же задачу обеспечения безопасности человека

Таким образом, защитное заземление и зануление для электроустановок, как системы, решают одну и ту же задачу обеспечения безопасности человека, но каждая по-своему (смотрите фото выше). В первом случае для организации цепочки стекания аварийного тока применяется местное заземляющее устройство, снижающее высокий потенциал на корпусе оборудования до безопасного уровня. При обустройстве системы зануления используется нейтраль питающей сети, позволяющая превратить аварийную ситуацию в обычное однофазное замыкание. Областью применения защитных занулений являются все случаи, когда невозможно применить обычную систему заземления.

Назначение и принцип работы защитного заземления

Уже отмечалось, что система электрического заземления предназначена для защиты персонала, обслуживающего электроустановки и рядовых пользователей от высокого напряжения. Опасный потенциал чаще всего попадает на металлические части оборудования или бытовых приборов совершенно случайно (из-за повреждения изоляции, например). Назначение и сам принцип действия ЗУ проще понять, если вспомнить о том, что надежный контакт с землей приводит к растеканию опасного тока и снижению уровня потенциала.

Таким образом, назначение защитного устройства – создать условия, уменьшающие риск поражению живых организмов током опасной величины за счет снижения напряжения в точке замыкания.

Принцип действия системы заземления заключается в снижении высокого потенциала, случайно оказавшегося на корпусе оборудования, до безопасного для организма человека значения. В отсутствие функционального заземления неумышленное прикосновение к нему равносильно непосредственному контакту с фазной жилой. С учетом того, что оператор чаще всего стоит на железобетонном полу, а обувь у него не всегда сухая – через его тело может протекать значительный по величине ток.

Принцип работы заземления
Наличие защитного заземления создает условия для того, чтобы основная часть тока с системы стекала в землю

Наличие функционального заземления создает условия для того, чтобы основная часть тока с системы стекала в землю. Его доля, приходящаяся на организм человека, будет ничтожно мала и не причинит ему никакого вреда (смотрите фото слева). Это гарантирует требуемый уровень электробезопасности при работе с заземляемым устройством.

Дополнительная информация: Системы заземления наряду с уже известным нам техническим занулением – не единственные варианты обеспечения безопасности при эксплуатации электроустановок.

Наряду с ними ПУЭ рекомендуются к применению специальные устройства аварийного отключения питающей линии (УЗО), срабатывающие при появлении утечек на землю.

Как рассчитать систему заземляющих элементов

Знакомство с порядком расчета заземления следует начать с выяснения того, какую величину принимать за определяющий показатель и для какой цели применяется сама процедура. Этим параметром является сопротивление защитного контура, зависящее от таких технических показателей, как:

  • Габариты и форма заземляющей системы.
  • Глубина ее погружения в землю.
  • Состояние грунта в данной местности.

Важно: Большой «вклад» в формирование проводимости цепочки стекания тока вносит переходное сопротивление контактов в конструкции самого ЗУ.

Известно, что контур искусственного заземления состоит из комплекта вертикальных и горизонтальных металлических элементов и медной соединяющей их шины. С целью обеспечения минимального сопротивления стеканию тока в землю необходимо:

  1. использовать заземляющие системы с большой площадью контакта с грунтом (при необходимости – увеличить количество вертикальных штырей и их шаг);
  2. постоянно следить за состоянием почвы в месте расположения устройства и уметь определять удельное сопротивление грунта;
  3. контролировать надежность сварных соединений.

Для оценки реальных показателей эффективности ЗУ необходимо ознакомиться с существующими методиками измерения проводимости заземляющей системы.

Типовые методики расчета

Для расчета защитного заземления потребуется заранее определиться со следующими исходными показателями:

  • Размеры и общее число вбитых в грунт штырей из стали.
  • Расстояние, оставляемое между ними (шаг установки).
  • Глубина заложения прутьев.
  • Удельное сопротивление самой почвы в месте обустройства ЗУ.

Помимо них важно учитывать геометрическую форму и материал заготовок, из которых сваривается система из заземлителей (либо это типовой стальной уголок, либо медная полоса и тому подобное).

Согласно действующей нормативной документации (ПУЭ, в частности) минимальные размеры выбранных заготовок должны быть не менее:

  1. полоса стальная с сечением не менее 100 мм2;
  2. стальной уголок со сторонами 4х4 мм;
  3. круглый стальной брусок сечением 16 мм2;
  4. металлическая труба диаметром 32 мм и толщиной стенки не менее 3,5 мм.

Минимальные размеры штырей или арматурных прутьев, используемых для изготовления системы ЗУ, выбирается из следующих соображений. Длина заготовок не может быть менее 1,5-2 метра. Расстояния между ними берется кратным длине каждого стержня. В зависимости от того, какая площадка выбирается для обустройства ЗУ, они устанавливаются либо в ряд один за другим, либо в виде квадрата или правильного треугольника. Согласно применяемой методике расчета основная его задача – определиться с числом стержней и параметрами соединяющей из полосы (ее длиной и толщиной).

Для расчета всех параметров защитного заземления Вы можете воспользоваться онлайн калькулятором на нашем сайте.

Пример расчета элементов ЗУ

В качестве примера рассмотрим расчет сопротивления стеканию аварийного тока для вертикального стержня, взятого в единственном экземпляре (чертеж справа).

вертикальный заземлитель
Чертеж вертикального заземлителя

Для его проведения потребуется знать следующие исходные данные:

ρ – удельное сопротивление грунта в этом месте (в Омах на·метр);

L – длина стержня в метрах;

d – его основной типоразмер (диаметр) в метрах;

Т – расстояние до середины прутка от поверхности в метрах.

Если учитывать величину, ограничивающую растекание тока для горизонтальных элементов ЗУ, то сопротивление для их вертикальных аналогов вычисляется по следующей формуле:

Формула расчета сопротивления растеканию тока
Формула расчета сопротивления растеканию тока для вертикальных заземлителей

В ситуации, когда заземляющее устройство обустраивается в неоднородном грунте (специалисты называют его двухслойным), удельное сопротивление рассчитывается так:

Формула расчета удельного сопротивления грунта
Формула расчета удельного сопротивления для неоднородного грунта

где – Ψ представляет собой сезонный коэффициент;

ρ1 и ρ2– удельные сопротивления различных слоев местного грунта (верхнего уровня и нижнего слоя соответственно), измеренные в Омах на·метр;

Н – толщина слоя, расположенного в верхней части грунта в метрах;

t – общее заглубление вертикальных элементов (глубина всей траншеи), равное примерно 0,7 метра.

Нужное число стержней (без учета горизонтальных компонентов) определяется следующим образом:

Формула для расчета количества стержней

где представляет собой нормируемое согласно ПТЭЭП сопротивление растеканию.

Если учитывать горизонтальные составляющие ЗУ, то формула для числа вертикальных штырей примет следующий вид:

Формула для расчета количества вертикальных заземлителейгде ηв – это коэффициент использования системы, указывающий на то, насколько сильно токи растекания от единичных элементов влияют друг на друга (при их различном расположении).

Дополнительная информация: При параллельном размещении системы из прутьев взаимное влияние токов растекания единичных штырей проявляется значительно сильнее.

Именно поэтому при слишком близком их расположении общее сопротивление защитного контура существенно возрастает. Полученное после использование указанных формул число заземляющих элементов обычно округляется до большего значения. Расчет заземления по ним удается автоматизировать, если воспользоваться специально разработанной для этих целей программой «Электрик v.6.6». Скачать это ПО можно бесплатно на соответствующем сайте в Интернете.

Отличие рабочего заземляющего провода от защитной шины

Рабочий и защитный заземляющие проводники отличаются один от другого, прежде всего, своим назначением. Первый из них служит целям обеспечения нагрузки фазным током, создавая цепь для его протекания от трансформатора к потребителю. Второй же используется целенаправленно для обустройства систем заземления (как на станционной стороне, так и у потребителя).

Обратите внимание: На производстве или в частных домах, например, заземляющая жила используется для организации так называемого «местного» или повторного заземления.

Таким образом, основное функциональное назначение рабочей шины – создание условий для бесперебойной работы станционного и местного электрооборудования за счет прокладки отдельной от защитного проводника линии. Система заземления функционально решает совсем иные задачи – она создает условия для безопасного режима эксплуатации этого оборудования. Кроме того, к ней подключаются установленные на предприятиях или в частных домах молниеотводы. Она же используется при необходимости создания систем заземления и уравнивания потенциалов в электроустановках.

схема разделения PEN проводника
Принципиальная схема разделения PEN проводника на PE и N

Чтобы не путать эти два типа заземляющих проводников на электрических схемах – специально введены буквенные и цветовые обозначения, указывающие на способ их монтажа (совмещенный или раздельный). В первом случае общий провод обозначается как PEN, а при раздельной прокладке они функционально разделены на PE защитный и на N, нулевой или рабочий (фото слева). В зависимости от способа оформления этих двух проводников различают несколько видов систем заземления, допустимых к применению в российских питающих сетях.

Требования, контроль, проверка

При обустройстве и эксплуатации систем заземления организации контроля их состояния уделяется повышенной внимание. Перед проведением этих мероприятий в первую очередь необходимо ознакомиться с содержанием терминов, используемых для описания процедур. Под «проверкой» понимается визуальное обследование систем заземления на соответствие следующим требованиям:

  1. надежность контактов в местах сочленения элементов ЗУ;
  2. отсутствие следов разрушения на открытых частях конструкций и подводящих медных шин;
  3. состояние защитной окраски, которую рекомендуется регулярно обновлять, а также наличие маркировки на подводящих проводниках.

Под словом «контроль» понимают периодические испытания заземляющих контуров с целью выявления соответствия их сопротивлений стеканию тока установленным ПУЭ нормам. Согласно требованиям этого документа оно не должно превышать нескольких единиц Ома.

Дополнительная информация: Для контроля состояния заземления потребуются измерительные приборы, подключаемые к конструктивным элементам по специальной схеме.

Согласно требованиям ПУЭ действующие ЗУ должны проверяться не реже чем один раз в полгода (визуальный осмотр). Та же процедура, сопровождающаяся выборочным вскрытием земляного покрова в подозрительных местах, проводится не реже одного раза за 12 лет. При организации контроля исправности и надежности функционирования систем ЗУ также исходят из рекомендаций ПУЭ, определяющих какие напряжения не требуется применять при проверке сопротивления контура, а какие – можно.

Кроме того, типовые методики проводимых периодически контрольных обследований предполагают обязательное измерение сопротивления электрического контура, называемого «петлей фаза-нуль». Эта искусственно создаваемая система формируется путем замыкания отдельно взятого фазного провода на металлический корпус подключенной к действующей сети электроустановки.

По сути, такая петля образуется между фазной шиной и заземленным нулем, что и стало поводом для присвоения ей такого названия. Знание этого параметра позволяет точнее контролировать цепи заземления с целью обеспечения требуемой эффективности защиты (стекания аварийного тока в грунт). От величины сопротивления этого контура зависит безопасность обслуживающего персонала и работающих с бытовыми приборами людей.

Как определить сопротивление петли «фаза-нуль»

Требования, содержащиеся в правилах ПТЭЭП, предписывают постоянный контроль состояния ЗУ, обеспечивающих безопасность эксплуатации бытового и промышленного электрооборудования. Согласно этим нормативам в системах до 1000 Вольт с заземленной наглухо нейтралью они обязательно проверяются на одиночное фазное замыкание. Используемые методики испытаний, прежде всего, опираются на техническую базу, представленную образцами измерительных приборов специального назначения.

Измерительная аппаратура

Для проверки сопротивления контурной цепочки замыкания «фаза нуль» традиционно применяются электронные приборы, отличающиеся малой погрешностью измерений. К наиболее известным образцам измерительной техники этого класса относят:

  • Измерители марок М 417 и MSC 300, позволяющие определять проводимость контролируемых цепей (на основании полученных результатов токи КЗ в грунт вычисляются по специальным формулам).
  • Прибор ЭКО-200, предназначенный исключительно для определения токов КЗ.
    Устройство ЭКЗ-01, используемое точно так же как и ЭКО-200.
  • Измерительный прибор марки ИФН-200.

М417 допускается применять при организации и проведении измерений в трехфазных цепях с заземленным наглухо нулем (в этом случае снятия питающего напряжения не требуется). В ходе испытаний используется метод падения напряжения при размыкании контролируемой цепи на время порядка 0,3 секунды. К неудобствам работы с этим прибором относят обязательность его калибровки перед началом каждого нового измерения.

прибор М-417
Измеритель сопротивления цепи фаза-нуль марки М 417

Изделие MSC300 – это более совершенное техническое устройство, оснащенное сложной электронной начинкой в виде современных микропроцессорных чипов. При работе с этим прибором применяется метод снижения потенциала при включении в измеряемую цепь сопротивления величиной 10 Ом. Рабочее напряжение варьируется в границах от 180 до 250 Вольт, а время замера искомого параметра составляет около 0,03 секунды. При проведении замеров он подсоединяется к контролируемой линии в самой удаленной точке, а для начала работы с ним потребуется нажать кнопку «Старт». С результатами измерений можно ознакомиться после вывода их на встроенный цифровой дисплей.

Измеритель MZC-300
MZC-300 измеритель параметров сетей электропитания зданий и сооружений

В ситуации, когда в распоряжении пользователя не оказалось ни одного образца специальной измерительной техники – для практического определения сопротивления петли «фаза-нуль» могут применяться типовые вольтметр и амперметр. Требуемый результат находится по простейшей формуле, знакомой многим еще по школьному курсу физики.

Выводы

В заключительной части обзора отметим, что областью применения систем защитного заземления являются все электрическое оборудование, работающее как на стороне потребителя, так и в границах трансформаторной подстанции. Эти устройства характеризуются тем, что обеспечивают условия для безопасной работы обслуживающего персонала (защищают его от удара электрическим током). После знакомства с особенностями их обустройства и расчета ни у одного пользователя не должно остаться сомнений в том, для чего нужно заземление при эксплуатации электроустановок.

Источник: FishkiElektrika.ru

Защитное заземление – преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Назначение защитного заземления – устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е. при замыкании на корпус.

Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус. Это достигается уменьшением потенциала заземленного оборудования, а также выравниванием потенциалов за счет подъема потенциала основания, на котором стоит человек, до потенциала, близкого по назначению к потенциалу заземленного оборудования.

Область применения защитного заземления – трехфазные трехпроводные сети напряжением до 1000В с изолированной нейтралью и выше 1000В с любым режимом нейтрали.

 

Назначение и принцип действия защитного заземления

Рис.1 Принципиальные схемы защитного заземления:

а – в сети с изолированной нейтралью до 1000В и выше

б – в сети с заземленной нейтралью выше 1000В

1 – заземленное оборудование;

2 – заземлитель защитного заземления

3 – заземлитель рабочего заземления

rв и rо – сопротивления соответственно защитного и рабочего заземлений

Iв – ток замыкания на землю

 

Заземляющим устройством называется совокупность заземлителя – металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем. Различают два типа заземляющих устройств: выносное и контурное.

Выносное заземляющее устройство характеризуется тем, что заземлитель его вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки.

Данный тип заземляющего устройства применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряжением до 1000В, где потенциал заземлителя не превышает допустимого напряжения прикосновения. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения электродов с наименьшим сопротивлением грунта.

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру площадки, на которой находится заземляемое оборудование, или распределяют по всей площадке по возможности равномерно.

Безопасность при контурном заземлителе обеспечивается выравниванием потенциала на защищаемой территории путем соответствующего размещения одиночных заземлителей.

Внутри помещений выравнивание потенциала происходит естественным путем через металлические конструкции, трубопроводу, кабели и подобные им проводящие предметы, связанные с разветвленной сетью заземления.

Защитному заземлению подлежат металлические нетоковедущие части оборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей. При этом в помещениях с повышенной опасностью и особо опасных по условиям поражения током, а также в наружных установках заземление является обязательным при номинальном напряжении электроустановки выше 42В переменного и выше 110В постоянного тока, а в помещениях без повышенной опасности – при напряжении 380В и выше переменного и 440В и выше постоянного тока. Лишь во взрывоопасных помещениях заземление выполняется независимо от назначения установки.

Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – находящиеся в земле металлические предметы для иных целей.

Для искусственных заземлителей применяют вертикальные и горизонтальные электроды. В качестве вертикальных электродов используют стальные трубы диаметром 3…5см и стальные уголки размером от 40*60 до 60*60мм и длиной 2,5…,м.

В качестве естественных заземлителей можно использовать: проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов, а также трубопроводов, покрытых изоляцией для защиты от коррозии. Естественные заземлители обладают, как правило, малым сопротивлением растеканию тока, и поэтому использование их для целей заземления дает большую экономую. Недостатками естественных заземлителей является доступность их неэлектротехническому персоналу и возможность нарушения непрерывности соединения протяженных заземлителей.

Источник: megaobuchalka.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.