Заземлитель вертикальный


Заземление корпусов и других частей производственных и бытовых электроустановок, не находящихся обычно под напряжением, позволяет отвести электрический ток в грунт. Это предусмотрено Правилами безопасной эксплуатации электроустановок потребителей и распространяется на фланцы опорных изоляторов, щиты и шкафы управления, рукоятки приводов разъединителей, корпуса измерительных трансформаторов, сварочных аппаратов и другое оборудование. Монтаж системы заземления предусматривает установку заземляющих штырей и крепление к ним заземляющих проводников, присоединенных к корпусам электрооборудования.

Заземление сварочного аппарата, представляющего собой стационарную установку, выполняется с целью обеспечения его безопасной эксплуатации. Основные требования к заземлению в следующем:

  1. Заземляются все нетоковедущие части электросварочных установок и один вторичный вывод.
  2. Сварочное оборудование должно быть оснащено специальным контактом в (виде болта или шпильки), предназначенным для присоединения заземления.
  3. Заземляющий болт должен быть с контактной площадкой, обозначенной специальным знаком заземления.
  4. Последовательное заземление нескольких установок запрещается: для каждого должна быть предусмотрена отдельная точка подсоединения.

Переносные сварочные автоматические установки и полуавтоматы, подключаемые к сети переменного тока свыше 42 В (и более 110 В постоянного), также оснащаются заземляющими контактами. В том случае, когда заземление (зануление) для установки не может применяться или монтаж заземления затруднен, электрооборудование должно иметь УЗО (устройство защитного отключения).

Заземление может использоваться и для устройства молниезащиты.

Для объектов, запитываемых от понижающего трансформатора с глухозаземленной нейтралью и напряжением на вторичной обмотке 380/220 В, повторное заземление устраивается на вводе. При этом сопротивление заземляющего контура, согласно ПУЭ, не должно быть большим 10 Ом. Для того, чтобы обеспечить такие параметры, необходимо использовать заземлители с большой контактной площадью и хорошей проводимостью. Их поверхность должна быть очищена от масла и краски. Пригодны для этого:

  • трубопроводы из металла (кроме тех, что связаны с горючими жидкостями и газами);
  • металлические оболочки кабелей;
  • обсадные трубы;
  • элементы фундамента.

Схема монтажа контура заземления в таком случае должна предусматривать двойное присоединение их к заземляющей магистрали. Для присоединения заземлителей к заземляющим проводникам используется сварка. При этом сварочный шов должен быть вдвое шире прямоугольной формы проводника (в сечении) и в шесть раз – круглого. Если сварку использовать невозможно – применяются хомуты, которые так же, как и сварочные швы, защищают от коррозии слоем битума. Перед наложением хомутов поверхность естественного заземлителя в этом месте должна быть зачищена.

Во взрывоопасных помещениях естественное заземление может использоваться только в качестве дополнительного. Основным должно быть заземление искусственное, выполненное в соответствии с ПУЭ.

Внутренний контур заземления крепится анкерными болтами непосредственно к стене. В местах их пересечения с кабелями или трубопроводами предусматривают защиту из труб. В помещениях с высоким уровнем сырости и кислотности внутренний контур заземления крепят на опорах на расстоянии 100 мм от стен.

Разновидности заземлителей

При отсутствии естественных заземлителей выполняется монтаж наружного контура заземления, к которому присоединяют соответствующие выводы и клеммы электрооборудования.

Искусственное заземление может быть реализовано с вертикальных или горизонтальных заземлителей. Для вертикальных используют трубы из стали или уголки, которые соединяют друг с другом, в результате чего образуется контур. Соединяющие элементы являются горизонтальными заземлителями: применяется для этого металлические полосы толщиной не менее 4 мм или круглого сечения арматура диаметром от 10 мм.


Горизонтальные заземлители могут быть выполнены в виде металлических полос, заложенных на дно котлованов, подготовленных для строительства фундамента. Располагаются полосы таким образом, чтобы их наибольшая поверхность была ориентирована в сторону земли. Сечение полос – 30×4 мм, может использоваться круглая стальная арматура диаметром 12 мм.

Использовать алюминий для создания заглубленного заземления не разрешается, так как этот металл быстро разрушается в почве от электрокоррозии.

Там, где монтаж горизонтального заземления невозможен (например, из-за отсутствия земельного участка, свободного от асфальта и других коммуникаций), применяется технология глубинного заземления. При этом в одной точке в грунт различными способами вводятся металлические стержни: конец каждого следующего соединяется с предыдущим, образуя заземлитель с большой контактной площадью.

Как выполняется горизонтальное заземление

Технология монтажа заземления проста. Используется для выполнения работ болгарка с кругом по металлу, сварка, кувалда и металлическая щетка для зачистки мест сваривания. Весь процесс состоит из следующих пунктов.

Заземлитель вертикальный

  1. Заготавливаем необходимые материалы. Понадобятся:
    • полоса из того же материала 40×4 мм или круглая проволока (арматура) диаметром 10 мм;
    • горяче-цинковые уголки по 2,5 м (сечением 50×50×5 мм – 3-4 шт).

  2. Составляем проект, в котором на прилегающей территории предусматривается достаточно места для расположения вертикальных электродов на расстоянии, превышающем их собственную длину (то есть более 2,5 м).
  3. Роется траншея шириной около 400 мм глубиной 700-800 мм.
  4. В намеченных местах уголки с заточенными верхушками забивают кувалдой, оставляя на поверхности 200 мм.
  5. Выполняется сварка контура заземления: полоса металла приваривается к торчащим над землей верхушкам.
  6. Производится сварка заземления с проволокой или шиной, проложенной к распределительному щиту или шкафу управления.
  7. Сварка полосы заземления с уголками и соединительная проволока покрывается битумной мастикой для защиты от коррозии.
  8. Все элементы присыпаются землей, которая затем утрамбовывается.
  9. Измеряется сопротивление заземления.
  10. Если полученный результат превышает 4 Ом, необходимо добавить еще один вертикальный элемент, который соединяется сваркой с остальной конструкцией.

Заземлитель вертикальный

Монтаж вертикального глубинного заземления

Кроме экономии места, глубинное заземление обладает еще одним преимуществом: за счет контакта с нижними, плотными и насыщенными грунтовыми водами слоями грунта, достигается хорошая проводимость.

Монтаж заземления своими руками осуществляется различными способами. Выбор зависит от свойств грунта в данной местности:


  • для рыхлых пород применяется вдавливание, вкручивание и забивка электродов, состоящих из отдельных стержней;
  • в плотные и мерзлые грунты электроды погружаются методом забивки или вибропогружения;
  • в скальных породах электроды углубляются в специально пробуренную скважину.

Электроды, в зависимости от грунта, используются разные. Они бывают квадратные, уголковые и круглые. Сечение их выбирается для мягких грунтов в пределах 12 – 14 мм (если глубины забивки достаточно до 6 м), для плотных грунтов и значительной глубины забивки (свыше 10 м) сечение электродов должно составлять 16 – 20 мм. Для глубинной забивки используют специальные вибраторы, в других случаях достаточно применение отбойного молотка или мощного перфоратора.

Заземлитель вертикальный

Если о свойствах грунта ничего неизвестно, при монтаже глубинного заземления действуют следующим образом.

Заземлитель вертикальный

  1. Заготавливают электроды необходимой длины.
  2. Забивают первый отрезок заземлителя и измеряют сопротивление заземления.
  3. К верхнему концу забитого отрезка приваривают следующий элемент и забивают его.
  4. Вновь проводят измерения так продолжают до тех пор, пока не получат требуемое значение сопротивления заземления.
  5. К верхнему концу углубленного электрода приваривают шину или проволоку, другой конец которого заводят в распределительный шкаф или щит.

Для того чтобы обеспечить электротехническую безопасность в доме или на предприятии, необходимо установить заземляющий контур. Земля, является отличным проводником, который заряжен отрицательно, и если корпус мощных электрических приборов соединить с этим проводником, посредством вертикального заземления, то можно не опасаться поражения электрическим током, даже в случае утечки фазного напряжения.

Чтобы осуществить монтаж вертикального заземления, которое бы отвечало всем правилам и стандартам, необходимо ознакомиться с основными принципами правильной установки этого метода электротехнической защиты.

Материалы для вертикального заземления

Как показала практика, лучший вертикальный заземлитель — это стальной круглый стержень, который устанавливается в грунт, непосредственно возле защищаемого объекта. Кроме стального прута, допускается использовать в качестве заземлителя медный провод. Но учитывая высокую стоимость этого материала, его не так часто используют в качестве заземляющего проводника. Одного прута не достаточно для обеспечения надёжной защиты от поражения электрическим током, поэтому стержни помещённые на некотором расстоянии друг от друга соединяются с помощью электросварки.


Заземлитель вертикальный

Для того чтобы осуществить соединение стержней между между собой, необходимо приобрести арматуру, которая приваривается к каждому заземлителю из круглой стали, и вводится в дом для подключения к электрическим приборам и устройствам.

Цена стального стержня невелика, а при наличии электросварочного аппарата, все работы можно выполнить самостоятельно. Стоимость расходных материалов при проведении подобных работ, также не будет слишком большой, поэтому заземление, которое выполнено с использование стальных стержней и арматуры, не потребует значительных финансовых вложений.

Расчёт параметров

Прежде чем приступить к выполнению монтажных работ, необходимо осуществить правильный расчёт параметров заземления. Площадь соприкосновения вертикального заземлителя с породой напрямую зависит от сопротивления грунта.

Если осуществляется в северных районах страны, где грунт промерзает на значительную глубину, площадь соприкосновения проводника с грунтом должна быть более значительной, чем на юге, где грунт не промерзает на глубину более 0,5 метра.

При промерзании грунта его сопротивление резко увеличивается, что негативно сказывается на эффективности заземляющего контура. Поэтому, для обеспечения надлежащего уровня электротехнической защиты в условиях вечной мерзлоты, могут применяться монтажные технологии, отличающиеся от общепринятых.


Если земля полностью промёрзла, то необходимо осуществить бурение на значительную глубину, установить металлические электроды и засыпать отверстие ранее удалённым грунтом.

От породы, в которой необходимо осуществить заземление, также зависит площадь соприкосновения грунта с грунтом и удельное сопротивление вещества.

Наибольшее значение сопротивления в скальном и каменистом грунте. Длина вертикального заземлителя, в этом случае, будет максимальной, для того чтобы обеспечить нормальное прохождение электрического тока в породе. В таких условиях монтаж вертикального заземления, является единственным способом осуществить электротехническую защиту объекта. Наиболее оптимальный вариант установки электротехнической защиты в таких условиях — это применение специального вибратора, который позволяет довольно легко осуществить монтаж стержня в скальном или каменистом грунте.

Если осуществляется монтаж заземления в чернозёме и торфе, то для обеспечения нормального заземления, достаточно погружения электрода на глубину 1,5 метра.

Диаметр вертикального заземлителя должен быть не менее 16 мм. Обычно в качестве вертикальных стержней для заземления, используется металлическая арматура диаметром 18 — 20 мм.

Монтаж оборудования

После того, как будет определён тип грунта, где планируется установка заземления, можно приступать к установке стержней.

Прежде чем устанавливать стержни в землю, необходимо снять верхний слой грунта на глубину не менее 0,5 метра. Обычно такая траншея делается по периметру всего здания. Расстояние между вертикальными заземлителями должно быть не более 5 метров. Количество вертикальных заземлителей несложно подсчитать, если общую длину траншеи разделить на «5». Например, при общей длине траншеи в 50 метров, количество вертикальных заземлителей составит 10 штук.


Заземлитель вертикальный

Для того чтобы осуществить проникновение стержней в грунт на необходимую глубину, можно их вбить с помощью кувалды. Если грунт мягкий, а длина стержней не превышает 3 метров, то монтаж ручным способом не займёт много времени и сил. Для удобства дальнейшего монтажа, необходимо установить вертикальные стержни в траншее таким образом, чтобы они возвышались от дна на высоте 10 — 20 см.

Если грунт достаточно каменист, можно применить отбойным молоток со специальной насадкой для установки вертикальных стержней.

Заземлитель вертикальный

Оригинальным способом монтажа пользуются в том случае, если есть трактор-экскаватор типа «Петушок». Гидравлический привод управления ковшом позволяет с достаточным усилием воздействовать на вертикально поставленный стержень, чтобы последний полностью вошёл даже в каменистый грунт.

После установки всех вертикальных заземлителей их соединяют между собой горизонтально расположенными кусками арматуры.


Диаметр горизонтально расположенных стержней должен составлять не менее 10 см, иначе не будет достигнуто показание сопротивления на необходимом уровне.

Заземлитель вертикальный

Соединить стержни между собой можно стальной лентой. Ширина ленты должна быть не менее 48 мм, а толщина металла — не менее 4 мм. Сварка должна быть выполнена качественно, чтобы в местах соединения металла не образовался процесс коррозии, который может быть значительно усилен токами, проходящими через сварной шов.

Чтобы обеспечить беспрепятственное истечение электрического тока по проводнику следует обеспечить по всему периметру электрического контура, сопротивление вертикальных заземлителей, равное 4 Ом. Если не удаётся добиться данного идеального показателя сопротивления, допустимо отклонение этого значения до 10 Ом, без ухудшения защитных свойств вертикального заземления.

Если сразу после установки электротехнической защиты её вводят в эксплуатацию, то места, где расположены вертикальные стержни, необходимо полить значительным количеством воды. Таким образом удаётся восстановить структуру грунта, который будет максимально эффективно передавать электрический потенциал от металлических стержней земле.

levevg.ru

Что представляет собой искусственный заземлитель?

В большинстве случаев в роли искусственного заземлителя выступает проводник, изготовленный из стали и помещенный в грунт в горизонтальной или вертикальной плоскости. В некоторых случаях используют целую группу подобных проводников, которые соединяют между собой. В таком случае заземлитель получается сложным. Если же электроды образуют контур, то это уже будет заземляющий контур.

Чем отличаются друг от друга вертикальные и горизонтальные заземлители?

Фактически эти понятия достаточно условны, так как, например, во втором случае, совершенно необязательно, чтобы положение заземлителя в грунте было строго горизонтальным. Однако очень важно, чтобы проводники, образующие собой заземлитель или заземляющий контур, находились на требуемой глубине. Это необходимо для того, чтобы в случае земляных работ они не получили никаких механических повреждений.

Из-за того что поверхность земли на различных ее участках не является достаточно ровной, горизонтальные заземлители должны следовать рельефу поверхности, по возможности в точности повторяя его.

Точно так же вертикальные электроды могут быть установлены не совсем вертикально, а под незначительным наклоном, который, впрочем, не будет оказывать существенного влияния на их работу.

На какую глубину помещают горизонтальный заземлитель?

Горизонтальные заземлители лучше всего прокладывать на глубине приблизительно 0,5 м. Если же земли пахотные, то глубину лучше всего увеличить приблизительно до 1 м. Их следует использовать в тех случаях, когда верхний слой грунта в состоянии обеспечить требуемую проводимость электрического тока.

Как правило, подобные заземлители устанавливаются с помощью специальных аппаратов, поэтому ручной труд здесь практически не задействуется. Следует отметить, что верхние слои почвы зачастую способны сильнее сопротивляться электрическому току по сравнению с более глубокими.

Если же заложить горизонтальный заземлитель слишком близко к поверхности земли, то в этом случае растекание электрического тока по почве будет проходить не слишком равномерно, а на более значительной глубине такой эффект достигается без лишних затрат и усилий.

У горизонтально заложенных проводников сопротивление значительно выше по сравнению с аналогичным проводником, установленным в вертикальное положение. Именно по этой причине чаще всего при проведении электромонтажных работ пользуются вертикальными проводниками.

Лучше всего для этой цели использовать глубинные вертикальные электроды, так как они способны добраться до хорошо проводящих электрический ток слоев грунта.

Как подобрать размеры искусственных заземлителей?

Заземляющие электроды, установленные в почве, а также выводы от них и любые перемычки, должны иметь следующие минимально допустимые размеры:

—              круглая сталь — диаметр 10 мм;

—              круглая оцинкованная сталь — диаметр 6 мм;

—              угловая сталь — толщина полки 4 мм;

—              общее сечение для заземлителей с присоединенной к ним системой защиты от молний — 160 мм2;

—              полосовая сталь — 4 мм, в случае, если сечение составляет 48 мм2 (при изготовлении магистрали заземления сечение должно составлять не менее 100 мм2, а для заземления с молниезащитой — 160 мм2);

—              отбракованные трубы — толщина стенок труб 3,5 мм.

Исходя из чего вычисляются минимальные размеры?

Указанные выше минимальные размеры для электродов в искусственной системе заземления берутся, главным образом, для их использования во временных установках, где условиями коррозии можно пренебречь, так как они не будут иметь решающей роли.

Если же необходимо соорудить систему заземления для постоянной установки, то в этом случае сечение заземлителей нужно выбирать таким образом, чтобы был еще и запас на коррозионное разрушение материалов. Лучше всего способна сопротивляться негативному воздействию коррозионный процессов круглая сталь. Дело в том, что разъедание металла ржавчиной напрямую зависит от поверхности металла, которая будет непосредственно соприкасаться с землей. Из-за того что площадь круглой стали наименьшая, она значительно медленнее разрушается.

Для того чтобы заземлитель надежно функционировал достаточно долгое время, например 40—50 лет, для его изготовления нужно брать материал гораздо большей толщины, чем указанное минимальное значение. Например, если фунтовые условия достаточно благоприятные, то есть не слишком влажные, то диаметр заземлителя должен быть больше всего на 2—3 мм. Если же грунт влажный, то диаметр должен быть больше минимального значения в два раза.

Как устанавливать в грунте искусственный заземлитель?

От заземляемой части электроустановки горизонтальные лучи заземляющего устройства должны расходиться в противоположных направлениях. Если же этих лучей не два, а больше, то лучше всего их располагать под углом друг к другу.

Это делают с той целью, чтобы как можно большая площадь земли использовалась рационально. Если же установить заземлители рядом друг с другом, то они будут экранироваться друг другом, следовательно, их эффективность будет в значительной степени снижена. По такой же причине на значительном расстоянии друг от друга устанавливают и вертикальные заземлители. Вертикальные заземлители лучше всего установить на расстояние, равное как минимум длине самого заземлителя.

Из-за того что потенциалы на поверхности земли могут распределиться не слишком равномерно, вокруг заземлителя будут создаваться опасные напряжения. Для того чтобы выровнять разные потенциалы, заземлитель изготавливают в форме сетки, которая должна быть сделана из горизонтальных элементов. В почве их нужно уложить вдоль и поперек места электроустановки. Также их следует соединить друг с другом с помощью сварки. Как правило, размер одной ячейки полученной сетки составляет от 6 х 6 до 10 х 10 м.

Кроме того, в некоторых случаях потенциалы выравнивают с помощью заземлителя, который изготавливают в форме концентрических колец. Их необходимо поместить в почву и соединить с заземляемым устройством.

Напряжение на поверхности можно снизить за счет сетчатого заземлителя, только в этом случае все равно высока вероятность того, что за пределами этой сетки возможность поражения электрическим током будет сохраняться. В связи с этим нужно уложить дополнительные заземлители, глубина закладки которых должна постепенно увеличиваться. Такие дополнительные конструкции также нужно соединить с основными заземлителями.

Как дополнительно обезопасить участок заземления?

Площадь заземлителя и расход металла можно сократить за счет сооружения специального изолирующего заграждения, которое устанавливается по периметру заземлителя. Следует отметить, что ограждение должно быть изготовлено из диэлектрика. Такой подход позволяет не допустить растекания электрического тока по земной поверхности. Кроме того, ограждение из диэлектрика позволяет выровнять потенциал за пределами заземлителя.

Из чего лучше всего изготовить заграждение?

Для сооружения данной конструкции можно использовать любой материал, не пропускающий электрический ток, также он должен быть весьма прочным с механической точки зрения, а электрическая прочность его должна составлять не меньше 1 МВ/м. Для этой цели лучше всего подойдут изоляторы, которые изготавливают на битумной основе. Например, к ним относят бризол, производимый из отходов производства. Его электрическая прочность обычно бывает не менее 20 МВ/м.

Какие трудности могут возникнуть при изготовлении заземлителя?

Зачастую заземлители, изготовленные из профильной стали, не в состоянии удовлетворить те требования, которые предъявляют к заземляющим конструкциям. Допустим, в засушливой местности достаточно проблематично добиться того, чтобы данный вид заземлителя имел необходимую проводимость электрического тока. В скальных породах затруднен монтаж данного типа заземлителей, а в агрессивной среде очень сложно защитить их от коррозии и одновременно добиться необходимого уровня проводимости электрического тока. Для подобных случаев разработаны специальные конструкции искусственных заземлителей.

Из чего делают заземлитель в районах с засушливыми почвами?

Для засушливых районов чаще всего используется следующая конструкция. Заземлитель представляет собой емкость, изготовленную из железобетона. Ее размещают ниже поверхности земли. Водой такая емкость наполняется через специальный съемный люк.

Такая конструкция оборудуется водораспределительной системой. Она представляет собой отрезки стальных труб, в которых имеются отверстия для стока воды, располагающиеся равномерно по всей длине трубы. Трубы покрывают слоем материала, способного поглощать влагу, например бетоном или цементом. Скорость фильтрации влаги, с которой вода будет просачиваться через бетон и уходить в почву, напрямую зависит от марки бетона. Правильно подобранный бетон позволит сократить затраты усилий, направленных на регулярное увлажнение. Вывод от железобетонной емкости соединяется со стальными стержнями.

Какие отличительные черты иностранной конструкции заземлителя современного образца?

Основная цель данной конструкции состоит в уменьшении металлоемкости и облегчении помещения этого устройства в грунт. Заземлитель в этом случае оснащен тонкостенной металлической трубкой (толщина ее стенок равна 1—2 мм). При этом в нее установлен полужесткий стержень, изготовленный из пластичного материала. Однако его жесткость достаточна для того, чтобы служить опорой для упругой трубки с не слишком толстыми стенками. Данное свойство позволяет заземлителю обходить препятствия, которые встречаются на его пути. Для того чтобы максимально увеличить срок службы данного заземлителя, трубку изготавливают из нержавеющей стали.

На конце, этой трубки имеется конусообразный стальной наконечник, изготовленный из обычной стали. Он предназначен для того, чтобы трубку можно было как можно легче забивать в землю. Если же наконечника нет, то трубку можно попросту обжать в тисках.

Диаметр данной трубки обычно составляет 15 см. При этом диаметр сердечника, который впрессовывают в такую трубку, обычно больше его. Трубку иногда заполняют не полужестким сердечником, а текучим материалом, затвердевающим после заполнения. Чаще всего для этой цели используют эпоксидную смолу, полиуретан или эластомер.

Однако не следует использовать для этой цели слишком пластичные материалы, так как они не способны создать достаточную прочность для стенок трубки, ведь ее придется забивать на относительно большую глубину — приблизительно 2,3 м. Для того чтобы забить такую конструкцию в почву, используют специальную съемную наковальню. В ее конструкции предусмотрено плечо, которое упирается в конец трубки, а также выступ, который соединяется не только с внутренним диаметром самой трубки, но и пластичным сердечником.

www.eti.su

Что выступает в роли искусственного заземлителя

Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.

Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.

Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.

Искусственный заземлитель изготавливается из таких материалов:

  1. Омедненная сталь. Соединение меди и стали имеет хорошее сцепление. Стержни прочные, отлично контактируют с любыми материалами. За счет химических особенностей сплав обладает отличной электропроводимостью. Электрохимическая активность меди и стали незначительна, нормальная эксплуатация заземлителей из такого металла может достигать больше ста лет.
  2. Оцинкованная сталь. Преимущества — коррозионная стойкость материала, низкое сопротивление, электроды устойчивы к кислотной среде.
  3. Черные металлы. Недостаток — быстрое разрушение в агрессивном грунте (образуются коррозия и ржавчина). Высокая прочность материала повышает сопротивление растеканию тока, что крайне опасно для человека.

Контур заземления из металлических полос

Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).

Чем отличаются вертикальные и горизонтальные заземлители

Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.

Стандартные показатели заглубления:

  1. Верхний конец вертикально заложенных в грунт заземляющих элементов углубляется на 0,7 м. Укладываются на дно горизонтально, по периметру фундамента. Диаметр электродов — от десяти до шестнадцати мм, длина — до 5 м.
  2. Горизонтальные элементы заземляющего устройства углубляются в грунт на 0,5 м. Если земля пахотная, прокладывать их необходимо на глубину не меньше 1 м. Рациональность их применения обоснована лишь при хорошей электропроводимости верхнего слоя почвы. Такой вид электродов может использоваться для связи вертикальных заземляющих элементов. Соединения выполняются при помощи сварки. Применяется или сталь округлой формы диаметром более 10 мм, или стальные полосы толщиной больше 4 мм.

Вертикальное заземление системы Jupiter

Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.

Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.

Функции искусственного заземляющего элемента

Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.

Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.

Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:

  1. Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
  2. Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.

Основное назначение заземления - обеспечение безопасности пользователей электроустановок

Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.

Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.

Как устанавливать искусственный электрод в грунт

Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:

  1. Процесс установки практически полностью механизирован.
  2. Если предусмотрено два протяженных (горизонтальных) луча, от заземляемой части электроустановки электроды прокладываются в противоположных направлениях. При условии, что заземлителей больше двух, прокладка лучей осуществляется под наклоном (угол в 120° – 90°). Обусловлено такое размещение улучшением показателя сопротивляемости.
  3. При монтаже заземлителя часто происходит распределение потенциалов. Разница потенциала на поверхности грунта (сверху заземлителя) и вокруг элемента (внутри почвы) служит причиной возникновения опасных напряжений. Для выравнивания потенциалов в таких случаях искусственный заземлитель изготавливается в форме сетки. Горизонтальные электроды прокладываются как вдоль, так и поперек площади электроустановки. Соединения на местах пересечения выполняются сваркой.

Установка в грунт вертикального заземляющего электрода

Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.

Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.

Как определить сопротивление

Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.

Факторы, которые оказывают первостепенное влияние на показатель:

  1. Площадь (S) заземляющих электродов с почвой («стекание» тока).
  2. Удельное электрическое сопротивление грунта (R).

Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.

Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.

Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.

Измерение сопротивления искусственного заземлителя

Основные требования

Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:

  1. Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
  2. Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
  3. Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
  4. Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.

Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:

  1. Минимальный расход металла. Следовательно, снижается себестоимость заземляющего устройства.
  2. Коррозионная стойкость у такого электрода значительно выше, чем у его аналогов.
  3. Легкость монтажа.

Схема контура заземления из круглой арматуры

Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.

Как подбираются размеры искусственных электродов

Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.

Основные аспекты:

  1. Стальной прут в диаметре должен быть свыше 10 мм.
  2. Оцинкованный арматурный стержень должен иметь диаметр 6 мм и больше.
  3. Соблюдение толщины стенок в уголках — свыше 4 мм.
  4. Молниезащитные заземлители применяются с сечением свыше 155 мм².
  5. Стенки отбракованных труб монтируются с толщиной свыше 3,5 мм.
  6. Толщина стенок отбракованных труб не менее 3,5 мм.

Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.

Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.

220.guru

Для чего выполнять требования

Может показаться, что неукоснительное соблюдение Правил избыточно, необходимо только для прохождения официальных проверок, ввода в действие объекта недвижимости. Конечно, это не так.

Нормативы созданы на основе научных знаний и практического опыта. В ПУЭ есть следующие сведения:

  • Формулы для расчетов отдельных параметров защитной системы.
  • Таблицы с коэффициентами, которые помогают учесть электротехнические характеристики разных проводников.
  • Порядок проведения испытаний и проверок.
  • Специализированные организационные мероприятия.

Применение на практике этих нормативов позволит предотвратить поражение электрическим током людей и животных. Создание контура должно быть безупречным, в точном соответствии с Правилами. Это снизит вероятность возгораний при авариях, поможет исключить развитие негативных процессов, способных нанести ущерб имуществу.

В данной статье рассматриваются вопросы защиты частного дома. Таким образом, будут изучаться те разделы ПУЭ, которые относятся к работе с напряжением до 1 000 V.

Составные части системы

Ключевым параметром данной системы является сопротивление заземления. Сопротивление заземления должно быть настолько малым, чтобы именно по такому пути шел ток при возникновении аварийной ситуации. Это обеспечит защиту при случайном прикосновении человека к поверхности, на которую подано напряжение.

Для получения необходимого результата шасси и корпуса бытовых устройств дома соединяют с главной шиной заземляющего устройства,  создается внутренний контур. К нему же подключают металлические элементы конструкции здания, трубы водопровода. Подробно состав такой системы выравнивания потенциалов описан в ПУЭ (п.1.7.82). Снаружи строения устанавливается другая часть защиты, внешний контур. Его также подключают к главной шине. Для оснащения частного дома можно использовать разные схемы. Но проще всего заглубить в землю металлические стержни.

В следующем списке приведены отдельные компоненты системы и требования к ним:

  • Провода, которыми подсоединяются утюги, стиральные машины и другие конечные потребители. Они находятся внутри сетевого кабеля, поэтому необходимо только наличие соответствующей линии заземления, подключенной к розетке. В некоторых ситуациях, при установке варочных панелей, духовых шкафов, иного встроенного в мебель оборудования, требуется подсоединение корпусов отдельным проводом.
  • В качестве общей шины можно использовать не только специальный провод, но и «естественные» проводники такие, как металлические каркасы зданий. Исключения и точные правила будут рассмотрены ниже. Здесь же надо отметить, что этот участок прохождения тока надо создавать так, чтобы предотвратить механические повреждения в процессе эксплуатации.
  • Наружный контур частного дома создают из металлических элементов без изоляции. Это увеличивает вероятность разрушения процессом коррозии. Для снижения этого негативного воздействия используют цветные металлы. Места сварных соединений стальных деталей покрывают битумными смесями и другими составами аналогичного назначения.
  • Реальное сопротивление заземляющего устройства такого типа будет зависеть от характеристик грунта. Глина и сланцы хорошо удерживают влагу, а песок – плохо. В каменистых грунтах сопротивление слишком велико, поэтому понадобится искать другое место для установки, или погружать заземлитель еще глубже. В особо засушливые периоды, чтобы сохранить функциональность устройства рекомендуется регулярный полив почвы.

Проводники системы заземления

Частью внутреннего контура являются изолированные провода. Их оболочки делают цветными (чередующиеся зеленые и желтые продольные полосы). Такое решение уменьшает ошибочные действия при выполнении монтажных операций. Подробно требования изложены в разделе «Защитные проводники» Правил, начиная с раздела 1.7.121.

В частности, там приведена методика простого расчета допустимой площади изолированного проводника в сечении (без поверхностного слоя). Если фазный провод меньше, или не превышает 16 мм2, то выбирают равные диаметры. При увеличении размеров применяют иные пропорции.

Для точных расчетов используется формула из пункта 1.7.126 ПУЭ:     

 /k    , где:

  • S – сечение проводника заземления в мм2;
  • I – ток, проходящий по нему при коротком замыкании;
  • t – это время в секундах, за которое автомат разорвет цепь питания;
  • k – специальный комплексный коэффициент.

Величина тока должна быть достаточной для срабатывания автомата за время, не превышающее пяти секунд. Чтобы система была рассчитана с определенным запасом, выбирают ближайшее большее по типоразмеру изделие. Специальный коэффициент берут из таблиц 1.7.6., 1.7.7., 1.7.8. и 1.7.9. Правил.

Если планируется использовать многожильный алюминиевый кабель, в котором один из проводников – защитный, то применяют следующие коэффициенты с учетом разных изоляционных оболочек.

Таблица коэффициентов с учетом типа изоляционных оболочек

  Темп. нач., °C Темп. кон., °C Комплексный коэффициент k
ПВХ 70 160 76
Резина (бутиловая) 85 220 89
Сшитый полиэтилен 90 250 94

При использовании такого варианта обеспечивается непрерывность цепи, предпринимаются дополнительные меры для защиты от механических воздействий. Учитываются особенности конкретного строения, структурные деформации, которые возникают в процессе усадки.

Не разрешается использовать:

  • Части трубопроводных систем газоснабжения, канализации, отопления, газоснабжения.
  • Трубы водоснабжения из металла, если они соединяются с применением прокладок, изготовленных из полимеров,  иных диэлектрических материалов.
  • Стальные струны, использующиеся для крепления светильников, гофрированные оболочки, иные недостаточно прочные проводники, либо изделия, находящиеся под относительно большой для их параметров загрузкой.

Если используется отдельный медный проводник, не входящий в состав кабеля цепи питания, или он находится не в общей изоляционной, защитной оболочке с фазными проводами, допустимо следующее минимальное сечение в мм2:

  • при дополнительной защите от механических воздействий – 2,5;
  • в случае отсутствия таких предохранительных средств – 4.

Алюминий менее прочен по сравнению с медью. Поэтому сечение проводника из такого металла (вариант – отдельная прокладка) должно быть равно, или более следующей нормы: 16 мм2.

Какое должно быть сечение проводников внешнего контура заземления дома можно посмотреть в таблице ниже.

Сечение проводников внешнего контура заземления

Материал проводника Площадь сечения в мм2
Медь 10
Алюминий 16
Сталь 75

При проходе через внешнюю толстую стену дома проще просверлить тонкое отверстие. Его изнутри  можно укрепить трубкой подходящих размеров. Медный провод не сложно будет согнуть под углом для присоединения к стальной шине внешнего контура.

Допустимое сопротивление заземляющего устройства определено в п. 1.7.101 ПУЭ. Сводные нормы приведены в таблице ниже.

Нормы допустимого сопротивления заземляющего устройства

При подсоединении заземлителя к нейтрали генератора, или другого источника
Сопротивление заземляющего устройства, Ом 2 4 8
Напряжения (V) в сети однофазного тока 380 220 127
Напряжения (V) в сети трехфазного тока 660 380 220
На близком расстоянии от заземлителя до источника тока
Сопротивление заземляющего устройства, Ом 15 30 60
Напряжения (V) в сети однофазного тока 380 220 127
Напряжения (V) в сети трехфазного тока 660 380 220

За городом для подключения дома часто используют воздушные линии электропередачи. Поэтому уместно упомянуть нормы ПУЭ, относящиеся к соответствующей ситуации. Если проводник одновременно выполняет функции защитного и нулевого (PEN-типа),  то на концах таких линий, участках подключения потребителей устанавливают устройство повторного  заземления. Как правило,  такие действия обязана выполнить энергетическая компания, но хозяину дома следует сделать соответствующую проверку. В качестве заземлителя используют металлические части опор, заглубленные в грунт.

При выборе комплектующих элементов личного внешнего контура, который будет установлен в земле, используют следующие нормы ПУЭ.

Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ

Профиль
изделия в
сечении
Круглый (для
вертикальных
элементов
системы
заземления)
Круглый (для горизонтальных
элементов
системы
заземления)
Прямоугольный Угловой Коль-
цевой
(труб-
ный)
Сталь черная
Диаметр, мм 16 10 32
Площадь сечения в поперечнике, мм2 100 100
Толщина стенки, мм 4 4 3,5
Сталь оцинкованная
Диаметр, мм 12 10 25
Площадь сечения в поперечнике, мм2 75
Толщина стенки, мм 3 2
Медь
Диаметр, мм 12 20
Площадь сечения в поперечнике, мм2 50
Толщина стенки, мм 2 2

Если повышен риск повреждения горизонтальных участков окислительными процессами, применяют следующие решения:

  • Увеличивают площадь сечения проводников выше нормы, указанной в ПУЭ.
  • Применяют изделия с гальваническим поверхностным слоем, либо изготовленные из меди.

Траншеи с горизонтальными заземлителями засыпают грунтом с однородной структурой, без мусора. Повысить сопротивление способно чрезмерное осушение грунта, поэтому в летние периоды, когда долго нет дождей, специально поливают соответствующие участки.

Какое должно быть сопротивление

Прочность металлических проводников, их электрическое сопротивление определить несложно. Если должно быть определенное сопротивление по ПУЭ, то соблюдение правил не будет чрезмерно сложным. Так, например, для заземления опор воздушных линий установлен максимально допустимый норматив 10 Ом, если эквивалентное сопротивление грунта не превышает 100 Ом*м (Таблица 2.5.19.).  Целостность сварных соединений обеспечивают дополнительной защитой антикоррозийным слоем. При риске разрыва в процессе сдвижек почвы, или деформации строения, соответствующий участок делают из гибкого кабеля.

Но гораздо больше проблем возникает с землей. В этой неоднородной среде, подверженной самым разным внешним воздействиям, одинаковая величина  проводимости в течение длительного времени невозможна. Именно поэтому в ПУЭ отдельный раздел посвящен устройствам заземления, которые устанавливаются в почвах с большим удельным сопротивлением (нормы по пунктам 1.7.105. – 1.7.108.).

Ниже перечислены основные рекомендации для таких случаев:

  • Используются металлические элементы (заземлители вертикального типа) увеличенной длины. В частности, допустимо подсоединение к трубам, установленным в артезианские скважины.
  • Заземлители переносят на большое расстояние от дома (не более 2000 м), туда, где сопротивление почвы (Ом) меньше.
  • В скальных и других «сложных» породах прокладывают траншеи, в которые засыпают глину или другой подходящий грунт. Туда, в свою очередь, устанавливают элементы системы заземления горизонтального типа.

Если удельное сопротивление грунта превышает 500 Ом на м, а создание заземлителя сопряжено с чрезмерными затратами,  разрешено превышение нормы заземляющих устройств не более чем в 10 раз. Используется следующая формула для вычисления. Точное значение должно быть: R * 0,002. Здесь величина R – это удельное эквивалентное сопротивление грунта, в Ом на м.

Внутренний и внешний контур

Как правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.

К ней подключают:

  • металлические элементы конструкции здания;
  • проводник внешнего контура заземления;
  • проводники РE и PEN типов;
  • металлические трубопроводы и проводящие части систем водоснабжения, кондиционирования и вентиляции.

Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа.

Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:

  • Основную часть, вертикальные элементы, устанавливают на небольшом удалении от дома, с учетом параметров грунтов.
  • К ним прокладывают траншею глубиной до 0,8 м и не менее 0,4 м шириной, в которой устанавливаются горизонтальные участки цепи. Точной нормы нет, но размеры траншеи должны быть достаточными для беспрепятственного монтажа элементов.
  • Вертикальные заземлители длиной до 3 м устанавливают в углах равностороннего (по 3 м) треугольника. Эти размеры приведены в качестве примера. Точных нормативов по длине нет. Есть нормы только по максимально допустимому сопротивлению защитной системы.
  • Чтобы проще было забивать их в грунт, концы заостряют.
  • К выступающим частям сварным соединением крепят полосы.
  • Траншеи засыпают равномерным по структуре грунтом, не содержащим щебня.

elquanta.ru

Материалы для вертикального заземления

Как показала практика, лучший вертикальный заземлитель — это стальной круглый стержень, который устанавливается в грунт, непосредственно возле защищаемого объекта. Кроме стального прута, допускается использовать в качестве заземлителя медный провод. Но учитывая высокую стоимость этого материала, его не так часто используют в качестве заземляющего проводника. Одного прута не достаточно для обеспечения надёжной защиты от поражения электрическим током, поэтому стержни помещённые на некотором расстоянии друг от друга соединяются с помощью электросварки.

Заземлитель вертикальный

Для того чтобы осуществить соединение стержней между между собой, необходимо приобрести арматуру, которая приваривается к каждому заземлителю из круглой стали, и вводится в дом для подключения к электрическим приборам и устройствам.

Цена стального стержня невелика, а при наличии электросварочного аппарата, все работы можно выполнить самостоятельно. Стоимость расходных материалов при проведении подобных работ, также не будет слишком большой, поэтому заземление, которое выполнено с использование стальных стержней и арматуры, не потребует значительных финансовых вложений.

Расчёт параметров

Прежде чем приступить к выполнению монтажных работ, необходимо осуществить правильный расчёт параметров заземления. Площадь соприкосновения вертикального заземлителя с породой напрямую зависит от сопротивления грунта.

Если монтаж заземления осуществляется в северных районах страны, где грунт промерзает на значительную глубину, площадь соприкосновения проводника с грунтом должна быть более значительной, чем на юге, где грунт не промерзает на глубину более 0,5 метра.

Заземлитель вертикальный

При промерзании грунта его сопротивление резко увеличивается, что негативно сказывается на эффективности заземляющего контура. Поэтому, для обеспечения надлежащего уровня электротехнической защиты в условиях вечной мерзлоты, могут применяться монтажные технологии, отличающиеся от общепринятых.

Если земля полностью промёрзла, то необходимо осуществить бурение на значительную глубину, установить металлические электроды и засыпать отверстие ранее удалённым грунтом.

От породы, в которой необходимо осуществить заземление, также зависит площадь соприкосновения грунта с грунтом и удельное сопротивление вещества.

Наибольшее значение сопротивления в скальном и каменистом грунте. Длина вертикального заземлителя, в этом случае, будет максимальной, для того чтобы обеспечить нормальное прохождение электрического тока в породе. В таких условиях монтаж вертикального заземления, является единственным способом осуществить электротехническую защиту объекта. Наиболее оптимальный вариант установки электротехнической защиты в таких условиях — это применение специального вибратора, который позволяет довольно легко осуществить монтаж стержня в скальном или каменистом грунте.

Если осуществляется монтаж заземления в чернозёме и торфе, то для обеспечения нормального заземления, достаточно погружения электрода на глубину 1,5 метра.

Диаметр вертикального заземлителя должен быть не менее 16 мм. Обычно в качестве вертикальных стержней для заземления, используется металлическая арматура диаметром 18 — 20 мм.

Монтаж оборудования

После того, как будет определён тип грунта, где планируется установка заземления, можно приступать к установке стержней.

Прежде чем устанавливать стержни в землю, необходимо снять верхний слой грунта на глубину не менее 0,5 метра. Обычно такая траншея делается по периметру всего здания. Расстояние между вертикальными заземлителями должно быть не более 5 метров. Количество вертикальных заземлителей несложно подсчитать, если общую длину траншеи разделить на «5». Например, при общей длине траншеи в 50 метров, количество вертикальных заземлителей составит 10 штук.

Заземлитель вертикальный

Для того чтобы осуществить проникновение стержней в грунт на необходимую глубину, можно их вбить с помощью кувалды. Если грунт мягкий, а длина стержней не превышает 3 метров, то монтаж ручным способом не займёт много времени и сил. Для удобства дальнейшего монтажа, необходимо установить вертикальные стержни в траншее таким образом, чтобы они возвышались от дна на высоте 10 — 20 см.

Если грунт достаточно каменист, можно применить отбойным молоток со специальной насадкой для установки вертикальных стержней.

Заземлитель вертикальный

Оригинальным способом монтажа пользуются в том случае, если есть трактор-экскаватор типа «Петушок». Гидравлический привод управления ковшом позволяет с достаточным усилием воздействовать на вертикально поставленный стержень, чтобы последний полностью вошёл даже в каменистый грунт.

После установки всех вертикальных заземлителей их соединяют между собой горизонтально расположенными кусками арматуры.

Диаметр горизонтально расположенных стержней должен составлять не менее 10 см, иначе не будет достигнуто показание сопротивления на необходимом уровне.

Заземлитель вертикальный

Соединить стержни между собой можно стальной лентой. Ширина ленты должна быть не менее 48 мм, а толщина металла — не менее 4 мм. Сварка должна быть выполнена качественно, чтобы в местах соединения металла не образовался процесс коррозии, который может быть значительно усилен токами, проходящими через сварной шов.

Чтобы обеспечить беспрепятственное истечение электрического тока по проводнику следует обеспечить по всему периметру электрического контура, сопротивление вертикальных заземлителей, равное 4 Ом. Если не удаётся добиться данного идеального показателя сопротивления, допустимо отклонение этого значения до 10 Ом, без ухудшения защитных свойств вертикального заземления.

Если сразу после установки электротехнической защиты её вводят в эксплуатацию, то места, где расположены вертикальные стержни, необходимо полить значительным количеством воды. Таким образом удаётся восстановить структуру грунта, который будет максимально эффективно передавать электрический потенциал от металлических стержней земле.

Самостоятельная установка

Вертикальные электроды заземления, можно установить самостоятельно. При установке необходимо знать состав грунта, чтобы определить примерную глубину установки рабочих электродов. Для установки заземления потребуется приобрести сварочный аппарат и необходимое количество электродов для того чтобы сварить вертикальные и горизонтальные заземлители.

Для соединения металлов не рекомендуется использовать различные зажимы и другие резьбовые соединения. Со временем такие места могут значительно ухудшить проводимость участка электрической цепи, что негативно скажется на эффективности заземляющего контура. Если грунт не промерзает в зимнее время на глубину более 0,5 метра, и не является скальным или каменистым, то можно использовать круглый стержень длиной не более 1,5 метров.

При неблагоприятных условиях для установки заземления, глубина размещения стержней должна составлять не менее 3 метров, а расстояние между ними может быть уменьшено до 4 метров. Не рекомендуется далее уменьшать расстояние между электродами, иначе общее сопротивление заземляющей установки может значительно увеличиться, за счёт эффекта экранирования.

Если нет желания заниматься монтажом заземления самостоятельно, то можно обратиться в специализированные фирмы, которые в кратчайшие сроки установят вертикальное заземление на прилегающем к дому участке. Несмотря на то, что такие услуги будут стоить денег, экономия времени может быть значительна. И если этот ресурс, является очень важным, то лучше доверить работу профессионалам.

evosnab.ru

Исходные данные для расчета заземления

1. Основные условия, которых необходимо придерживаться при сооружении заземляющих устройств это размеры заземлителей.

1.1. В зависимости от используемого материала (уголок, полоса, круглая сталь) минимальные размеры заземлителей должны быть не меньше:

  • а) полоса 12х4 – 48 мм2;
  • б) уголок 4х4;
  • в) круглая сталь – 10 мм2;
  • г) стальная труба (толщина стенки) – 3.5 мм.

Минимальные размеры арматуры применяемые для монтажа заземляющих устройств

размер арматуры для расчета заземления

1.2. Длина заземляющего стержня должна быть не меньше 1.5 – 2 м.

одиночный заземлитель при расчете заземления

1.3. Расстояния между заземляющими стержнями берется из соотношения их длины, то есть: a = 1хL; a = 2хL; a = 3хL.

rasstojanie

В зависимости от позволяющей площади и удобства монтажа заземляющие стрежни можно размещать в ряд, либо в виде какой ни будь фигуры (треугольник, квадрат и т.п.).

Цель расчета защитного заземления.

Основной целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Пример расчета заземления

Сопротивление растекания тока одного вертикального заземлителя (стержня):

расчет заземления

где – ρэкв — эквивалентное удельное сопротивление грунта, Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м.

В случае установки заземляющего устройства в неоднородный грунт (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

furmula-2

где – Ψ — сезонный климатический коэффициент (таблица 2); ρ1, ρ2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (таблица 1); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0.7 м.

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Удельное сопротивление грунта Таблица 1
Грунт Удельное сопротивление грунта, Ом·м
Торф 20
Почва (чернозем и др.) 50
Глина 60
Супесь 150
Песок при грунтовых водах до 5 м 500
Песок при грунтовых водах глубже 5 м 1000

Заглубление горизонтального заземлителя можно найти по формуле:

furmula-3

Монтаж и установку заземления необходимо производить таким образом, чтобы заземляющий стержень пронизывал верхний слой грунта полностью и частично нижний.

Значение сезонного климатического коэффициента сопротивления грунта Таблица 2
Тип заземляющих электродов Климатическая зона
I II III IV
Стержневой (вертикальный) 1.8 ÷ 2 1.5 ÷ 1.8 1.4 ÷ 1.6 1.2 ÷ 1.4
Полосовой (горизонтальный) 4.5 ÷ 7 3.5 ÷ 4.5 2 ÷ 2.5 1.5
  Климатические признаки зон
Средняя многолетняя низшая температура (январь) от -20+15 от -14+10 от -10 до 0 от 0 до +5
Средняя многолетняя высшая температура (июль) от +16 до +18 от +18 до +22 от +22 до +24 от +24 до +26

Количество стержней заземления без учета сопротивления горизонтального заземления находится по формуле:

furmula-4

Rн — нормируемое сопротивление растеканию тока заземляющего устройства, определяется исходя из правил ПТЭЭП (Таблица 3).

Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП) Таблица 3
Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление Заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:    
660/380 до 100 15
свыше 100 0.5·ρ
380/220 до 100 30
свыше 100 0.3·ρ
220/127 до 100 60
свыше 100 0.6·ρ

Как видно из таблицы нормируемое сопротивления для нашего случая должно быть не больше 30 Ом. Поэтому Rн принимается равным Rн = 30 Ом.

Сопротивление растекания тока для горизонтального заземлителя:

расчет защитного заземления

Lг, b – длина и ширина заземлителя; Ψ – коэффициент сезонности горизонтального заземлителя; ηг – коэффициент спроса горизонтальных заземлителей (таблица 4).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

furmula-6 — в ряд; furmula-9— по контуру.

а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

расчет заземления пример

Полное количество вертикальных заземлителей определяется по формуле:

расчет контура заземления

ηв – коэффициент спроса вертикальных заземлителей (таблица 4).

коэффициент использования заземлителей для расчета заземления

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего.

Расчет заземления по указанным выше формулам можно автоматизировать воспользовавшись для расчета специальной программой «Электрик v.6.6», скачать ее можно в интернете бесплатно.

electricvdome.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.