Как сделать водород


Мы привыкли считать самым доступным видом топлива природный газ, позволяющий существенно сократить расходы. Но оказывается, у него есть достойная альтернатива — водород, получаемый при расщеплении воды. Исходное вещество для выработки этого топлива мы получаем вообще бесплатно. А если еще и водородный генератор своими руками сделать, экономический эффект будет просто потрясающим. Так ведь?

Мы готовы поделиться с вами ценной информацией о вариантах и правилах сборки технической установки, предназначенной для производства водорода. Изучение представленной вашему вниманию статьи станет гарантией изготовления безотказно действующего прибора.

Желающим собственноручно соорудить генератор дешевого, но весьма продуктивного горючего мы предлагаем обстоятельно изложенную инструкцию. Приводим рекомендации по грамотной эксплуатации. В качестве информативных дополнений, наглядно объясняющих принцип действия, использованы фото-приложения и видео об одном из вариантов сборки генератора.

Методы получения водорода


На уроках химии средней школы когда-то давались пояснения на тот счёт, как получить водород из обычной воды, вытекающей из под крана. Есть в химической сфере такое понятие – электролиз. Именно благодаря электролизу имеется возможность получать водород.

Простейшая водородная установка представляет собой некую ёмкость, заполненную водой. Под слоем воды размещаются два пластинчатых электрода. К ним подводится электрический ток. Так как вода является отличным проводником электрического тока, между пластинами устанавливается контакт с малым сопротивлением.

Проходящий сквозь малое водяное сопротивление ток способствует образованию химической реакции, в результате которой образуется водород.

Казалось бы, всё просто и остаётся совсем немного – собрать образовавшийся водород, чтобы применить его в качестве энергетика. Но в химии никогда не обходится без тонких деталей. Так и здесь: если водород соединяется с кислородом, при определённой концентрации образуется взрывоопасная смесь. Этот момент является одним из критичных явлений, ограничивающих возможности построения достаточно мощных домашних станций.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.


Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.

Схема генератора Брауна, кроме всего прочего, предусматривает наличие водяного затвора и обратного клапана. За счёт этих элементов организуется защита установки от обратного хода водорода. По такой схеме теоретически не исключается сборка водородной установки, к примеру, для организации отопления загородного дома.

Водородное отопление в доме

Собрать генератор водорода для эффективного отопления дома – затея, может быть не фантастическая, но явно крайне нерентабельная. Для того чтобы получить необходимый объём водорода под домашнюю котельную, потребуется не только мощная электролизная установка, но также значительный объём электрической энергии.

Компенсация затраченного электричества полученным в домашних условиях водородом видится процессом нерациональным.

Тем не менее, попытки решить задачу, как сделать водородный генератор для дома своими руками, не прекращаются. И вот пример одного из пыточных вариантов:

  1. Подготавливается герметичная надёжная ёмкость.
  2. Делаются трубчатые или пластинчатые электроды.
  3. Собирается схема управления рабочим напряжением и током.
  4. Делаются дополнительные модули для рабочей станции.
  5. Подбираются аксессуары (шланги, провода, крепёж).

Естественно, потребуется инструментальный набор, включая специальное оборудование, например, осциллограф и частотомер. Укомплектовавшись всем необходимым, можно приступать непосредственно к изготовлению водородной отопительной установки для дома.

Реализация проекта своими руками

Изначально потребуется сделать ячейку генерации водорода. Топливная ячейка имеет габаритные размеры чуть меньше внутренних размеров длины и ширины корпуса генератора. По высоте размер блока с электродами составляет 2/3 высоты основного корпуса.

Ячейку можно сделать из текстолита или оргстекла (толщина стенки 5-7 мм). Для этого нарезаются по размерам пять текстолитовых пластин. Из них склеивается (эпоксидным клеем) прямоугольник, нижняя часть которого остаётся открытой.

На верхней стороне прямоугольника высверливаются нужное количество мелких отверстий под хвостовики электродных пластин, одно мелкое отверстие для датчика уровня, плюс одно отверстие диаметром 10-15 мм для выхода водорода.

Внутри прямоугольника размещаются платины электродов, контактные хвостовики которых выводят через отверстия верхней пластины за пределы ячейки. Устанавливается датчик уровня воды на отметке 80% заполнения ячейки. Все переходы в текстолитовой пластине (кроме выхода водорода) заливают эпоксидным клеем.

Отверстие выхода водорода нужно оснастить штуцером – закрепить его механически, применяя уплотнение или же вклеить. Собранная ячейка генерации водорода размещается внутри  главного корпуса устройства и по верхнему периметру тщательно герметизируется (опять же можно применить эпоксидную смолу).

Но перед тем как заложить ячейку внутрь, корпус генератора нужно подготовить:


  • сделать подвод для воды в области днища;
  • изготовить верхнюю крышку с крепежом;
  • подобрать надёжный уплотнительный материал;
  • разместить на крышке электрический клеммник;
  • разместить на крышке водородный коллектор.

В результате должен получиться частично готовый к действию водородный генератор после того, как:

  1. Топливная ячейка загружена в корпус.
  2. Электроды подключены на клеммнике крышки.
  3. Штуцер выхода водорода соединён с водородным коллектором.
  4. Крышка установлена на корпус через уплотнитель и закреплена.

Останется только подключить воду и дополнительные модули.

Дополнения к водородному генератору

Самодельное устройство для получения водорода необходимо дополнить вспомогательными модулями. Например, модулем подачи воды, который функционально объединяется с датчиком уровня, установленным внутри генератора. В простом виде такой модуль представлен водяным насосом и контроллером управления. Насос управляется контроллером по сигналу датчика, в зависимости от уровня воды внутри топливной ячейки.


По сути, желательно также иметь устройство, регулирующее частоту электрического тока и уровень напряжения, подаваемых на клеммы рабочих электродов топливной ячейки. Как минимум, электрический модуль должен оснащаться стабилизатором напряжения и защитой от перегрузки по току.

Водородный коллектор, в простейшем его виде, выглядит как трубка, где размещается вентиль, манометр, обратный клапан. От коллектора забор водорода осуществляется через обратный клапан и фактически уже может подаваться к потребителю.

Но на практике всё несколько сложнее. Водород — взрывоопасный газ, имеющий высокую температуру сгорания. Поэтому просто взять и закачать водород в систему отопительного котла в качестве топлива – так сделать не получится.

Критерии качества установки

Собрать качественную эффективную и продуктивную установку в домашних условиях крайне сложно. К примеру, если даже взять в расчёт такой критерий, как металл, из которого делаются электродные пластины или трубки, уже есть риск столкнуться с проблемами.

Долговечность электродов зависит от вида металла и его свойств. Можно, конечно, использовать ту же самую нержавейку, но продолжительность жизни таких элементов будет недолгой.

Существенную роль играют также монтажные размеры. Необходимы расчёты с высокой точностью по отношению к требуемой мощности, качеству воды и прочим параметрам. Так, если величина зазора между рабочими электродами окажется вне расчётного значения, водородный генератор может не функционировать вовсе. В худшем случае мощность, на которую делался расчёт, окажется в несколько раз меньшей.


Даже сечение провода, соединяющего электроды с источником питания, имеет значение в устройстве генератора водорода. Правда, здесь дело касается безопасной эксплуатации устройства. Тем не менее, следует учитывать и эту деталь конструкции в домашнем исполнении.

Возвращаясь к безопасной эксплуатации системы, следует также не забывать о внедрении в конструкцию так называемого водяного затвора, препятствующего обратному движению газа.

Генератор промышленного изготовления

На уровне промышленного производства технологии изготовления водородных генераторов бытового назначения постепенно осваиваются и развиваются. Как правило, выпускаются энергетические станции домашнего применения, мощность которых не превышает 1 кВт.

Такой аппарат рассчитан на выработку водородного топлива в режиме постоянного функционирования не более чем в течение 8 часов. Главное их предназначение – энергоснабжение отопительных систем.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых. Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:


  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Полезное видео по теме

Экспериментируя дома с самодельными моделями, нужно приготовиться к самым неожиданным результатам, но негативный опыт — это тоже опыт:

Водородные генераторы для дома, изготовленные своими руками, — это пока что проект, существующий на уровне одной идеи. Практически реализованных проектов водородных генераторов своими руками нет, а те, что позиционируются в сети – воображения их авторов или же чисто теоретические варианты. Так что остаётся рассчитывать только на промышленный дорогостоящий продукт, который обещает появиться уже в ближайшем будущем.

sovet-ingenera.com


00

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Общая схема электролизера выглядит так.

Схема электролизера

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.
Графитовая заготовка электрода

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.
Графитовые электроды

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Электроды с проводами

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.
Крышка электролизера

Все тщательно промазывается герметиком.
Крышка электролизера с трубками

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.
Заготовки соединителя

Их необходимо соединить вместе и оплавить шов.
Соединитель

Гайки делаются из бутылочных крышек.
Гайки из бутылочных крышек

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.
Корпус электролизера


В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.
Диодный мост

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.
Корпус для диодного моста

Под диодный мост необходимо подложить несколько слоев картона.
Прокладки диодного моста

В крышке распаячной коробки делаются необходимые отверстия.
Диодный мост в корпусе

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.
Электролизер в сборе

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.
Помпа

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.
Шарик с водородом

Процесс изготовления на видео.

Взрыв шарика с водородом

www.zabatsay.ru

Получение водорода в домашних условиях

В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.

Способ 1. Водород из алюминия и щелочи.

Используемый раствор щелочи – едкого кали, либо едкого натра. Выделяемый водород более чистый, чем при реакции кислот с активными металлами.

Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.

Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.

Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин. пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6h3O → 2Na + 3h3↑

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди, и соли. Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.

Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.

Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.

Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

Zn + 2HCl → ZnCl2 + h3↑

Способ 4. Производство водорода электролизом.

Пропускаем через раствор воды и проваренной соли электрический ток. При реакции, будет выделятся водород и кислород.

Получение водорода электролизом воды.

Создан новый метод получения водорода из воды, действующий в 30 ...Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось. Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов. К электродам прикрепляются провода. Провода должны быть тщательно изолированы. Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов. Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок. Их необходимо соединить вместе и оплавить шов. Гайки делаются из бутылочных крышек. В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона. В крышке распаячной коробки делаются необходимые отверстия. Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Основные знания по классическому электролизу.

Принцип экономичности электролизёра для получения газа h3 и O2.

Наверняка все знают, если опустить два гвоздя в раствор питьевой соды и подать на один гвоздь плюс, а на другой минус, то на минусе будет выделяться Водород, а на плюсе Кислород.

Теперь наша задача найти такой подход, чтобы получить как можно больше этого газа и потратить при этом минимальное количество электроэнергии.

Урок 1. Напряжение

Разложение воды начинается при подаче на электроды чуть больше 1,8 вольта. Если подавать 1 вольт, то ток практически не идёт и не выделяется газ, а вот когда напряжение подходит к значению 1,8 вольта, то ток резко начинает расти. Это называется минимальный электродный потенциал при котором начинается электролиз. Поэтому- если мы подадим 12 вольт на эти 2 гвоздя — то такой электролизёр будет жрать много электроэнергии, а газу будет мало. Вся энергия уйдёт в нагрев электролита.

Для того. чтобы наш электролизёр был экономичным — надо подавать не более 2-х вольт на ячейку. Поэтому, если у нас 12 вольт — мы делим их на 6 ячеек и получаем на каждой по 2 вольта. 

А теперь упрощаем — просто разделим ёмкость на 6 частей пластинами- в результате получится 6 ячеек, соединённых последовательно на каждой ячейке будет по 2 вольта каждая внутренняя пластина с одной стороны будет плюсом, а с другой минусом. Итак — урок номер 1 усвоили = подавать маленькое напряжение.

Теперь 2-ой урок экономичности: Расстояние между пластинами

Чем больше расстояние — тем больше сопротивление, тем больше потратим тока для получения литра газа. Чем меньше расстояние — тем меньше потратим Ватт в Час на Литр газа. Далее буду пользоваться именно этим термином — показатель экономичности электролизёра / Из графика видно, что чем ближе находятся пластины друг к другу — тем меньше напряжение требуется для прохождения одного и того же тока. А как известно выход газа прямо пропорционален количеству тока прошедшего через электролит.

Перемножая более маленькое напряжение на ток — мы получим меньше ватт на то же количество газа.

Теперь 3-й урок. Площадь пластин

Если мы возьмём 2 гвоздя и используя первые два правила расположим их близко и подадим на них 2 вольта — то газу получится совсем мало, так как они пропустят очень мало тока. Попробуем при тех же условиях взять две пластины. Теперь количество тока и газа будет увеличено прямо пропорционально площади этих пластин.

Теперь 4-й урок: Концентрация электролита

Используя первые 3 правила возьмём большие железные пластины на маленьком расстоянии друг от друга и подадим на них 2 вольта. И опустим их в водичку, добавив одну щепотку соды. Электролиз пойдёт, но очень вяло, вода будет нагреваться. Ионов в растворе много будет, сопротивление будет маленькое, нагрев уменьшится а количество газа увеличится

Источники: 505sovetov.ru, all-he.ru, zabatsay.ru, xn—-dtbbgbt6ann0jm3a.xn--p1ai, domashnih-usloviyah.ru

Это интересно

Как сделать водород

Государство Аккад

Аккад основан в 24 в. до н. э. вождём семитоязычных племён Саргоном I Древним. Являлся столицей …


Как сделать водород

Опричнина

Опричниной называют промежуток в летописи России (примерно с 1565 вплоть до 1572 годы), знаменующийся муниципальным террором и концепцией методов …


Как сделать водород

Восстание Емельяна Пугачева

В середине 17 века в России начался рост крестьянских волнений. Петр III даровал вольности дворянству, из-за …


Как сделать водород

Нужно ли читать вслух с подростком

Каждый родитель знает о всех прелестях чтения вслух своему ребенку. Оказывается, что дети тоже могут извлечь …


    &#13

  • Тайна брахманов

    В глубине озера Тегид, в Уэльсе, жила Керидвен, богиня плодородия, у которой был волшебный котел — неотъемле­мый признак божества изобилия. Подобно…

  • &#13

  • objective-news.ru

    «>

    В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.

    Способ 1. Водород из алюминия и щелочи.

    Используемый раствор щелочи – едкого кали (гидроксид калия), либо едкого натра (гидроксид натрия, продается в магазинах, как средство очистки труб «Крот»). Выделяемый водород более чистый, чем при реакции кислот с активными металлами.

    Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.
    Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.
    Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин., пока водород вытеснит воздух из сосуда.

    Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

    2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2↑

    Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

    В колбу насыпаем немного сульфата меди (медный купорос, продается в любом магазине для сада), и соли (соли чуть больше). Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.
    Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.
    Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

    Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

    Способ 3. Водород из цинка и соляной кислоты.

    Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.
    Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

    Zn + 2HCl → ZnCl2 + H2↑

    Способ 4. Производство водорода электролизом.

    Пропускаем через раствор воды и проваренной соли электрический ток (12В). При реакции, будет выделятся водород (на аноде) и кислород (на катоде).

    При получении водорода и последующих экспериментах, соблюдайте технику безопасности.

    all-he.ru

    Получение водорода в домашних условиях:

    Получить водород в домашних условиях, на пример, для того что бы надуть воздушный шарик или просто из любопытства. Можно достаточно быстро и просто, с минимальными затратами времени и денег – вам для этого не нужны редкие химические реактивы.

    Предупреждение:

    Водород — бесцветный газ, который горюч и взрывоопасен –   проводите свои опыты, соблюдая все правила техники безопасности!!!

    Рецепт первый, не проверенный:

    Вам понадобится поваренная соль, медный купорос и алюминиевая фольга или проволока (алюминиевая стружка), вода и стеклянные ёмкости для смешивани.

    Насыпьте в отдельный одноразовый стаканчик медный купорос (количество выбирайте сами), а в другой стаканчик поваренную соль в таком же количестве (купорос и соль пропорция один к одному)  После вам необходимо растворить в стеклянной банкевашу смесь. Далее вам необходимо высыпать в раствор соли и медного купороса алюминиевую стружку и можете наблюдать выделение водорода.

    Рецепт второй, проверенный нами:

    Я делал так: взял медный купорос и каустическую соду (средство для прочистки труб типа крот), по чайной ложке (пропорция 1:1) и растворил в ста миллилитрах воды. После чего высыпал туда мелко нарезанную алюминиевую проволоку. Смесь аж забурлила, очень активно начал выделятся водород, и выделялся до того момента пока смесь была голубого цвета. Когда смесь стала белой, водород уже не выделялся, хотя бурление продолжалось. Видимо медный купорос весь прореагировал и его необходимо туда добавлять снова и снова. Я поджигал смесь и она горела оранжевым пламенем пока была синей и  выделялся водород, как побелела — гореть перестала. Если вы начинающий химик и не знаете всех правил техники безопасности, то поджигать смесь я вам не советую — это взрывоопасно!!!

    P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/

    bip-mip.com

    Получить водород!  До недавнего времени это была моя мечта ? . И я твёрдо решил осуществить ее.

    Как сделать водород

    В магазине я приобрёл все необходимые реактивы:

     

    Как сделать водород Как сделать водород Как сделать водород

    Далее заперся в своей комнате и начал творить! В итоге я в домашних условиях смог повторить все нижеописанные способы  получения водорода. И я просто обязан поделиться с вами своими знаниями. Итак, три способа получения водорода.

    Способ №1 и все необходимые для него реактивы.

    1 Сульфат меди (медный купорос ) его можно купить в любом цветочном магазине ( внимание не путайте с лавками где продоются только цветы нужен магазин с удобрениями ) просто зайдите и скажите что вам нужен медный купорос

    2 Обычная пищевая соль

    3 фольга (если честно то подойдёт любое алюминиевое изделие будь то ложка или проволока)

    Вот собственно и все реактивы. Теперь немного о посуде в которой мы всё это будем делать.

    1 Бутылка из толстого стекла ( отлично подойдёт из под вина, пива или шампанского )

    2 Кострюля с холодной водой .

    Для чего нужно было именно из толстого стекла и с холодной водой? А нужно это поскольку при данной реакции выделяется большоё количество тепла и бутылка может треснуть или вовсе лопнуть.

    А теперь начнём!!!! Насыпаем в бутылку примерно четыре ложки сульфата меди и столько же соли ( соли желательно брать немного больше ) добавим воды  и всё это тщательно перемешиваем.  Если всё сделано правильно то раствор должен стать зелёным, если нет, то добавьте ещё соли. Раствор готов! Начнём кидать туда алюминий ИИИИИИИ УРА-УРА начал выделяться водород, при этом алюминий начнёт ржаветь , а вода начнёт пузыриться.

    Но как-же это происходит, как идёт реакция??? Дело в том что образующися хлорид меди смывает защитную пленку с алюминия и на равне с восстановлением меди идет образование водорода.

    Способ № 2 и реактивы.

    1. Гидроксид натрия. Раньше я незнал где его купить, но потом узнал что он продоётся как средство для прочистки труб — крот в любом магазине бытовой химии.
    2. Алюминий ( ну вы поняли).

    Ну бутылка и вода как в способе №1

    Нальём крота в бутылку(если у вас сухой и в гранулах, то разбавьте водой ) . Добавим алюминий (его лучше обжечь на костре перед добавлением). Через минуты две начнётся очень бурная реакция с выделением водорода в больших количествах.

    Внимание!!!!!!!! Второй способ ООООчень опасный, советую проделывать его в перчатках( Гидроксид натрия сильно разъедает кожу!!!). Перчаток у меня не нашлось и я делал без них. Потом сильно пожалел. К вечеру у меня все руки были КРАСНЫМИ! и безумно болели. Но самая большая опасность в этой реакции это ВОДОРОД!!!!Его выделяется много!!!! И вообще я не советую проводить этот способ в домашних условиях!!!!

    Тут всё тоже самое, только едкая щелочь намного быстрее смывает защитную плёнку с алюминия и далее идёт реакция с выделением водорода

    Способ №3.

    В этом способе не нужно реактивов. Ну кроме поваренной соли. Этот опыт будет проводится с помощью электролиза. Всё что нужно это пропустить через раствор поваренной соли электричество.Ток должен быть постоянным. ( Водород будет выделяться на аноде, а на катоде небольшие количества кислорода


    mozgochiny.ru

    Краткая теоретическая часть

    Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

    1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.Гидроген сгорает без дыма
    2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
    3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
    4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
    5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

    Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

    Пожар и падение дирижабля
    Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

    Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

    2H2 + O2 → 2H2O + Q (энергия)

    Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

    2H2O → 2H2 + O2 — Q

    Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

    Создание опытного образца

    Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

    Схема электролиза воды

    Из чего состоит примитивный электролизер:

    • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
    • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
    • второй резервуар играет роль водяного затвора;
    • трубки для отвода газа HHO.

    Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

    Принцип работы электролизера следующий:

    1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).Схема разделения воды
    2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
    3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
    4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.

    Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

    Материалы для сборки генератора

    Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

    1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
    2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
    3. Поместите электроды в бутылку и завинтите крышку.
    4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.Подключение электролизера

    Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

    Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

    О водородной ячейке Мейера

    Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

    Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

    Электронная схема частотного генератора

    Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

    Для изготовления ячейки Мейера потребуется:

    • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
    • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
    • провода, изоляторы.

    Установка трубок из нержавейки

    Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

    Ячейка Мейера в сборе

    Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

    Монтажная схема электролизера
    Принципиальная схема включения электролизера

    Реактор из пластин

    Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

    Блок пластин в сборе

    Кроме листовой нержавейки марки 316 понадобится купить:

    • резина толщиной 4 мм, стойкая к воздействию щелочи;
    • концевые пластины из оргстекла либо текстолита;
    • шпильки стяжные М10—14;
    • обратный клапан для газосварочного аппарата;
    • фильтр водяной под гидрозатвор;
    • трубы соединительные из гофрированной нержавейки;
    • гидроокись калия в виде порошка.

    Чертеж сборки пластин и прокладок

    Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

    Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

    Емкость с щелочным электролитом
    Схема генератора мокрого типа

    Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

    1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
    2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
    3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

    Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

    Выгодно ли получать водород в домашних условиях

    Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

    • использовать hydrogen в качестве топлива для автомобилей;
    • бездымно сжигать водород в отопительных котлах и печах;
    • применять для газосварочных работ.

    Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

    Внутренняя часть электролизера

    Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

    Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

    Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:

    1. Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
    2. Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.Водородная газосварка
    3. Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.

    Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

    Заключение

    Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

    otivent.com

    Краткая теоретическая часть

    Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

    1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.Гидроген сгорает без дыма
    2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
    3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
    4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
    5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

    Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

    Пожар и падение дирижабля
    Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

    Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой: 

    2H2 + O2 → 2H2O + Q (энергия)

    Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

    2H2O → 2H2 + O2 — Q

    Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

    Создание опытного образца

    Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

    Схема электролиза воды

    Из чего состоит примитивный электролизер:

    • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
    • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
    • второй резервуар играет роль водяного затвора;
    • трубки для отвода газа HHO.

    Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

    Принцип работы электролизера следующий:

    1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).Схема разделения воды
    2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
    3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
    4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.

    Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

    Материалы для сборки генератора

    Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой: 

    1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
    2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
    3. Поместите электроды в бутылку и завинтите крышку.
    4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.Подключение электролизера

    Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

    Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

    О водородной ячейке Мейера

    Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

    Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

    Электронная схема частотного генератора

    Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

    Для изготовления ячейки Мейера потребуется:

    • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
    • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
    • провода, изоляторы.

    Установка трубок из нержавейки

    Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

    Ячейка Мейера в сборе

    Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

    Монтажная схема электролизера
    Принципиальная схема включения электролизера

    Реактор из пластин

    Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

    Блок пластин в сборе

    Кроме листовой нержавейки марки 316 понадобится купить:

    • резина толщиной 4 мм, стойкая к воздействию щелочи;
    • концевые пластины из оргстекла либо текстолита;
    • шпильки стяжные М10—14;
    • обратный клапан для газосварочного аппарата;
    • фильтр водяной под гидрозатвор;
    • трубы соединительные из гофрированной нержавейки;
    • гидроокись калия в виде порошка.

    Чертеж сборки пластин и прокладок

    Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

    Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

    Емкость с щелочным электролитом
    Схема генератора мокрого типа

    Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

    1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
    2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
    3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

    Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

    Выгодно ли получать водород в домашних условиях

    Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

    • использовать hydrogen в качестве топлива для автомобилей;
    • бездымно сжигать водород в отопительных котлах и печах;
    • применять для газосварочных работ.

    Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

    Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

    1. ydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.

    Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь…

     Источник

    Заключение

    Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. В улучшенном варианте — на обогрев помещения и работу двигателя. Подробнее см. ЗДЕСЬ:

    ДВИГАТЕЛИ НА ВОДЕ. Практические схемы и инструкции создания в домашних условиях — http://midgard-edem.org/?p=2192

    ДВИГАТЕЛЬ НА ВОДЕ. Водородная «Ячейка Мэйера». От теории – до практики – http://midgard-edem.org/?p=2194

     

    midgard-edem.org


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.