Подключение лампы дневного света


Начиная с того времени, как была изобретена лампа накаливания, люди ищут способы создания более экономичного, и в то же время без потерь светового потока, электроприбора. И вот одним из таких приборов стала люминесцентная лампа. В свое время такие светильники стали прорывом в электротехнике, таким же, как в наше – светодиодные. Людям казалось, что такая лампа вечная, но они ошибались.

Тем не менее срок службы их все же был значительно дольше простых «лампочек Ильича», что в совокупности с экономичностью помогало завоевывать все большее доверие потребителей. Трудно найти хотя бы одно офисное помещение, где не было бы светильников для ламп дневного света. Конечно, этот световой прибор подключается не так просто, как его предшественники, схема питания люминесцентных ламп гораздо сложнее, и она не столь экономична, как светодиодная, но все же по сей день она остается лидером на предприятиях и в офисных помещениях.

Нюансы подключения


Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.

Итак, стартер выполняет следующую задачу: он обеспечивает в схеме короткое замыкание, разогревая и электроды, обеспечивая тем самым пробой, при помощи которого облегчается розжиг лампы. После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи. А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Общие сведения о люминесцентных лампах

Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ. Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным. Тогда при маркировке указывается, что это лампа ЛД, т. е. «дневная». Интересен тот факт, что при исследованиях выявлено – лампы с более теплым оттенком имеют более высокий КПД, хотя на глаз кажется, что холодные цвета светят немного ярче.

И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:

  • Т8 на 36 Вт имеет длину в 120 см;
  • Т8 на 30 Вт – 89 см («восьмидесятка»);
  • Т8 на 18 Вт – 59 см («шестидесятка»);
  • Т8 на 15 Вт – 44 см («сороковка»).

Варианты подключений

Бездроссельное включение

Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера (схема подключения на рисунке). Он предусматривает использование умножителей напряжения.

Подача напряжения происходит после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы. С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В. По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т. е. необходимо просто развернуть реанимированную перегоревшую ЛЛ.

Подключение люминесцентных ламп без стартера

Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.


Существуют ЛДС, которые изначально предусмотрены для подключения без стартера. На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит. Происходит это по причине необходимости большего времени на разогрев спиралей таких ЛЛ. Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание дросселя или стартера (схема соединения ниже).

Электронный пускорегулирующий аппарат

Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку. Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы. К тому же в работе присутствовало мерцание по причине низких частот напряжения. При помощи электронного пускорегулирующего аппарата от этих неприятностей удалось избавиться. Необходимо разобраться, как действует ЭПРА.

Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 (на схеме ниже) напряжение сглаживается. Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4. При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.


После того как розжиг выполнен, показания сопротивления лампы снижаются, вместе с ними падает и напряжение до уровня, достаточного для поддержки свечения. Вся работа ЭПРА по запуску занимает меньше секунды. По такой схеме работают лампы дневного света без стартера.

Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.

Источник: LampaGid.ru

Кратко об особенностях работы ламп

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.


Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.


Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.

Классическое подключение через электромагнитный балласт


Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем дроссель.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Порядок подключения

Все необходимые коннекторы и провода обычно идут в комплекте с электронным балластом. Со схемой подключения вы можете ознакомиться на представленном изображении. Также подходящие схемы приводятся в инструкциях к балластам и непосредственно осветительным приборам.

В такой схеме лампа включается в 3 основные стадии, а именно:

  • электроды прогреваются, благодаря чему обеспечивается более бережный и плавный пуск и сохраняется ресурс прибора;
  • происходит создание мощного импульса, требующегося для поджига;
  • значение рабочего напряжение стабилизируется, после чего напряжение подается на светильник.

Современные схемы подсоединения ламп исключают необходимость применения стартера. Благодаря этому риск перегорания балласта в случае запуска без установленной лампы исключается.

Схема для последовательного подключения двух ламп

Отдельного внимания заслуживает схема подсоединения сразу двух люминесцентных лампочек к одному балласту. Приборы подключаются последовательно. Для выполнения работы нужно подготовить:

  • индукционный дроссель;
  • стартеры в количестве двух штук;
  • непосредственно люминесцентные лампы.

Последовательность подключения

Первый шаг. К каждой лампочке подсоединяется стартер. Соединение параллельное. В рассматриваемом примере стартер подключаем на штыревой выход с обоих торцов осветительного прибора.

Второй шаг. Свободные контакты подсоединяются к электросети. При этом соединение выполняется последовательно, посредством дросселя.

Третий шаг. Параллельно к контактам осветительного прибора подсоединяются конденсаторы. Они будут уменьшать выраженность помех в электросети и компенсировать возникающую реактивную мощность.

Важный момент! В обычных бытовых выключателях, в особенности это характерно для бюджетных моделей, контакты могут залипать под воздействием повышенных стартовых токов. Ввиду этого для использования в комплексе с люминесцентными осветительными приборами рекомендуется использовать только специально предназначенные для этого высококачественные выключатели.

Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов.

Удачной работы!

Источник: stroyday.ru

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

Источник: ProOsveschenie.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.