Заземляющее устройство это


В чем состоит разница между понятиями «заземление», «заземляющее устройство» и «заземлитель»?

 

Заземление, заземляющее устройство и заземлитель — это три различных термина, которые не следует путать.

 

Под заземлением понимают преднамеренное соединение частей электроустановки с заземляющим устройством. Таким образом, в отличие от заземляющего устройства и заземлителя заземление — это процесс, действие.

 

Заземляющее устройство представляет собой совокупность заземлителя и заземляющих проводников, а заземлитель — проводник или группа проводников, находящихся в непосредственном контакте с землей и соединяющих с ней определенные части электроустановок.

 

Заземляющие устройства в зависимости от назначения могут выполнять различные функции.

 

Эти устройства разделяют на защитные, рабочие и грозозащитные.

 


  • Защитные заземляющие устройства предназначены для защиты людей и животных от поражения электрическим током при случайном замыкании фазного провода на нетоковедущие металлические части электроустановки.
  • Рабочие заземляющие устройства необходимы для создания определенного режима работы электроустановки в нормальных и аварийных условиях.
  • Грозозащитные заземляющие устройства используют для заземления стержневых и тросовых молниеотводов и разрядников и предназначены для отвода импульсного тока молнии в землю.

 

Во многих случаях одно и то же заземляющее устройство может совмещать несколько функций (например, быть защитным и рабочим). Все заземлители делятся на два основных типа. Принято различать естественные и искусственные заземлители.

 

К естественным заземлителям относят проложенные в земле водопроводные и другие металлические трубопроводы (за исключением трубопроводов горючих или взрывчатых жидкостей и газов); обсадные трубы; металлические конструкции и арматуру железобетонных конструкций зданий и сооружений; свинцовые оболочки проложенных в земле кабелей при условии, что их проложено не менее двух и если отсутствуют другие заземлители и т. п.

 

Нельзя использовать в качестве заземлителей трубопроводы, покрытые изоляцией для защиты их от коррозии, трубопроводы для перекачки горючих жидкостей и газов, алюминиевые оболочки кабелей и голые алюминиевые проводники.


 

К искусственным заземлителям относят конструкции, выполняемые специально для заземления. Ими могут быть вертикально погруженные в землю стальные стержни и некондиционные трубы, уголковая сталь, горизонтально проложенные стальные полосы, круглые стальные стержни и т. д.

 

Заземляющий проводник предназначен для соединения заземляемых частей электроустановок с заземлителем. В качестве заземляющих проводников можно использовать металлоконструкции зданий и сооружений, а также металлические конструкции производственного назначения, например стальные трубы электропроводок, алюминиевые оболочки кабелей, металлические стационарные открыто проложенные трубопроводы любых назначений (кроме тех, которые предназначены для транспортирования горючих и взрывоопасных смесей), металлические фермы, подкрановые пути и т. д.

 

В жилых зданиях и сооружениях в качестве заземляющих проводников не разрешается использовать водопроводные трубы, трубы отопления. Наименьшие допустимые размеры заземляющих проводников и элементов заземлителя приведены в таблице.

 

Наименьшие допустимые размеры заземляющих проводников


Наименование заземляющего проводника или элемента заземлителя Единица измерения Допустимые размеры
В зданиях В наружных установках В земле
Круглая сталь мм (диаметр) 5 >6 6
Прямоугольная сталь мм2 (сечение) 24 48 48
Уголковая сталь мм (толщина полок) 3 4 4
Стальная газовая труба мм (толщина стенки) 2,5 2,5 2,5
Стальная тонкостенная труба мм (толщина стенки) 1,5 Не допускается Не допускается

 Главной электрической характеристикой заземляющего устройства является его сопротивление. Оно равно сумме сопротивлений заземлителя и заземляющих проводников. Сопротивление заземлителя называют сопротивлением растеканию электрического тока.


 

Электрический ток, стекая с заземлителя в землю, распределяется в объеме неравномерно, встречая на своем пути в земле определенное сопротивление. Поэтому и говорят о сопротивлении растеканию тока с заземлителя в землю. Для краткости его называют просто сопротивлением растеканию.

 

Сопротивление растеканию заземлителя равно отношению его потенциала (напряжения) в месте ввода к силе тока, идущего с заземлителя в землю: R=U/I

 

В электроустановках напряжением до 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, не должно превышать в любое время года 2, 4 и 8 Ом при линейных напряжениях соответственно 660, 380 и 220 В источника трехфазного или 380, 220 и 127 В однофазного тока.

 

Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода воздушной линии (ВЛ) до 1 кВ при числе отходящих линий не менее двух. Но даже если это требование выполнено, то генераторы или трансформаторы все равно должны иметь свои искусственные заземлители, сопротивления которых должны быть не более 15, 30 и 60 Ом при линейных напряжениях соответственно 660, 380 и 220 В источника трехфазного или 380, 220 и 127 В однофазного тока.


 

При удельном электрическом сопротивлении ρ земли более 100 Ом•м допускается увеличить указанные значения в ρ/100, но не более чем в 10 раз. На концах ВЛ (или ответвлений) длиной более 200 м, а также на вводах в здания, электроустановки которых подлежат занулению, выполняют повторные заземления, используя при этом в первую очередь естественные, а также молниезащитные заземлители.

 

Общее сопротивление всех этих заземлителей, искусственных и естественных, для каждой ВЛ не должно превышать в любое время года 5, 10 и 20 Ом при линейных напряжениях соответственно 660, 380 и 220 В источника трехфазного или 380, 220 и 127 В однофазного тока. При этом сопротивление заземляющего устройства каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. Как и для заземляющих устройств генераторов и трансформаторов, значения указанных сопротивлений разрешается увеличить в ρ/100 раз, но не более чем в 10 раз.

 

Сопротивление заземляющего устройства, используемого для заземления электрооборудования электроустановки напряжением до 1 кВ с изолированной нейтралью, должно быть не более 4 Ом. Это сопротивление может быть увеличено до 10 Ом при мощности генераторов и трансформаторов 100 кВ• А и менее, для параллельно работающих генераторов и трансформаторов сопротивление 10 Ом допускается при их суммарной мощности не более 100 кВА.


 

К заземляющим устройствам в электроустановках напряжением выше 1 кВ предъявляются следующие требования.

 

Заземляющие устройства электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью, предназначенные для заземления электрооборудования, за исключением опор воздушных линий электропередачи (ВЛ), выполняют, соблюдая требования к сопротивлению заземляющего устройства или к напряжению прикосновения, а так же к конструктивному выполнению и к ограничению напряжения на заземляющем устройстве.

 

Если заземляющее устройство выполняют, соблюдая требования к его сопротивлению, то значение последнего в любое время года должно быть не более 0,5 Ом, включая сопротивления естественных заземлителей. В целях выравнивания электрических потенциалов между электрооборудованием и землей и для присоединения этого оборудования к заземлителю на глубине 0,5…0,7 м от поверхности земли на территории, занятой оборудованием, прокладывают продольные и поперечные проводники, называемые горизонтальными заземлителями. Проводники соединяют между собой. В результате образуется заземляющая сетка.

 

Продольные горизонтальные заземлители прокладывают вдоль осей электрооборудования со стороны обслуживания на расстоянии 0,8…1,0 м от фундаментов или оснований оборудования. В том случае, когда стороны обслуживания обращены одна к другой и расстояние между фундаментами или основаниями рядов оборудования не превышает З м, допускается прокладывать один заземлитель для двух рядов оборудования.


 

При этом расстояние от продольного заземлителя до фундаментов или оснований оборудования может быть увеличено до 1,5 м. Поперечные заземлители прокладывают на той же глубине в удобных местах между фундаментами оборудования. Для экономии металла и более равномерного выравнивания электрических потенциалов расстояния между поперечными заземлителями принимают увеличивающимися от периферии к центру заземляющей сетки. При этом первое и последующие расстояния, начиная от периферии, не должны превышать соответственно 4; 5; 6; 7,5; 9; 11; 13,5; 16 и 20 м.

 

Размер ячеек заземляющей сетки, примыкающих к местам присоединения к заземлителю короткозамыкателей и нейтралей силовых трансформаторов, не должен быть более 6X6 м2. По краю территории, занимаемой заземляющим устройством, горизонтальные заземлители прокладывают с таким расчетом, чтобы в совокупности они образовывали замкнутый контур.

 

Если этот контур располагается в пределах внешнего ограждения электроустановки, то у входов и въездов на ее территорию потенциал выравнивают, устанавливая два вертикальных заземлителя длиной 3…5 м. Расстояние между ними выбирают равным ширине входа или въезда. При помощи сварки эти заземлители присоединяют к внешнему горизонтальному заземлителю.

 

Выполнение заземляющих устройств по допустимому сопротивлению часто приводит к неоправданному перерасходу металла и денежных средств.


 

Экономичнее, иногда в несколько раз, заземляющие устройства, выполняемые с соблюдением требований, предъявляемых к напряжению прикосновения.

 

Такие заземляющие устройства должны обеспечивать в любое время года (при стекании с них токов замыкания на землю) значения напряжений прикосновения, не превышающие нормированные. При их определении в качестве расчетного времени воздействия принимают сумму времени действия основной или резервной защиты и полного времени отключения выключателя.

 

Если определяют допустимые значения напряжений прикосновения у рабочих мест, где при оперативных переключениях могут возникнуть замыкания на конструкции, доступные для прикосновения персоналу, выполняющему переключения, то в указанную сумму времен должно входить и время действия резервной защиты, а для остальной территории — основной.

 

Для заземляющих устройств, выполненных по напряжению прикосновения, продольные и поперечные горизонтальные заземлители размещают, соблюдая лишь требования ограничения напряжений прикосновения до нормированных значений и удобства присоединения заземляющего оборудования, однако во всех случаях расстояние между двумя соседними продольными или поперечными горизонтальными искусственными заземлителями не должно превышать 30 м, а глубина их заложения в грунт должна быть не менее 0,3 м.

 


У рабочих мест заземлители можно прокладывать на меньшей глубине при условии, что необходимость этого подтверждается расчетом, а удобство обслуживания и срок службы заземлителя не снижаются.

 

Чтобы снизить напряжение прикосновения, у рабочих мест в обоснованных случаях может быть выполнена гравийная подсыпка толщиной 0,1…0,2 м или сделана асфальтовая отмостка. Сопротивления заземляющих устройств, выполненных по допустимым напряжениям прикосновения, могут быть любыми, однако не должны превышать значений, определяемых по допустимым напряжениям на заземляющих устройствах и токам замыкания на землю.

 

Напряжения на заземляющих устройствах, выполненных как по сопротивлению, так и по напряжению прикосновения, не должны превышать 5 кВ при стекании с них тока замыкания на землю.

 

Напряжения выше 5 кВ, но не более 10 кВ допускаются для заземляющих устройств тех электроустановок, для которых предусмотрены специальные меры по защите изоляции отходящих кабелей связи и телемеханики и по предотвращению выноса опасных потенциалов за пределы электроустановок.

 

Для заземляющих устройств, с которых вообще исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановки, допускаются напряжения выше 10 кВ. Заземляющие устройства электроустановок напряжением выше 1 кВ с изолированной нейтралью выполняют с таким расчетом, чтобы их сопротивления с учетом сопротивлений естественных заземлителей в любое время года не превышали частного от деления коэффициента К на расчетный ток замыкания на землю, выраженный в амперах.


 

Когда заземляющее устройство одновременно используют и для электроустановок напряжением до 1 кВ, К=125. При этом также должны выполняться требования, предъявляемые к заземлению электроустановок напряжением до 1 кВ.

Если заземляющее устройство используют только для электроустановок напряжением выше 1 кВ, то К=250. В обоих случаях сопротивление заземляющего устройства не должно превышать 10 Ом.

 

В грунтах с высоким удельным электрическим сопротивлением значения сопротивлений заземляющих устройств разрешается иметь увеличенные в ρ/500 раз, где ρ — удельное электрическое сопротивление земли в ом-метрах. Однако это увеличение не должно быть более десятикратного.

 

В качестве расчетного тока замыкания на землю принимают полный ток замыкания на землю при условии, что в сети нет устройств компенсации емкостных токов. В сетях с компенсацией емкостных токов расчетный ток для заземляющих устройств, к которым присоединены компенсирующие устройства, выбирают равным 125% номинального тока этих устройств, а для заземляющих устройств, к которым не присоединены компенсирующие устройства, — равным остаточному току замыкания на землю, который может быть в данной сети при отключении наиболее мощного из компенсирующих устройств или наиболее разветвленного участка сети.

 

Часто в качестве расчетного тока принимают ток плавления плавких вставок предохранителей или ток срабатывания релейной защиты от однофазных замыканий на землю.

 

В качестве расчетного принимают также и ток срабатывания защиты от междуфазных замыканий при условии, что эта защита обеспечивает отключение замыканий на землю. Во всех случаях ток замыканий на землю должен быть не менее полуторакратного тока срабатывания релейной защиты или трехкратного номинального тока предохранителей.

 

Расчетный ток замыкания на землю определяют для той из возможных в эксплуатации схем сети, при которой он имеет наибольшее значение. Заземляющее устройство открытых электроустановок должно содержать замкнутый горизонтальный заземлитель (контур).

 

Глубина его заложения в грунт должна быть не менее 0,5 м. К этому контуру присоединяют заземляемое оборудование. В тех случаях, когда заземляющее устройство находится в земле с удельным электрическим сопротивлением более 500 Ом•м и его сопротивление превышает 10 Ом, вдоль рядов оборудования со стороны обслуживания на расстоянии 0,8…1,0 м от фундаментов или оснований оборудования прокладывают дополнительные горизонтальные заземлители на глубине не менее 0,5 м.

 

Зануление.

 

Занулением называют соединение металлических корпусов электроприемников с нейтралью питающего трансформатора или генератора посредством нулевого провода.

 

Зануление должно обеспечить надежное автоматическое отключение участка сети, на котором произошло замыкание. Благодаря занулению любое замыкание на корпус превращается в короткое замыкание и поэтому аварийный участок сразу же отключается автоматом или предохранителями.

 

Зануление выполняют, соединяя корпуса электрооборудования с нулевым проводом сети. При этом каждый корпус должен быть присоединен к нулевому проводу сети отдельным проводником (рис. «Зануление группы электроприемников», «а»).

 

В зануляющий проводник запрещается последовательно включать несколько частей электроустановки (рис. «Зануление группы электроприемников», «б»).

 

В чем отличие зануляющего проводника от нулевого рабочего проводника?

 

Зануляющий проводник предназначен только для зануления. В нормальном эксплуатационном режиме ток по нему не проходит (рис. «Схема зануления электроприемников», «а», «в»).

Заземляющее устройство это

Рис. Зануление группы электроприемников: а — правильное; б — неправильное.

 

 

 

 

 

 

 

Заземляющее устройство это

 Рис. Схема зануления электроприемников:

 

Нулевой рабочий проводник используют для подключения однофазных потребителей. Применять его в качестве зануляющего нельзя (рис. «Схема зануления электроприемников», «6»).

 

  • а, в — правильное зануление;
  • б – неправильное

 

1 — нулевой провод сети; 2 — нулевой рабочий провод; 3 — зануляющий провод.

 

В сетях с глухозаземленной нейтралью нулевой провод обязательно следует заземлить, причем в нескольких местах.

 

Основное заземление нулевого провода — на питающей подстанции, повторные — на линии электропередачи и на вводах в помещения.

 

Зануленное оборудование потребителей обычно заземлять не нужно. Нулевой провод сети надежно заземлен и поэтому оборудование, присоединенное к нему, в дополнительном заземлении не нуждается.

 

Необходимость заземления зануленного оборудования, как правило, отдельно оговаривается в инструкции по эксплуатации или техническом описании оборудования.

 

Особо следует подчеркнуть, что в жилых домах нет отдельной шины заземления. Поэтому требование производителей бытовой техники об обязательном заземлении корпусов бытовой техники являются, как правило, технически невыполнимыми и осуществляется зануление корпусов, что в дальнейшем позволяет снимать с производителей бытовой техники юридическую ответственность.

 

Сопротивление растеканию заземлителя измеряется следующим образом.

 

Это сопротивление обычно измеряют по методу амперметра и вольтметра, используя портативные приборы по схеме, приведенной на рисунке «Схемы измерений сопротивления растеканию заземлителя», «а».

 

Для измерения необходимы два вспомогательных электрода. Токовый Т используют для того, чтобы через измеряемый заземлитель пропустить электрический ток, а потенциальный П — для измерения потенциала заземлителя.

 

Сопротивление заземлителя, измеренное в приведенной схеме, вычисляют по известной формуле R=U/I В качестве источника измерительного тока может быть использован сварочный или любой другой трансформатор, у которого вторичная обмотка не имеет электрической связи с первичной.

 

Потенциальный и токовый электроды располагают так, как это показано на рисунке «Схемы измерений сопротивления растеканию заземлителя», «б». В приведенной схеме расстояния даны для измерения сопротивления растеканию заземлителя потребительской подстанции, выполненного в виде замкнутого контура. При измерении сопротивлений растеканию одиночных заземлителей, предназначенных для повторных заземлений нулевого провода линии электропередачи, указанные расстояния могут быть уменьшены в 2 раза.

 

При измерении сопротивления растеканию заземлителя прибором МС-08 его располагают в непосредственной близости от места подключения к испытываемому заземлителю и собирают одну из схем, приведенных на рисунке «в» «Схемы измерений сопротивления растеканию заземлителя», или «г», которые отличаются одна от другой только тем, что в схеме «г» из показания прибора необходимо вычесть значение сопротивления соединительного проводника, идущего от заземлителя до клемм I1 и Е1. После сборки схемы, регулируют сопротивления потенциальной цепи.Заземляющее устройство это

 

Рисунок. Схемы измерений сопротивления растеканию заземлителя:

  • а — принципиальная схема;
  • б — схема расположения электродов;
  • в — измерение сопротивления заземлителя;
  • г — измерение суммарного сопротивления заземлителя и соединительного проводника.

 

Для этой цели переключатель диапазона ставят в положение «Регулировка» и, вращая ручку генератора с частотой около двух оборотов в секунду, добиваются при помощи регулировочного реостата установки стрелки прибора на красную черту.

 

Если установить стрелку на красную черту не удается, значит, сумма сопротивлений заземлителя и потенциального электрода больше 1000 Ом и нужно уменьшить сопротивление потенциального электрода. Для этого прибегают к местному увлажнению земли подсоленной водой, более глубокому заложению потенциального электрода или применению нескольких параллельно соединенных стержней, забиваемых в землю на расстоянии 3…4 м один от другого.

 

После регулировки потенциальной цепи приступают непосредственно к измерению. Для этого переключатель диапазонов переводят в положение «XI», что соответствует диапазону измерений 10…1000 Ом, и, вращая ручку генератора, измеряют сопротивление растеканию заземлителя. Если при этом стрелка попадает на нерабочую часть шкалы (0…10 Ом), то переходят на меньший диапазон измерений, переводят переключатель диапазонов в положение «Х0,1» или «Х0.01».

 

Если оборудование надежно заземлено (например, двигатель погружного насоса для подачи воды), но не занулено, то такое оборудование является источником повышенной опасности поражения электрическим током. Поэтому его необходимо занулять, соблюдая выше перечисленные требования к устройству зануления.

 

Дополнительными защитными мерами электробезопасности в дополнение к заземлению и занулению широко используются устройства для выравнивания электрических потенциалов и быстродействующие высокочувствительные устройства защитного отключения (УЗО).

energolider.com.ua

Для устройства заземлении в установках переменного тока следует в первую очередь использовать естественные заземлители.
Естественные заземлители — это различные конструкции и устройства, которые по своим свойствам могут одновременно выполнять функции заземлителей: водопровод, металлические оболочки кабелей, металлические и железобетонные конструкции зданий и сооружений, имеющие надежное соединение с землей.
В водопроводной сети, если трубы не изолированы от земли и выполнены из стали или чугуна, происходит растекание тока в землю на большом протяжении. Водопроводные трубы укладываются ниже глубины промерзания (и высыхания), поэтому сопротивление растеканию можно считать постоянным в течение года.
Свинцовые оболочки проложенных в земле кабелей могут обеспечивать достаточно малые значения сопротивления растеканию, и поэтому их использование рекомендуется. Алюминиевые оболочки кабелей, выпускающиеся с защитными покровами для предотвращения коррозии алюминия при соприкосновении с землей, для устройства заземлений применены быть не могут. Стальная броня кабелей как заземлитель в расчет не принимается.
Железобетонные фундаменты во влажных грунтах обладают высокой и стабильной в течение года проводимостью и рекомендуются в качестве естественных заземлителей в глинистых, суглинистых, супесчаных и других влажных грунтах. При использовании железобетонных конструкций для возможности их соединений между собой и сетью заземления должны заранее предусматриваться выводы арматуры наружу.
Преимуществом рассмотренных естественных заземлителей является малое сопротивление растеканию. Рациональное использование естественных заземлителей упрощает и удешевляет сооружение заземляющих устройств. Сопротивления естественных заземлителей зависят от многих местных факторов, и достоверные данные могут быть получены только на основании замеров.
Под искусственными заземлителями понимаются закладываемые в землю металлические электрода» специально предназначенные для устройства заземлений. Во избежание излишних затрат эти заземлители следует применять лишь при отсутствии естественных заземлителей, невозможности их использования или при слишком высоком сопротивлении естественных заземлителей.
Искусственные заземлители обычно выполняются из вертикальных электродов (труб, углов, стержней) с расположением верхнего конца у поверхности земли или ниже уровня земли на 0,5—0,7 м (рис. 12-2). При втором способе сопротивление заземления относительно стабильно, так как заземлитель соприкасается со слоями грунта, в которых относительно малы изменения влажности и температуры в течение года. Если заземлитель из одиночного вертикального электрода (рис. 12-2) не обеспечивает требуемого сопротивления заземления, то применяется расположение вертикальных электродов в ряд (рис. 12-3) или по контуру (рис. 12-4).

www.websor.ru

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Заземляющее устройство это
Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Заземляющее устройство это
Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Независимые заземлители

Заземляющее устройство это
Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Заземляющее устройство это
Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Модульно-стержневое заземление

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Стандартное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Фундамент подстанции

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

ЗаземлениеНе стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

househill.ru

Заземляющие устройства — основной принцип работызаземляющие устройство

Защитная функция заземляющего устройства базируется на том принципе, что части электроустановок, прикосновение к которым в случае нарушения изоляционного слоя крайне опасно для человеческой жизни, необходимо соединять с заземляющим устройством. При этом, заземляющие устройства (заземлители) должны находиться непосредственно в грунте.

Таким образом, создается необходимое сопротивление в электропроводящей сети. Оно получается весьма малое, а падение напряжения на нем не будет достигать критического значения. В итоге, удар тока, который получит человек в случае нарушения изоляционного слоя, будет не смертельным. Если человек соприкоснется с данной деталью, он будет в зоне действия пониженного напряжения.

Чем лучше будет изготовлено заземляющие устройство (заземление), тем меньше вероятность того, что на корпусах электроприборов возникнет напряжение. Качество заземляющего устройства зависит, в первую очередь, от того, насколько велико его сопротивление. При этом, чем ниже сопротивление в данной сети, тем заземление качественнее. В этом случае, расходы материалов и труда будут несколько большими, нежели без изготовления заземления, однако безопасность конструкции будет в несколько раз выше.

Из чего состоит заземляющие устройство

Заземляющие устройство представляют собой систему, включающую в себя несколько основных частей:

  1. Естественные заземлители, то есть элементы, которые находятся непосредственно в почве или соприкасаются с ней. Именно через них электрический ток уходит в землю;
  2. Заземляющие проводники — через них заземлители соединяются с заземляемым оборудованием;
  3. Искусственные заземлители. Они схожи с естественными заземлителями, однако их специально размещают в почве для сооружения заземляющей конструкции.

Следует отметить, что каждый из указанных пунктов может быть устроен совершенно по-разному. В общем, заземляющее устройство, это совокупность заземлителя и заземляющего проводника. С его помощью производят заземление элементов или корпусов электроустановок.

Какие дополнительные функции может выполнять заземляющие устройство

Достаточно часто заземляющие устройство выступает в роли грозоотвода, а также может выполнять функцию молниезащиты строения. Если же неподалеку находится вторая электроустановка, мощность которой не превышает 1 кВт, то для ее заземления можно использовать ту же заземляющую систему. С помощью данного решения в значительной степени снижаются расходы на сооружение заземления.

В этом случае нормой будет служить наименьшее значение сопротивления растеканию тока. Вычисляют его, исходя из значений наименьшего сопротивления для каждой из объединенных в одном заземлителе электроустановок, при этом, необходимо взять наименьшее значение.

Что такое рабочее заземление

В процессе изготовления рабочего заземления с заземляющим устройством соединяют какую-нибудь из точек электрической цепи. Сооружают рабочее заземление через специальные устройства, например, через пробивные предохранители, разрядники или резисторы.

podvi.ru

Назначение и принцип работы ЗУ

Заземляющее устройство (ЗУ) — это совокупность заземлителя и заземляющих проводников которые соединяют землю с электрическими приборами, машинами и электроустановками.

заземляющие устройства

Главная задача ЗУ – создание надежного соединения для отвода напряжения с элементов, которые могут попасть под высокое напряжение.

Причиной тому чаще всего служат:

  • молния;
  • вынос потенциалов;
  • вторичная индукция из-за влияния близко находящихся токоведущих частей.

Роль земли может выполнять грунт или вода в крупных водоемах и реках, каменноугольные выработки, и иные природные или рукотворные объекты с похожими свойствами.

Разделяют три вида заземления:

  • рабочее зазмеление необходимо для нормального функционирования прибора или установки, которое пропускает через себя рабочий ток, составляющий часть тока в фазе трехфазной системы или в одном из полюсов постоянного тока;
  • зануление заземление — нейтраль трехфазного генератора или трансформатора заземлена и от нее проложен нулевой провод, выполняющий одновременно функции рабочего и защитного зануления;
  • заземление безопасности — главной задачей является уменьшение шагового напряжения и обеспечение электробезопасности. Это осуществляется путем снижения сопротивления каждого отдельного заземлителя и равномерным распределением потенциала по всей площади;

В трехфазных сетях с напряжением менее 1000 Вольт при наличии изоляции нейтрали в обязательном порядке требуется защитное заземление, и независимо от режима изоляции в сетях от 1000 Вольт.

Виды ЗУ

В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.

К первым относятся:

  • конструкции домов и помещений, осуществляющие соединение с землей;
  • фундаменты из железобетона — при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
  • подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
  • оболочки кабеля из свинца.

Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.

В качестве искусственных заземляющих устройств применяются элементы представляющие собой:

  • стальные трубы от 3 см в диаметре и от 2 метров длинной;
  • стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
  • длинные (до 10 м) стальные прутья диаметром от 1 см;
  • обрезки труб из стали, рельс;
  • металлические цепи, тросы.

Выбирая размеры электрода, обязательно учитывайте:

  • значение сопротивления заземлителя при наименьшей массе — уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения; 
  • механическую устойчивость к подземной коррозии — показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.

Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.

Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см — данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.

Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.

Технические параметры устройств заземления в различных видах электрических установок

От 1000 Вольт при больших токах замыкания

В этом случае для наибольшего сопротивления заземляющих устройств требуется менее 0,5 Ом, однако этим не обеспечивается достаточное напряжение касания и шага токозамыкания 1-2 кА. Поэтому дополнительно выполняются следующие действия:

  • должно быть быстрое отключение на случай замыкания в землю;
  • выравниваются потенциалы по периметру территории местонахождения установки и в ее пределах. Для этого по всей площади от 50 см глубиной закладывают сетку, состоящую из проводников выравнивания для равномерного растекания тока. Продольные части укладываются параллельно осей электрооборудования на дистанции 80 — 100 см от его основания либо фундамента. Затем укладывают поперечные детали и шаг соединения до 6 м. Крайние части сетки, через которые уходит большое количество тока, укладывают глубже на 30-50 см.
  • Такое же выравнивание осуществляют рядом с входами на территорию электрической установки укладкой дополнительно нескольких полос с их постепенным заглублением — расстояние от заземлителя 100 и 200 см соответственно, а глубина закладки 100 и 150 см.
  • Дистанция от периметра контура до ограждения должно превышать 3 м, тогда ограждение можно не заземлять. Подходы, входы и въезды есть смысл делать в виде асфальтовых или гравийных покрытий, из-за их малой проводимости.
  • Чтобы избежать выноса за границы местонахождения потенциала, разрешается присоединять приемники вне территории установки к трансформаторам смонтированным в нее можно лишь при условии изоляции их нейтрали.

Больше 1000 Вольт при небольших токах замыкания

Когда проводится значение R для таких установок, требуется менее 10 Ом. Рассчитать его можно с помощью формулы:

формула

В качестве расчетного используется:

  • показатель тока сработки релейной защиты обязательно гарантирующей обесточивание замыкания на землю;
  • емкость предохранителей.

Необходимо превышение в 1,5 и 3 раза минимального эксплуатационного тока замыкания соответственно над уровнем срабатывания реле или номинальным током предохранителей.

До 1000 Вольт — нейтральный проводник заглушен в землю

Уровень сопротивления заземляющих устройств менее 4 Ом. Когда общая мощность источников и преобразователей напряжения не доходит больше 100 кВА, тогда достаточно уровеня менее 10 Ом.

cistema_uravnivaniya_potencialov_система_.jpg

Заземляемые детали делаются надежно связанными с проводниками заземления или нуля источника электричества.

На воздушных линиях этот контакт делается специально прокладываемым параллельно фазам проводом. В этом случае необходимо сделать повтор заземления нуля с интервалом 250 м, и обязательно в конечной точке линии. Для каждого повтора R меньше 10 Ом.

Если мощность всех источников и трансформаторов в сумме меньше 100 кВА, и для этой сети разрешено R главного ЗУ 10 Ом, то для повторных этот показатель необходим менее 30 Ом в количестве больше двух.

До 1000 Вольт — нейтраль в изоляции

Как в предыдущем пункте, требуется получить уровень R заземляющих устройств менее 4 Ом. Когда же сумма мощности генераторов и преобразователей до 100 кВА, показатель нужен меньше 10 Ом.

Наибольшее значение при касании может быть до 40 В. Из-за этого электробезопасность частей, которые могут оказаться под напряжением в таких сетях значительно выше.

« вернуться

www.kabelmontazh.ru

Заземляющее устройство

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом  с контуром заземления здания, выполненного из полосы металла при помощи сварки.
Заземление двигателя
Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
S≤16 S
16 < S≤35 16
S>35 S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.
Заземление сварочного аппарата
Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

electry.ru

О компании » Вопросы и ответы » Что такое заземляющее устройство?

Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством. Заземляющее устройство является неотъемлемой составляющей любой электрической установки мощностью 1 кВ и выше. Представляет собой совокупность заземляющих проводников и заземлителя. Заземлитель находится непосредственно в контакте с землей и соединяет с ней части электроустановки. Для того, чтобы обеспечить быстрое стекание на землю замыкания или тока пробоя, сопротивление заземляющего устройства необходимо как можно более низкое. Это также необходимо для быстрого срабатывания защитных реле при их наличии.

В первую очередь условия работы устройства заземления определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.

В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.Что такое заземляющее устройство?

Защитные устройства необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.

Рабочие устройства предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях — как в нормальных, так и чрезвычайных.

Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.

Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.

При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является паспорт заземляющего устройства – документ, который содержит всю информацию о параметрах ЗУ и в который впоследствии будут заноситься все изменения.

Такие изменения часто касаются результатов обслуживания, когда осуществляется проверка заземляющих устройств

Измерение сопротивления контура заземления проводится многофункциональным прибором MRU-101.

Результаты осмотра и возможного ремонта заносятся в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам такого обследования составляется протокол заземляющего устройства.

www.megaomm.ru

Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности.

Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств.

Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы.

Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи.

Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания.

Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода.

Правила устройство заземления

Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п.

Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей.

Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта.

По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом.

Варианты и особенности

Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки.

Ustroistvo zazemleniia TN - C - S

В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров.

Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S.

Ustroistvo zazemleniia TT

Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной.

Монтаж заземления

Существует два вида устройство заземления, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу.

Набор, приобретенный в торговой сети, имеет свои преимущества:

  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Ustroistvo zazemleniia soedineniia

Из недостатков заводского исполнения можно отметить высокую стоимость набора.

Материалы и инструменты

Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы.

Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать.

При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится. Наименьшие сечения проката выбираются:

  • Оцинкованный пруток – 6 мм.
  • Пруток из металла без покрытия – 10 мм.
  • Прямоугольный прокат – 48 мм2.

Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2.

Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:

  • Алюминиевый без изоляции – 6 мм.
  • Медный без изоляции – 4 мм.
  • Изолированный алюминиевый – 2,5 мм.
  • Изолированный медный – 1,5 мм.

Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика.

Ustroistvo zazemleniia shina

Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой.

Земляные работы

Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра.

Ustroistvo zazemleniia ustanovka 1

Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м.

Подготовка электрода (штыря)

Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой.

Заглубление электродов

Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром.

Ustroistvo zazemleniia ustanovka 2

Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины.

Соединение электродов

Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом.

Ustroistvo zazemleniia ustanovka 3

Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита.

Ustroistvo zazemleniia ustanovka 4

На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой.

Засыпка траншеи

Для засыпания траншеи целесообразно использовать плотную однородную почву.

Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии.

Ustroistvo zazemleniia ustanovka 5

Проведение в щит

Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением.

Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре.

Похожие темы:
  • Система уравнивания потенциалов. Виды и назначение. Установка
  • Атмосферное электричество. Что это? Виды и особенности
  • Варианты статического электричества. Возникновение и удаление статики
  • Защитное зануление. Принцип действия и порядок, чем опасно зануление
  • Заземление в доме-квартире
  • Молниезащита дома
  • Наведенное напряжение. Причины возникновения и опасность
  • Глухозаземленная нейтраль
  • Изолированная нейтраль. Устройство и принцип действия
  • electrosam.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.