Гидравлический расчет


Что ещё учитывается при расчёте газопроводной магистрали

В результате трения о стенки скорость газа по сечению трубы различается – по центру она быстрее. Однако применяется для расчётов средний показатель – одна условная скорость.

Различают два вида перемещения по трубам: ламинарное (струйное, характерное для труб с малым диаметром) и турбулентное (имеет неупорядоченный характер движения с непроизвольным образованием вихрей в любом месте широкой трубы).

Гидравлический расчетРасчет диаметра трубопровода магистрального газоснабжения

Газ перемещается не только из-за оказываемого на него внешнего давления. Его слои оказывают давление между собой. Поэтому учитывается и фактор гидростатического напора.

На скорость перемещения влияют и материалы труб. Так в стальных трубах в процессе эксплуатации увеличивается шероховатость внутренних стенок и оси сужаются по причине зарастания. Полиэтиленовые трубы, наоборот, увеличиваются во внутреннем диаметре с уменьшением толщины стенок. Всё это учитывается при расчётном давлении.

Двухтрубная система отопления дома особенности расчета, схемы и монтаж


Гидравлический расчет

Даже несмотря на относительный несложный процесс установки и сравнительную маленькую протяженность трубопровода в случае с однотрубными системами отопления, на рынке специализированного оборудования все так же остаются на первых позициях двухтрубные отопительные системы.

Хоть и недлинный, но весьма убеждающий и содержательный список достоинств и плюсов двухтрубной отопительной системы оправдывает покупку и последующее использование контуров с прямой и обратной магистралью.

Поэтому многие потребители предпочитает её другим разновидностям, закрывая глаза на то, что установка системы не так уж и легка.

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Гидравлический расчет

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Гидравлический расчет отопления с учетом трубопровода

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Отопление с двумя магистралями


Гидравлический расчет

Отличительная особенность строения конструкции двухтрубной системы отопления состоит в двух трубопроводных разветвлений.

Первое проводит и направляет нагретую в котле воду по всем необходимым устройствам и приборам.

Другое же собирает и выводит уже охлажденную в процессе работы воду и отправляет ее теплогенератор.

В однотрубном виде конструкции системы вода, в отличие от двухтрубной, где она проводится по всем трубам обогревательных приборов с одинаковым показателем температуры, претерпевает значительную потерю необходимых для стабильного процесса отопления характеристик на подходе к замыкающей части трубопровода.

Протяженность труб и затраты, напрямую связанные с нею, увеличиваются при выборе двухтрубной отопительной системы вдвойне, однако это относительно незначительный нюанс на фоне явных достоинств.

Во-первых, для создания и монтировки двухтрубной конструкции отопительной системы вовсе не понадобится трубы с большим значением диаметра и, ввиду этого не будет создаваться та или иная преграда на пути как в случае с однотрубным контуром.

Все необходимые крепежи, вентили и другие детали конструкции тоже гораздо меньше в размере, поэтому разница в стоимости будет весьма незаметна.


Одно из самых главных достоинств подобной системы то, что существует возможность монтировки вблизи каждой из батарей термостатов и значительно сократит расходы и преумножит удобство эксплуатации.

Ко всему прочему, тонкие разветвления подающей и обратной магистрали также вовсе не мешают целостности интерьера жилого помещения, к тому же их можно и попросту спрятать за обшивкой или в самой стене.

Разобрав по полочкам все достоинства и нюансы обоих отопительных систем, хозяева, как правило, все же предпочитают выбирать двухтрубную систему. Однако необходимо выбрать один из нескольких вариантов подобных систем, который, по мнению самих хозяев, будет самым функциональным и рациональным в применении.

Классификация газопроводов

Современные газопроводы – это целая система комплексов сооружений, предназначенных для транспортировки горючего топлива от мест его добычи до потребителей. Поэтому по предназначению они бывают:

  • Магистральными – для транспортировки на большие расстояния от мест добычи до пунктов назначения.
  • Местными – для сбора, распределения и подачи газа к объектам населённых пунктов и предприятий.

Гидравлический расчет

По магистральным трассам сооружаются компрессорные станции, которые нужны для поддержания в трубах рабочего давления и поставки газа до назначенных пунктов к потребителям в необходимых объёмах, рассчитанных заранее. В них газ очищается, осушается, сжимается и охлаждается, а затем возвращается в газопровод под определённым давлением, необходимым для данного участка прохождения топлива.

Местные газопроводы, расположенные в населённых пунктах, классифицируются:


  • По виду газа – транспортироваться может природный, сжиженный углеводородный, смешанный и др.
  • По давлению – на разных участках газ бывает с низким, средним и высоким давлением.
  • По расположению – наружные (уличные) и внутренние, надземные и подземные.

Гидравлический расчет 2-трубной системы отопления

  • Гидравлический расчет отопительной системы с учетом трубопроводов
  • Пример гидравлического расчета двухтрубной гравитационной системы отопления

Для чего нужен гидравлический расчет двухтрубной системы отопления Каждое здание индивидуально. В связи с этим отопление с определением количества тепла будет индивидуальным. Сделать это можно при помощи гидравлического расчета, при этом облегчить задачу может программа и таблица расчета.

Гидравлический расчет

Расчет системы отопления дома начинают с выбора топлива, исходя из учета потребностей и особенностей инфраструктуры местности, где расположен дом.

Цель гидравлического расчета, программа и таблица которого есть в сети, заключается в следующем:

  • определение количества нагревательных приборов, которые необходимы;
  • подсчет диаметра и количества трубопроводов;
  • определение возможной потери отопления.

Все подсчеты должны производиться по схеме отопления со всеми элементами, которые входят в систему. Подобная схема и таблица должны быть предварительно составлены. Для проведения гидравлического расчета понадобится программа, аксонометрическая таблица и формулы.

Гидравлический расчет

Двухтрубная система отопления частного дома с нижней разводкой.

За расчетный объект принимается более нагруженное кольцо трубопровода, после чего определяется необходимое сечение трубопровода, возможные потери давления всего контура отопления, оптимальная площадь поверхности радиаторов.

Проведение подобного расчета, для чего используется таблица и программа, может создать четкую картину с распределением всех сопротивлений в контуре отопления, которые существуют, а также позволяет получить точные параметры температурного режима, расхода воды в каждой части отопления.

Гидравлический расчет в результате должен выстроить наиболее оптимальный план отопления собственного дома. Не нужно полагаться исключительно на свою интуицию. Таблица и программа расчета упростят процесс.

Элементы, которые нужны:

Основные уравнения гидравлического расчёта газопровода

Для расчёта движения газа по трубам берутся значения диаметра трубы, расходы топлива и потеря напора. Вычисляется в зависимости от характера движения. При ламинарном – расчёты производятся строго математически по формуле:

Р1 – Р2 = ∆Р = (32*μ*ω*L)/D2 кг/м2 (20), где:

  • ∆Р – кгм2, потери напора в результате трения;
  • ω – м/сек, скорость движения топлива;
  • D – м, диаметр трубопровода;
  • L – м, длина трубопровода;
  • μ — кг сек/м2, вязкость жидкости.

Гидравлический расчет

При турбулентном движении невозможно применить точные математические расчёты по причине хаотичности движения. Поэтому применяются экспериментально определяемые коэффициенты.

Рассчитываются по формуле:

Р1 – Р2 = (λ*ω2*L*ρ)/2g*D (21), где:

  • Р1и Р2 – давления в начале и конце трубопровода, кг/м2;
  • λ – безразмерный коэффициент сопротивления;
  • ω – м/сек, средняя по сечению трубы скорость движения газа;
  • ρ – кг/м3, плотность топлива;
  • D – м, диаметр трубы;
  • g – м/сек2, ускорение силы тяжести.

Видео: Основы гидравлического расчета газопроводов

Подборка вопросов

  • Михаил, Липецк — Какие диски для резки металла использовать?
  • Иван, Москва — Какой ГОСТ металлопроката листовой стали?
  • Максим, Тверь — Какие стеллажи для хранения металлопроката лучше?
  • Владимир, Новосибирск — Что значит ультразвуковая обработка металлов без применения абразивных веществ?
  • Валерий, Москва — Как выковать нож из подшипника своими руками?
  • Станислав, Воронеж — Какое оборудование используют для производства воздуховодов из оцинкованной стали?

2 Метод удельных линейных потерь давления

Последовательность
гидравлического расчета методом удельных
линейных потерь давления:

а) вычерчивается
аксонометрическая схемасистемы отопления
(М 1:100).
На
аксонометрической схеме выбирается
главное циркуляционное кольцо. Для
проведения гидравлического расчета
выбираем наиболее нагруженное кольцо,
которое является расчетным (главным),
и второстепенное кольцо (приложение
Ж).При
тупиковом движении теплоносителя
главное циркуляционное кольцо проходит
через наиболее нагруженный и удаленный
от теплового центра (узла) стояк, при
попутном движении – через наиболее
нагруженный средний стояк.

б) главное циркуляционное
кольцо разбивается на расчетные участки,
обозначаемые порядковым номером (начиная
от реперного стояка); указывается расход
теплоносителя на участке G
, кг/ч, длина участка l,
м;

в) для предварительного
выбора диаметра труб определяются
средние удельные потери давления на
трение:

,
Па/м (5.3)

где j
– коэффициент, учитывающий долю потерь
давления на магистралях и стояках, j=0,3
–для магистралей, j=0,7
– для стояков;


Δpр – располагаемое
давление в системе отопления, Па,

Δpр=25 кПа — для
теплоносителяtг=105
С.

г) по величине Rсри
расходу теплоносителя на участке G(приложение Е) находятся
предварительные диаметры труб d,
мм, фактические удельные потери давления
R, Па/м, фактическая
скорость теплоносителя υ,
м/с. Полученные данные заносятся в
таблицу 5.2.

д) определяются потери
давления на участках:

,
Па (5.4)

где R –
удельные потери давления на трение,
Па/м;

l – длина участка, м;

Z
– потери давления на местных сопротивлениях,
Па,

;
(5.5)

ξ – коэффициент,
учитывающий местное сопротивление на
участке, (приложения Б, В);

ρ – плотность
теплоносителя, кг/м3,
(приложение Д);

υ — скоростьтеплоносителя
на участке, м/с, (приложение Е);

е) после предварительного
выбора диаметров труб выполняется
гидравлическая увязка, которая не должна
превышать 15%.

ж) если увязка проходит,
то начинают выполнять расчет второстепенных
циркуляционных колец (аналогично), если
же нет, то на нужных участках устанавливаются
шайбы. Диаметр шайбы подбирают по
формуле:

,
мм, (5.6)


где
Gст
– расход теплоносителя в стояке, кг/ч,
(таблица 3.3);

рш
– требуемые потери давления в шайбе,
Па.

Диафрагмы
устанавливаются у крана на основании
стояка в месте присоединения к подающей
магистрали.

Диафрагмы
диаметром менее 5 мм не устанавливаются.

По
результатам расчетов заполняются
таблицы5.2, 5.3.

1.
Графа 1
– проставляем номера участков;

2.
Графа 2
– в соответствии с аксонометрической
схемой по участкам записываем тепловые
нагрузки, Q,
Вт;

3.
Рассчитываем расход воды в реперном
стояке для расчетного участка (формула
5.1), графа 3:

4.
В соответствии с таблицей 4.2 по диаметру
стояка Dу,
мм выбираем диаметры подводок и
замыкающего участка: Dу(п),
мм; Dу(з),
мм.

5.
Рассчитываем коэффициенты местных
сопротивлений на участке 1 (приложения
Б, В), сумму записываем в графу 10 таблиц
5.2, 5.3.

На
границе двух участков местное сопротивление
относим к участку с меньшим расходом
воды.

Результаты
расчетов сведены в таблицу 5.1.

Таблица
5.1 – Местные сопротивления на расчетных
участках

№ участка,
вид местного сопротивления



Например:Участок
3

2
тройника на проход, =1;

уч(3)=
2х1=2

Например:
Стояк 3

1)
чугунный радиатор – 3 шт., =1,4;

2)
кран регулирующий двойной регулировки
– 6 шт., =13;

3)
отвод гнутый под углом 90
– 6 шт., =0,6;

4)
вентиль обыкновенный прямоточный –
2 шт., =3;

5)
тройник поворотный на ответвление –
2 шт., =1,5.

ст3
= 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = 96,2

Почему необходимо проводить расчёт газопровода

На протяжении всех участков газопроводной магистрали проводятся расчёты для выявления мест, где в трубах вероятны появления возможных сопротивлений, изменяющих скорость подачи топлива.

Если все вычисления сделать правильно, то можно подобрать наиболее подходящее оборудование и создать экономичный и эффективный проект всей конструкции газовой системы.

Это избавит от лишних, завышенных показателей при эксплуатации и расходов в строительстве, которые могли бы быть при планировании и установке системы без гидравлического расчёта газопровода.

Гидравлический расчет

Появляется лучшая возможность подбора нужного размера в сечении и материалов труб для более эффективной, быстрой и стабильной подачи голубого топлива в запланированные точки системы газопровода.

Обеспечивается оптимальный рабочий режим всей газовой магистрали.

Застройщики получают финансовую выгоду при экономии на закупках технического оборудования, строительных материалов.

Производится правильный расчёт газопроводной магистрали с учётом максимальных уровней расхода горючего в периоды массового потребления. Учитываются все промышленные, коммунальные, индивидуально-бытовые нужды.

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Расчёт объема воды и вместительность расширительного бака

Гидравлический расчетОбъем расширительного бачка должен равняться 1/10 всего объема жидкости

Для расчета рабочих характеристик расширительного бачка, обязательного для любой системы отопления закрытого типа, потребуется разобраться с явлением увеличения объема жидкости в ней. Этот показатель оценивается с учетом изменения основных рабочих характеристик, включая колебания ее температуры. Она в этом случае изменяется в очень широком диапазоне – от комнатных +20 градусов и вплоть до рабочих значений в пределах 50-80 градусов.

Вычислить объем расширительного бака удастся без лишних проблем, если воспользоваться проверенной на практике приблизительной оценкой. Она основана на опыте эксплуатации оборудования, согласно которому объем расширительного бачка составляет примерно одну десятую часть от общего количества теплоносителя, циркулирующего в системе

При этом во внимание принимаются все ее элементы, включая отопительные радиаторы (батареи), а также водяную рубашку котельного агрегата. Для определения точного значения искомого показателя потребуется взять паспорт эксплуатируемого оборудования и найти в нем пункты, касающиеся емкости батарей и рабочего бака котла

После их определения излишки теплоносителя в системе найти совсем несложно. Для этого сначала вычисляется площадь поперечного сечения полипропиленовых труб, а затем полученное значение умножается на длину трубопровода. После суммирования по всем веткам отопительной системы к ним добавляются взятые из паспорта цифры для радиаторов и котла. От итоговой суммы затем отсчитывается одна десятая часть.

Расчёт параметров теплоносителя

Гидравлический расчетКоличество теплоносителя в 1 м трубы в зависимости от диаметра

Расчет теплоносителя сводится к определению следующих показателей:

  • скорость движения водных масс по трубопроводу с заданными параметрам;
  • их средняя температура;
  • расход носителя, связанный с требованиями к производительности отопительного оборудования.

Известные формулы расчета параметров теплоносителя (с учетом гидравлики) достаточно сложны и неудобны в практическом применении. В онлайн калькуляторах используется упрощенный подход, позволяющий получить результат с допустимой для этого способа погрешностью

Тем не менее перед началом монтажа важно побеспокоиться о том, чтобы приобрести насос с показателями не ниже расчетных. Лишь в этом случае появляется уверенность в том, что требования к системе по этому критерию выполнены в полной мере и что она способна обогреть помещение до комфортных температур

Горизонтальная и вертикальная схемы

На горизонтальные и вертикальные схемы подобная система отопления делится по местоположению трубопровода, соединяющего все устройства и приборы в одно целое.

Гидравлический расчет

Вертикальная обогревательная схема разнится от других тем, что в таком случае все необходимые устройства подсоединяются к стояку, расположенному вертикально.

Гидравлический расчет

Хотя ее составление и выйдет в итоге немного дороже, но зато стабильной работе не будут препятствовать образовывающиеся воздушные застои и пробки. Такой решение наиболее подходящее для хозяев квартиры в доме с множеством этажей, так как все отдельно взятые этажи подключается раздельно.

Двухтрубная система отопления с горизонтальной схемой прекрасно подойдет для одноэтажного жилого дома с относительно большой протяженностью, в котором проще и рациональнее подключить все имеющиеся радиаторные отсеки к горизонтальному трубопроводу.

Обе разновидности контуров отопительной системы могут похвастаться превосходной гидравлической и температурной устойчивостью, только в первой ситуации в любом случае потребуется калибровка стояков, расположенных вертикально, а во втором – горизонтальных петель.

Простой трубопровод постоянного сечения

Основными
расчетными соотношениями для простого
трубопровода являются: уравнение
Бернулли , уравнение расхо­да Q
= const
и формулы для расчета потерь напора на
трение по длине трубы и в местных
сопротивлениях .

При
применении уравнения Бернулли в
конкретном расчете можно учитывать
приведенные далее рекомендации. Сна­чала
следует задать на рисунке два расчетных
сечения и плос­кость сравнения. В
качестве сечений рекомендуется брать:

свободную
поверхность жидкости в резервуаре, где
ско­рость равна нулю, т.е. V
= 0;

выход
потока в атмосферу, где давление в
сечении струи равно давлению окружающей
среды, т.е. ра6с
= ратм
или риз6
= 0;

сечение,
в котором задано (или необходимо
определить) давление (показания манометра
или вакуумметра);

сечение
под поршнем, где избыточное давление
определя­ется внешней нагрузкой.

Плоскость
сравнения удобно проводить через центр
тяжести одного из расчетных сечений,
обычно расположенного ниже (тог­да
геометрические высоты сечений
Гидравлический расчет0).

Пусть
простой трубопровод постоянного сечения
расположен произвольно в пространстве
(рис.1), имеет общую длину l
и диаметр d
и содержит ряд местных сопротивлений.
В начальном сечении (1-1) геометрическая
высота равна z1
и избыточное давление p1,
а в конечном (2-2) соответственно z2
и p2.
Скорость потока в этих сечениях вследствие
постоянства диаметра трубы одинакова
и равна v.

Гидравлический расчет

Уравнение
Бернулли для сечений 1-1 и 2-2 с учетом
Гидравлический расчет отопления с учетом трубопровода,Гидравлический расчет отопления с учетом трубопроводабудет иметь вид:

Гидравлический расчет отопления с учетом трубопровода

или

Гидравлический расчет отопления с учетом трубопровода,

Гидравлический расчетсумма
коэффициентов местных сопротивлений.

Для
удобства расчетов введем понятие
расчетного напора

Гидравлический расчет отопления с учетом трубопровода.

Гидравлический расчет отопления с учетом трубопровода

Гидравлический расчет отопления с учетом трубопроводаГидравлический расчет,

Гидравлический расчет отопления с учетом трубопровода

Гидравлический расчет отопления с учетом трубопровода٭

Гидравлический расчет отопления с учетом трубопровода

Гидравлический расчет отопления с учетом трубопровода٭٭

Определение потерь давления в трубах

Сопротивление потерь давления в контуре, по которому циркулирует теплоноситель, определяется как их суммарное значение для всех отдельных составляющих. К последним относят:

  • потери в первичном контуре, обозначаемые как ∆Plk;
  • местные издержки теплоносителя (∆Plм);
  • падение давления в особых зонах, называемых “генераторами тепла” под обозначением ∆Pтг;
  • потери внутри встроенной теплообменной системы ∆Pто.

После суммирования этих величин получается искомый показатель, характеризующий полное гидравлическое сопротивление системы ∆Pсо.

Помимо этого обобщенного метода существуют другие способы, позволяющие определить потери напора в трубах из полипропилена. Один из них основан на сравнении двух показателей, привязанных к началу и концу трубопровода. В этом случае вычислить потерю давления можно простым вычитанием начального и конечного его значений, определяемых по двум манометрам.

Еще один вариант вычисления искомого показателя основан на применении более сложной формулы, учитывающей все факторы, которые влияют на характеристики теплового потока. Приводимое ниже соотношение в первую очередь учитывает потерю напора жидкости из-за большой длины трубопровода.

  • h – потери напора жидкости, в исследуемом случае измеряемые в метрах.
  • λ – коэффициент гидравлического сопротивления (или трения), определяемый по другим расчетным методикам.
  • L – общая длина обслуживаемого трубопровода, которая измеряется в погонных метрах.
  • D –внутренний типоразмер трубы, определяющий объем потока теплоносителя.
  • V – скорость тока жидкости, измеряемая в стандартных единицах (метр за секунду).
  • Символ g – это ускорение свободного падения, равное 9,81 м/сек2.

Гидравлический расчет отопления с учетом трубопроводаПотери давления происходят из-за трения жидкости о внутреннюю поверхность труб

Большой интерес представляют потери, вызванные высоким коэффициентом гидравлического трения. Он зависит от шероховатости внутренних поверхностей труб. Используемые в этом случае соотношения справедливы лишь для трубных заготовок стандартной круглой формы. Окончательная формула для их нахождения выглядит так:

  • V – скорость перемещения водных масс, измеряемая в метрах/секунду.
  • D – внутренний диаметр, определяющий свободное пространство для перемещения теплоносителя.
  • Стоящий в знаменателе коэффициент указывает на кинематическую вязкость жидкости.

Последний показатель относится к постоянным величинам и находится по специальным таблицам, в больших количествах опубликованным в Интернете.

Расчёт гидравлики отопительных каналов

Гидравлический расчетГрамотно рассчитанная гидравлика позволяет правильно распределить диаметр труб по системе

Гидравлический расчет системы отопления обычно сводится к подбору диаметров труб, проложенных на отдельных участках сети. При его проведении обязательно учитываются следующие факторы:

  • величина давления и его перепады в трубопроводе при заданной скорости циркуляции теплоносителя;
  • его предполагаемый расход;
  • типовые размеры используемых трубных изделий.

При расчете первого из этих параметров важно принять во внимание мощность насосного оборудования. Ее должно хватать для преодоления гидравлического сопротивления отопительных контуров. При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом

По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов

При этом решающее значение имеет суммарная длина полипропиленовых труб, с увеличением которой растет общее гидравлическое сопротивление систем в целом. По результатам проведенного расчета определяются показатели, необходимые для последующего монтажа отопительной системы и соответствующие требованиям действующих нормативов.

Источник: mr-build.ru

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Гидравлический расчетМноголетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Гидравлический расчетУсловный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Гидравлический расчет

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
  • переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
  • турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и  их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

Гидравлический расчет

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Гидравлический расчет

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Гидравлический расчет

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

Гидравлический расчет

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы: 

Гидравлический расчетПотери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:

Гидравлический расчет

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Гидравлический расчет

Примеры задач гидравлического расчета трубопровода с решениями

 

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·105 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

hп = H — [(p2-p1)/(ρ·g)] — Hг = 20 — [(2,2-1)·105)/(1000·9,81)] — 0 = 7,76 м

Потери напора на местные сопротивления определяется как разность:

7,76 — 0,31=7,45 м

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

 

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10-5.

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w2/(2·g) = 2,02/(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

hп = H — (p2-p1)/(ρ·g) — = 8 — ((1-1)·105)/(1000·9,81) — 0 = 8 м

Полученное значение потери напора носителя на трение составят:

8-1,04 = 6,96 м

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с,  плотность воды – 1000 кг/м3):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000

Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):

λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

 

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал — сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м3/час = 0,005 м3/с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Δp=0,01 МПа;

ΔH=1,2 м.

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5

Выразим диаметр:

d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6

d = 5√1,16·10-6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

 

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Q1 = 18 м3/час;

Q2 = 34 м3/час.

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

d = √(4·Q)/(π·W)

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

 

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.

Дано:

диаметр трубы d = 0,25 м;

расход Q = 100 м3/час;

μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м(по таблице при Т = 40°С).

Решение задачи: 

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Источник: pkfdetal.ru

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Имеем: 86 / 3600 х 0,983 = 0.024 л/сек. Потребность в переводе единиц объясняется необходимостью использования специальных готовых таблиц для определения диаметра трубы в частном доме. Они есть в свободном доступе и называются «Таблицы Шевелева для гидравлических расчетов». Скачать их можно, перейдя по ссылке: http://dwg.ru/dnl/11875

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

raschet-trub-dlja-sistemy-otoplenija.jpg

Примечание. В левом столбце под диаметром сразу же указывается скорость движения воды. Для систем отопления ее значение должно лежать в пределах 0.2—0.5 м/сек.

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

raschet-trub-dlja-sistemy-otoplenija-1.jpg

Важно. Для систем отопления с естественной циркуляцией скорость движения теплоносителя должна составлять 0.1—0.2 м/сек.

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

raschet-trub-dlja-sistemy-otoplenija-2_0.jpg

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

aksonometricheskaja-shema.jpg

Определение сопротивления

xustanovka_sistemy_otopleniya.jpg.pagespeed.ic.imxzylwihe.jpg
Зачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.

Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.

Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.

Самым утомительным и требующим больших затрат труда будет вычисление местного сопротивления в соединительных частях трубопровода, регулирующих клапанах, задвижках и отопительных приборах.

Таблица гидравлического расчёта систем водяного отопления

tablica-dlja-gidravlicheskogo-raschjota.jpg

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

160.jpg
Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.

Мощность генератора тепла

Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.

Мощность самого котла определяется по ниже приведённой формуле:

Wкотла = (Sпомещ*Wудел) / 10,

где:

  • Sпомещ – сумма площадей всех комнат, которые требую отопления;
  • Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).

Что характерно, для разных климатических зон имеем следующие данные:

  • северные области – 1,5 – 2 кВт/м2;
  • центральная зона – 1 – 1,5 кВт/м2;
  • южные регионы – 0,6 – 1 кВт/м2.

Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.

Сумма площади квартиры которую необходимо отапливать – равна общей площади квартиры и равна, то есть – 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой – 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

V = (0,86*W*k)/t-to,

где:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Обзор программ для гидравлических вычислений

Можно попытаться выполнить гидравлический расчет системы обогрева в оболочке Excel, воспользовавшись уже готовыми формулами. Однако при этом возможно появление следующих проблем:

  • Большая погрешность. Во многих случаях как пример гидравлического расчета системы для отопления берутся с одной или двумя трубами схемы. Найти такие же вычисления для коллекторной проблематично;
  • Для правильного учета сопротивления в плане гидравлики трубопровода нужны справочные данные, которые отсутствуют в форме. Их необходимо искать и вводить дополнительно.

Беря во внимание такие факторы, специалисты рекомендуют применять программы для расчета. Большое количество из них платные, однако некоторые имеют демоверсию с небольшими возможностями.

Oventrop CO

gidravlicheskij-raschet-sistemy-otoplenija-excel_11_1.jpg

Наиболее простая и ясная программа для гидравлического расчета теплосети. Интуитивный интерфейс и гибкая настройка смогут помочь быстро разобраться с невидимыми моментами ввода данных. Маленькие проблемы могут появиться при первой настройке комплекса. Потребуется ввести все параметры системы, начиная от самого материала труб и завершая размещением ТЕНОВ.

Отличается гибкостью настроек, возможностью делать самый простой гидравлический расчет теплоснабжения как для новой теплосети, так же и для модернизации старой. Выделяется от заменителей хорошим графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитывается для профессионального сопротивления в плане гидравлики теплосети. Бесплатная версия имеет очень много противопоказаний. Сфера использования – проектирование теплоснабжения в больших общественных и производственных зданиях.

В практических условиях для теплоснабжения автономного типа частных квартир и домов гидравлический расчет делается не всегда. Однако это способно привести к ухудшению работы системы обогрева и быстрой поломке его компонентов – отопительных приборов, труб и котла. Что этого избежать нужно вовремя высчитать параметры системы и сопоставить их с фактическими для последующей оптимизации работы теплоснабжения.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 750С, tо = 600С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Источник: remont-system.ru


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.